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Background: Our goal was to establish and verify a radiomics risk grading model

for gastrointestinal stromal tumors (GISTs) and to identify the optimal algorithm for

risk stratification.

Methods: We conducted a retrospective analysis of 324 patients with GISTs, the

presence of which was confirmed by surgical pathology. Patients were treated at three

different hospitals. A training cohort of 180 patients was collected from the largest center,

while an external validation cohort of 144 patients was collected from the other two

centers. To extract radiomics features, regions of interest (ROIs) were outlined layer

by layer along the edge of the tumor contour on CT images of the arterial and portal

venous phases. The dimensionality of radiomic features was reduced, and the top 10

features with importance value above 5 were selected before modeling. The training

cohort used three classifiers [logistic regression, support vector machine (SVM), and

random forest] to establish three GIST risk stratification prediction models. The receiver

operating characteristic curve (ROC) was used to compare model performance, which

was validated by external data.

Results: In the training cohort, the average area under the curve (AUC) was 0.84 ± 0.07

of the logistic regression, 0.88± 0.06 of the random forest, and 0.81± 0.08 of the SVM.

In the external validation cohort, the AUC was 0.85 of the logistic regression, 0.90 of the

random forest, and 0.80 of the SVM. The random forest model performed the best in

both the training and the external validation cohorts and could be generalized.

Conclusion: Based on CT radiomics, there are multiple machine-learning models that

can predict the risk of GISTs. Among them, the random forest algorithm had the highest

prediction efficiency and could be readily generalizable. Through external validation data,

we assume that the random forest model may be used as an effective tool to guide

preoperative clinical decision-making.
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INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are the most common
mesenchymal tumors of the digestive system, which occur in the
stomach and small intestine. GISTs have a variety of biological
characteristics and cannot be simply categorized as benign or
malignant (1). For example, some small GISTs can progress
rapidly and metastasize to the liver, while some large GISTs,
even those not receiving the post-operative adjuvant treatment,
present no long-term risk of recurrence or metastasis (2).
Therefore, the preoperative evaluation of the malignant potential
of GISTs is crucial for treatment decision-making.

Risk stratification is commonly applied to evaluate the
biological behaviors and overall clinical outcome of GISTs.
Currently, the most recognized criterion is the improved
National Institutes of Health risk stratification standard
introduced by Joensuu in 2008 (3), which is based on tumor
maximum diameter and mitotic count and introduces two
parameters: tumor site and tumor rupture. The risk of relapse
is thereby divided into four categories: very low risk, low risk,
intermediate risk, and high risk. Higher risk generally indicates
a worse prognosis. Also, the introduction of imatinib mesylate
has greatly changed the outcomes in high-risk GIST patients
(4). The need for reliable preoperative risk stratification is of
great significance for the development of treatment methods and
prognostic evaluation. Most surgeries can completely remove
the GISTs without first conducting a preoperative biopsy (5),
which may cause tumor ulceration and bleeding, increasing
the risk of tumor spread. Therefore, it is of great clinical
value to explore non-invasive, reliable, and simple biomarkers
for predicting the recurrence and metastasis risk of GISTs
before surgery.

Previous GIST risk stratification research is largely based
on analysis of computed tomography (CT) images (4, 6–
9), which is likely influenced by the observer’s subjective
assessment. Therefore, an objective and quantitative technique
is urgently needed for the accurate risk stratification of GISTs.
Radiomics converts medical images into high-dimensional
data that can be mined, which holds great potential for
application in disease diagnosis, identification, and prognosis
predictions (10–13).There are studies have examined the utility
of radiomics in GIST risk stratification (14–16) and have
achieved favorable results. However, most of these studies
are single-center trials, whose prediction models have not
been externally verified. Therefore, the generalizability of these
models remains unclear. In addition, previous studies used a
single classifier for modeling, due to the obvious differences
in classifier algorithms (17), and such studies are unable
to determine the classifier with the best performance in
risk prediction.

In response to these shortcomings, we conducted a
multiclassifier and multicenter GISTs radiomics study, applying
the three most commonly used machine-learning classifiers in
radiomics to the same cohort of data to evaluate and compare the
performance of the classifiers. Also, the model was tested with
independent external data to further evaluate its generalizability
to provide a reference for clinical treatment decisions.

TABLE 1 | The protocols of the CT scan for the patients with GISTs.

Manufacture Philips SIEMENS Philips

CT scanner Brilliance 64 Dual source CT Brilliance 256

Tube voltage (kV) 120 120 120

Tube current (mA) 250 200 250

Rotation time (s) 0.4 0.5 0.5

Detector collimation (mm) 64 × 0.625 128 × 0.6 64 × 0.625

Pitch 0.891 0.6 0.914

Slice thickness (mm) 5 5 5

Slice spacing (mm) 5 5 5

Matrix 512 × 512 512 × 512 512 × 512

FOV (mm) 350 300 350

Algorithm (B) Standard Standard Standard

MATERIALS AND METHODS

Patients
Data from a total of 324 patients with GISTs presenting from
January 1, 2016 to July 1, 2019 were collected retrospectively
from three hospitals. Among them, 180 cases were analyzed
from the First Affiliated Hospital of Zhejiang University School
of Medicine, which was used as the training cohort, while 144
cases from another two hospitals (Zhejiang Cancer Hospital and
the First Affiliated Hospital of Wannan Medical College) were
used as the external validation cohort. The inclusion criteria
were as follows: (1) surgical resection, negative margin, and a
pathological diagnosis of GISTs, (2) abdominal enhancement
CT examination within 15 days prior to surgery, and (3)
pathological results with a clear risk assessment. Exclusion
criteria were as follows: (1) patients receiving imatinib or other
neoadjuvant therapy before surgery, and (2) those with poor CT
image quality.

Clinical data, including age, gender, and tumor site,
were derived from medical records. The National Institutes
of Health’s modified criteria were used to stratify the
malignant potential of GISTs on the basis of the clinical
and post-operative histological index. All patients were
divided into two groups: high malignant potential group
with intermediate risk and high risk; and low malignant
potential group with very low risk and low risk. This
study was a retrospective study, and the patient’s informed
consent was thereby waived, as approved by the hospital
ethics committee.

CT Image Acquisition
All subjects received a default abdominal CT scan using one
of the three multidetector CT (MDCT) systems with the
scanning and reconstruction parameters used in daily clinical
practice. See Table 1 for the detailed information of the CT
protocol. Three-phase scans were unenhanced phase, arterial
phase (25–30 s after injection), and portal vein phase (55–
60 s after injection). The dose of iodine contrast agent was
based on the patient’s weight (1 mL/kg), and the flow rate
was 2.5–3.5 mL/s.
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Three-Dimensional Segmentation of Tumor
Images and Radiomics Feature Extraction
Both tumor segmentation and radiomics feature extraction were
performed using Matlab’s IBEX software package (18). Two
radiologists with a depth of experience delineated the regions of
interest (ROIs) layer by layer along the edge of the tumor contour
on the CT images of the arterial and portal venous phases.

All images were preprocessed with image resampling (voxel
size of 1 × 1 × 1 mm3) and gray value homogenization
(normalized to 1–256, fixed bin numbermethod, 256 bins) before
radiomics feature extraction. The radiological feature parameters
involved six major categories: histogram parameters (n = 48),
2.5D and 3D gray level co-occurence matrix (n = 594, the 2.5D
feature is computed from a single matrix after merging all 2D
directional matrices, the 3D feature is computed from a single
matrix after merging all 3D directional), gray level adjacent
difference (n = 10), gray level run length matrix (n = 34), shape
and size (n= 18). In each stage, we retrieved 704 parameters, and
a total of 1,408 parameters were collected in the two stages.

During the early stage of the study, we randomly selected
images from 40 patients, and two radiologists with more
than 10 years of work experience performed ROI delineation
independently. The blindness method was used to analyze the
reliability and repeatability between observers. The consistency
was evaluated using the intra-class correlation coefficient (ICC).
There is a good agreement when the ICC is > 0.75. ROI
extraction of the remaining images was performed by one of
the radiologists.

Feature Selection and Radiomics Model
Building
Redundancy and overcorrelation in the characteristics of
radiomics often lead to overfitting of the prediction model. In
this study, we dimensionally reduced the radiomics features in
two steps. First, multicollinearity of the features were analyzed by
spearman correlation, and the correlation coefficient threshold
was 0.8. Then, we used the boruta algorithm to iteratively
assess the importance of features, and we removed the irrelevant
features. Boruta algorithm can filter out all the characteristics
related to the dependent variable and generate a ranking of
importance. To achieve statistical significance, the top 10 features
in importance ranking were selected for final modeling.

After dimensionality reduction of the radiomics features, the
three most popular classifiers [logistic regression, support vector
machine (SVM), and random forest] were applied to establish
three risk stratification models for radiological prediction. We
conducted holdout cross-validation for 30 times for each model
in the training cohort (training: internal validation ratio is 4:1).
Because each iteration is a resampling of the training cohort, each
model yielded 30 different values of area under the curve (AUC),
specificity, sensitivity, and accuracy, among which we used AUC
as the standard to evaluate the effectiveness of the three models
in the training cohort.

Subsequently, the three models were applied to the external
validation cohort, and the effectiveness of the models were also
evaluated through AUC, specificity, sensitivity, and accuracy.

Statistical Analysis
All statistical analysis was performed using R software (version
3.4.1; http://www.Rproject.org). We performed descriptive
statistical analysis for the training and external validation
cohorts, and quantitative data was described as mean± standard
deviation (SD) and qualitative data was described by frequency
(percent). Qualitative variables were compared using the
chi-square test. Continuous variable data was evaluated using
a two-sample t-test or Wilcoxon test. AUC was used as the
evaluation standard for the comparison of the three classification
algorithms in the training cohort. The Fridman test was used for
the comparison among the three algorithms, and the Nemenyi
test was used in post-hoc analysis. Two tailed p < 0.05 was
considered statistically significant.

RESULTS

Clinical Characteristics
In total, 324 GIST patients were included in this study, of which
150 patients had low malignant potential and 174 patients had
high malignant potential. Ninety-three men and 87 women were
included in the training cohort, and 64 men and 80 women were
included in the external validation cohort. Table 2 shows the
baseline clinical data. Single factor analysis showed that there
was no statistically significant difference between the low and
the high malignant potential groups in terms of age, gender, and
tumor site.

After dimension reduction by spearman correlation, we
obtained 107 features, which through the dimension reduction
by boruta algorithm, 25 parameters remained, from which
we extracted the top 10 features, according to the built-in
importance-ranking system. In the subset, parameters from the
portal venous phase accounted for 80%. Morphology ranks the
most important, although only one parameter was selected. See
Table 3 for a list of specific parameters and their importance.

Radiomics Model Performance
The specific performance of the three classifier prediction models
is shown inTable 4 and Figures 1, 2. The Friedman test indicated
that the AUC value of the three models in the training cohort
was significantly different (p < 0.001). The Nemenyi test results
show that the AUC of random forest was significantly higher
than logistic regression (p = 0.001), significantly higher than
SVM (p= 0.0103), and there was no significant statistics between
logisitic regression and SVM (p= 0.09). The Friedman-Nemenyi
test indicated that the AUC value of the random forest model
was significantly higher than that of the other two prediction
models. The random forest model achieved the most satisfactory
results; the performance and generalizability were favorable. The
performance of the SVM and logistic regression models were
satisfactory, and the generalizability was acceptable, but the
overall efficiency was not outstanding.

DISCUSSION

In this study, we built three prediction models based
on CT radiomics for GIST risk stratification. After
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TABLE 2 | Patient characteristics in the training and external validation cohorts.

Patient

characteristics

Training cohort External validation cohort

Low-malignant

potential GISTs

(n = 82)

High-malignant

potential GISTs

(n = 98)

p-value Low-malignant

potential GISTs

(n = 68)

High-malignant

potential GISTs

n = 76)

p-value

Age (mean ± SD,

years)

54.13 ± 8.31 56.71 ± 10.52 0.74 55.13 ± 8.31 57.12 ± 11.45 0.63

Gender (%) 0.15 0.77

Male 37 (45.12%) 56 (57.14%) 31 (45.59%) 33 (43.42%)

Female 45 (54.88%) 42 (42.86%) 37 (54.41%) 43 (56.58%)

Primary site (%) 0.65 0.19

Gastric 48 (58.53%) 53 (54.08%) 45 (66.18%) 42 (55.26%)

Intestinal 34 (41.47%) 45 (45.92%) 23 (33.82%) 34 (44.74%)

TABLE 3 | Texture features selection for radiomics models.

Parameters category Parameters Phase Importance

Morphology Volume Portal venous phase 21.11

Gray level co-occurrence matrix Variance Portal venous phase 9.26

Gray level co-occurrence matrix Inverse variance Arterial phase 8.04

Gray level co-occurrence matrix Cluster shade Portal venous phase 7.78

Gray level adjacent difference Contrast Portal venous phase 7.59

Gray level co-occurrence matrix Max probability Arterial phase 6.17

Gray level adjacent difference Busyness Portal venous phase 5.39

Gray level co-occurrence matrix Sum average Portal venous phase 5.23

Gray level adjacent difference Texture strength Portal venous phase 5.15

Gray level adjacent difference Complexity Portal venous phase 5.14

comparing the three most commonly used machine-
learning models in radiomics, we found the random forest
model showed the best performance in discriminating
GISTs malignant potentials, and its generalizability
is outstanding.

GISTs often exhibit complex and unpredictable biological
behaviors. With the development of molecular pathology
research, imatinib has emerged as a first-line molecular targeted
drug, which has changed the treatment of GISTs and has
become a successful model for the targeted diagnosis and
treatment of solid tumors. The stratification of patients based
on the risk of recurrence is a key issue in managing primary
GISTs. The National Comprehensive Cancer Network guidelines
recommend more than 3 years of post-operative imatinib
be used as an adjuvant therapy for patients with a high
recurrence risk (high-risk and intermediate-risk) (19, 20),
while patients with a low recurrence risk (low-risk and very
low-risk) that can be cured via surgical resection of the
tumor should not receive adjuvant therapy with imatinib (21–
23). Therefore, in this study, GIST patients were classified
into low and high malignant potential groups according to
the risk stratification. Because the clinical characteristics of
GISTs lack specificity, the preoperative diagnosis and risk
stratification of GISTs mainly rely on imaging examinations.

Traditional imaging evaluates the risk of GISTs by observing
the size, shape, presence or absence of necrosis, ulcers,
and enhancement of GISTs, and the results depend much
on the professional ability and subjective experience of
radiologists (4, 6–9).

The rise in the use of radiomics in recent years has resulted
in imaging studies to predict GISTs recurrence risks using
objective and quantitative measures. Currently, most GISTs
radiomics studies focus on risk prediction, and the AUC is
relatively high at ∼0.81–0.94 (15, 19, 24–27), demonstrating the
superiority of radiomics over traditional methods in terms of
prediction effectiveness. It also lays foundation for the future
application of radiomics for GIST risk stratification. However,
only one study has also conducted external data validation of
the model (24). Its model efficiency was 0.87 in the training
cohort and 0.85 in the external validation cohort. Although
the performance of the model was not optimal, this study
has published the most standardized and reliable results to
date. There is no external validation for the other studies;
the same data were used for the training and validation
cohort, making the results less convincing (28). Studies have
confirmed that equipment from different manufacturers results
in differences in scanning parameter settings and post-processing
reconstruction algorithms, resulting in significant differences
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TABLE 4 | A performance summary of the radiomics models in the training and external validation cohorts.

Accuracy Sensitivity Specificity AUC

Logistic regression

Training cohort 0.77 ± 0.08 0.61 ± 0.11 0.86 ± 0.10 0.84 ± 0.07

External validation cohort 0.75 0.65 0.84 0.85

Random forest

Training cohort 0.82 ± 0.07 0.84 ± 0.10 0.73 ± 0.10 0.88 ± 0.06

External validation cohort 0.84 0.93 0.76 0.90

Support vector machine

Training cohort 0.75 ± 0.07 0.52 ± 0.12 0.91 ± 0.08 0.81 ± 0.08

External validation cohort 0.71 0.74 0.68 0.80

Values of accuracy, sensitivity, specificity, and AUC of the three models in the training cohort are the average values after 30 holdout cross-validation, which were described as mean ±

standard deviation (SD). AUC, areas under the curve.

FIGURE 1 | AUC of the three classifier prediction models performance in the training cohort. The random forest model achieved the best satisfactory results. The

AUC is the average AUC obtained after 30 holdout cross-validation. The horizontal line of each diagram corresponds to the average AUC. AUC, the area under the

curve; SVM, support vector machine.

in the radiomics parameters (29–31). Therefore, single-center
research has its limitations (32). Multicenter research can provide
diverse imaging data to better interpret tumor heterogeneity,
which is also in line with the development of precision medicine
(33). The highlight of this research lies in its multicenter design,
which uses the largest amount of data among the three hospitals
as the training cohort, while the data from the other two hospitals
are fused into an independent external validation cohort. We
found that the AUC of the random forest model in the training
cohort was 0.88 ± 0.06, which was very good in both the
training cohort and the validation cohort, indicating that the
generalizability of the model is excellent. Our study confirms the
potential of radiomics in GISTs diagnosis and prognosis, and it

proposes that the predicted models must undergo multicenter
testing before providing a reliable reference for clinical
decision-making (34).

Different machine-learning algorithms have their own
advantages and disadvantages. The performance of an algorithm
in a specific machine-learning task cannot be predicted before
research.Most previous radiomics studies used a single algorithm
for modeling, and no specific reason was stated for choosing
the model. Currently, the most common GIST risk stratification
models are logistic regression, SVM, and random forest. Logistic
regression is the most commonly used classification algorithm
in the medical field (35) and in GISTs imaging histology. Wang
et al. (26). collected 333 GISTs cases, and the AUC of the training
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FIGURE 2 | ROC diagram of multiple models in the external validation cohort. Red is logistic regression, green is random forest, and blue is support vector machine.

cohort was 0.88. Ren et al. (27) also used logistic regression
with 440 cases, and the final AUC of the training cohort was
0.93. SVM has many advantages in processing small samples
and non-linear and high-dimensional data. Chen et al. chose
SVM to build a prediction model, and the AUC was 0.86 in
the training cohort and 0.85 in the external validation cohort.
Random forest is a type of integrated machine learning, which
is based on the decision tree method and can improve the
prediction accuracy without significantly increasing the amount
of calculation (36). Zhang et al. (19) used a random forest
algorithm to predict GIST risk stratification, and achieved an
AUC of 0.94 of the training cohort, which is the best performance
among similar studies. These studies have their own advantages,
but due to the heterogeneity between the data cohorts, the
differences of the classifiers cannot be clarified. Hence, it is
impossible to determine which classifier is the most suitable
for stratifying the GIST risk. In this study, we conducted a
multiclassification algorithm study on the same data and task
and found that logistic regression and SVM performed stably,
but the overall efficiency was not outstanding. Random forest
performed the best in both the training and external validation
cohorts, with the highest AUC and excellent generalizability,
which indicated that this method is worthy of in-depth study
and verification with a larger sample set and data from a
multicenter study.

However, our study has the following limitations: (1) Our
sample size was relatively small, and limited to Chinese people.
As genetic mutations are the driving factors in the occurrence of

GISTs, and the morbidity and mortality of GISTs varies among
different races, it is necessary to conduct further in-depth studies
on large samples of multinational and multiethnic populations,
ideally in multicenter trials. (2) Because most of the previous
articles suggested clinical parameters were not significant, this
study used pure radiomic modeling and did not integrate
clinical parameters for further analysis and comparison. (3) This
study was a retrospective study, and the sample selection was
biased, which requires further verification in prospective studies.
(4) As the CT imaging protocols varies in different hospitals,
radiomics features are affected by CT scanner parameters, such
as reconstruction kernel or section thickness, thus obscuring
underlying biologically important radiomics parameters. We did
not process the data frommulticenter with harmonization. Some
features of IBEX are not compatible with IBSI (Image Biomarker
Standardisation Initiative), which will affect the reproducibility
of the results. (5) The algorithm of feature selection also affects
the model performance. We did not compare the algorithms of
dimensionality reduction; therefore, the final feature selection
may not be the optimal.

In conclusion, this study predicts the risks of GISTs based
on different machine-learning models of CT radiomics.
After comparing the three most commonly used machine-
learning algorithms in radiomics, a radiomics model of
the random forest algorithm presents the most satisfactory
prediction. The efficacy, optimal discrimination, strong
generalizability, and confirmation in external validation
data can be used as a more objective and non-invasive
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technique, which has the potential to become an effective
tool for clinicians to predict the risk stratification of GISTs
before surgery.
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