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Neural correlates of abnormal 
auditory feedback processing 
during speech production in 
Alzheimer’s disease
Kamalini G. Ranasinghe1, Hardik Kothare   2,3,4, Naomi Kort2,3, Leighton B. Hinkley2,3, 
Alexander J. Beagle1, Danielle Mizuiri3, Susanne M. Honma3, Richard Lee1, Bruce L. Miller1, 
Maria Luisa Gorno-Tempini1, Keith A. Vossel1,5, John F. Houde2 & Srikantan S. Nagarajan2,3

Accurate integration of sensory inputs and motor commands is essential to achieve successful 
behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in 
which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we 
demonstrated abnormal sensorimotor integration in patients with Alzheimer’s disease (AD) with an 
abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates 
of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. 
The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the 
pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65–150 Hz) 
responses during this task. AD patients showed significantly reduced left prefrontal activity during 
the early phase of perturbation and increased right middle temporal activity during the later phase of 
perturbation, compared to controls. Activity in these brain regions significantly correlated with the 
behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-
control network and additional recruitment of right temporal regions are significant mediators of 
aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms 
signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.

From reaching and grasping to speaking and singing, motor skills require accurate integration of sensory and 
motor signals to achieve target behavioral goals. The motor commands to achieve a target also generate an 
efferent-copy of the sensory consequences1. These internal predictions are constantly compared against sensory 
feedback signals from the periphery, and the motor output is adjusted to correct for feedback errors. Speaking is 
a particularly good example where sensory processing of auditory feedback is successfully integrated to modu-
late speech output2. Current models of speech production posit that, during speaking, the higher frontal cortex 
responds by activating a speech motor control network—a distributed network including primary and higher 
order auditory cortices and premotor cortex3–5 (Fig. 1A). Speech output is continually adjusted as the incoming 
feedback from both auditory and somatosensory signals are being compared with the sensory predictions derived 
from motor efferent-copy6–10. A well-studied experimental paradigm to test sensorimotor integration during 
speech production is the pitch perturbation response. In such experiments, speakers phonate a vowel while a 
digital audio processing system perturbs how they hear the pitch of their own speech. The feedback perturba-
tions cause speakers to compensate for the applied pitch shift: e.g., if the pitch of the audio feedback is lowered 
speakers will raise their pitch6. In a previous study we showed that patients with Alzheimer’s disease (AD) have 
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an abnormally enhanced behavioral response to altered pitch in their auditory feedback, indicating abnormal 
sensorimotor integration processes in AD5. In this study, we sought to investigate the specific neural mechanisms 
underlying the abnormal pitch perturbation response in AD patients.

The defining phenotypic characteristic of AD is progressive loss of memory, executive, language and visu-
ospatial abilities. Given that patients with AD have relatively low incidence of purely sensory and motor deficits 
in neurological exam, traditionally, sensorimotor dysfunctions have been held at a low profile in AD11. However, 
from a neural network perspective, processing of sensory information and generation of behavioral motor com-
mands as well as the neural processes of cognitive functions are fundamentally interconnected12. For instance, 
impairment in sensorimotor integration processes may compromise the function of a particular cognitive 
domain, while an abnormal cognitive process may reduce its modulatory effect on sensory or motor pathways. 
Intrinsically connected brain networks provide the functional architecture that support the processing of sensory 
inputs and motor outputs as well as modulation through top-down regulatory mechanisms. Indeed, a growing 
body of evidence implicate dysfunction within large-scale neural networks as the basis for the loss of cognitive 
abilities in AD13–15. As such, an abnormally enhanced behavioral pitch perturbation response in AD patients 
may either result from abnormal sensorimotor processing mechanisms within the speech-motor control net-
work itself, or as a result of failed regulatory mechanisms across cognitive systems. Evidence for interconnections 
between speech-motor control network and other cognitive systems come from studies of healthy participants 
where auditory attention and auditory working memory have been shown to modulate the behavioral and neural 
correlates of speech motor control16–20. Moreover, in our previous behavioral experiment we found that the degree 
of enhanced pitch perturbation response was significantly correlated with executive dysfunction in AD patients5. 
Hence, it is reasonable to hypothesize that AD patients would likely exhibit deficits in frontally mediated regu-
latory mechanisms on speech motor control network, although this hypothesis has never been directly tested.

Our study participants included patients with AD and age-matched controls and consisted a partially overlap-
ping cohort from the previously reported behavioral experiment (see methods for details). The pitch perturbation 
task paradigm was based on the altered pitch of the subjects’ auditory feedback during speaking and was the same 
as detailed in previous reports5. Using magnetoencephalographic imaging (MEGI) we examined the high-gamma 
band (65–150 Hz) activity during pitch perturbation and investigated neural-behavioral correlates to identify the 
specific mechanisms driving the abnormal pitch perturbation response in AD21,22. Based on reasoning stated in 
the previous paragraph, we hypothesized that patients with AD would show reduced activity patterns in the pre-
frontal cortices during pitch perturbation response than healthy controls indicating abnormal frontally mediated 

Figure 1.  Cortical circuits of speech motor control, schematic of the experimental setup and the behavioral 
response to pitch perturbation. (A) Anatomical locations of candidate cortical areas are depicted on a schematic 
brain diagram. The arrows indicate auditory feedback control pathways where feedback predictions (grey 
arrow) are compared with incoming feedback from primary auditory cortices (dashed arrow) in the posterior 
superior temporal/inferior parietal cortices to generate feedback corrections (black arrows). These key 
processing nodes (premotor cortex and posterior superior temporal/inferior parietal cortex) are modulated by 
prefrontal cortex (dotted lines). The experimental setup (B) illustrates the participant as they are lying supine 
in the MEG scanner. The subject speaks into an optical microphone and receives auditory feedback through a 
set of air-tube earphones. Their speech is passed through a digital signal processor, which generates the pitch-
shifted audio feedback stimulus at a jittered delay after speech onset. The LCD panel directly in front of the 
subject gives a visual clue (a clearly identifiable colored circle), which prompts the participant to start speaking. 
(C) The magnitude of vocal response to perturbations of 100 cents for controls and patients with AD. Dark lines 
indicate the mean response, and the shaded areas indicate standard error, across the trials per each group. The 
time axis is time-locked to perturbation onset (0 ms). Grey shaded area indicates the duration of perturbation. 
Abbreviations: AD = Alzheimer’s disease. LCD = liquid crystal display; MEG = magnetoencephalography.
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modulatory effects, and that such altered neural activity patterns would account for the enhanced behavioral 
response in patients with AD.

Methods
Participants.  Sixteen patients meeting the diagnostic criteria for AD23 and 13 age-matched healthy volun-
teers participated in the study. Fourteen out of 16 AD patients in the current study overlapped with the cohort of 
19 patients that participated in the behavioral experiment reported in our previous paper5. The 13 control par-
ticipants in the current study consisted of a subset of the previous control cohort of 16 participants. Altogether, 
two patients with AD reported in this study did not take part in the experiments reported in our earlier paper, 
while eight participants who exclusively contributed to behavioral data that was reported in the earlier paper are 
not included in the current study. The behavioral data from the participants who were shared with the previous 
experiment are the same as reported in the previous paper5. The participants were recruited from research cohorts 
at the University of California San Francisco (UCSF) Memory and Aging Center. All patients underwent a com-
plete clinical evaluation and the diagnosis was made at a multidisciplinary consensus meeting for each patient 
individually. To make our cohort more uniform and representative of typical AD patients who are predominantly 
amnestic and dysexecutive in their symptom profile, we excluded the patients who fulfilled the current diagnos-
tic criteria for atypical AD. The latter includes patients whose predominant deficits are in the language domain 
(logopenic variant of primary progressive aphasia) or in the visuospatial domain (posterior cortical atrophy syn-
drome)24,25. Fifteen out of 16 patients showed positive biomarkers for AD (Supplementary Table 1: Biomarkers 
and APOE genotypes of AD patients). One patient was not evaluated for biomarkers and showed a typical pat-
tern of cortical grey matter loss on structural imaging. Eligibility criteria for age-matched healthy participants 
included normal cognitive performance, normal structural brain imaging, and absence of neurologic, psychiatric, 
and other major illnesses. All participants self-reported normal hearing and were assessed clinically for hearing 
loss. Each participant underwent a bilateral tone-hearing-test to verify the hearing status and confirmed proper 
earphone placement during the experiment. Informed written consent was obtained from all participants or their 
assigned surrogate decision makers. The study was approved by the UCSF institutional review board for human 
research and the methods were carried out in accordance with the relevant guidelines and regulations.

Neuropsychological assessment.  All participants (i.e. patients and controls) underwent Mini Mental 
State Examination (MMSE)26, and executive function testing of the cognitive battery (see below). In a struc-
tured caregiver interview, Clinical Dementia Rating scale (CDR), and CDR Sum of Boxes (CDR-SOB)27 were also 
determined for each patient. Statistical differences of demographic characteristics and neuropsychological test 
performance (i.e. MMSE and executive function) between patients and controls were examined using SAS (SAS 
9.4, SAS Institute Inc.). The executive function tests used in this study included set shifting and cognitive control. 
Set shifting was assessed by modified trail-making-test28. The modified trail-making test requires the participant 
to draw lines linking items marked on paper and serially alternate between numbers and days of the week. The 
number of correct connections made within 120 seconds was recorded. To adjust for participants completing 
the task in less than 120 seconds, we calculated the dependent measure as the number of correct connections 
made per second. Cognitive control was assessed by the Stroop test29,30. There are two conditions for Stroop test. 
The control or color-naming task requires the participant to read blocks of text where the text and the ink color 
are matched (e.g., the word ‘red’ printed in red ink). The interference task requires the participant to name the 
color of text where the text and ink color are mismatched (e.g., the word ‘red’ printed in green ink). The number 
of correct responses in each condition is documented, and the cognitive control ability is estimated as the ratio 
of correct interference responses/color-naming responses. We estimated an executive composite score for each 
participant by averaging the Z-score values of set shifting and cognitive control performances. Z-score values for 
each participant were calculated based on age-matched normative control databases from the UCSF Memory and 
Aging Center.

Experimental design and procedures.  The pitch-perturbation experiment was completed in the MEG 
scanner with the participants lying in supine position. The MEG system (CTF, Coquitlam, British Columbia, 
Canada) consisted of 275 axial gradiometers and the data were recorded at a sampling rate of 1200 Hz. Three 
fiducial coils were placed on the nasion and left and right pre-auricular points to triangulate the position of the 
head relative to the MEG sensor array. The fiducial markers were later co-registered onto a structural magnetic 
resonance imaging scan to generate head shape31.

The experiment consisted of two successive 74-trial sessions. In each trial, the participant phonated the vowel 
/ɑ/ into a microphone while listening to the real-time audio feedback via headphones (Fig. 1B). In every trial, 
the pitch of the auditory feedback was perturbed for 400 ms following a randomly jittered delay of 200–500 ms 
from vocalization onset. The perturbation shifted the pitch of auditory feedback upwards or downwards by 100 
cents (1/12th of an octave). An equal number of pitch shifts that either raised or lowered the perceived pitch were 
pseudo-randomly distributed across the experiment. Each trial began with a visual cue (a clearly visible dot) 
presented on a screen directly in front of the participant. The participants were instructed to produce the vowel 
/ɑ/. Prior to the start of the experiment, the volume of auditory input through the earphones was adjusted to a 
comfortable level so that participants reported that their auditory feedback was the same as what they would nor-
mally hear when speaking. This was to ensure that the participants perceived the auditory feedback through their 
headphones as natural. The jittered perturbation onset prevented the participant from anticipating the timing 
of the perturbation while the pseudorandom selection of raising or lowering the pitch prevented the participant 
from anticipating the direction of the perturbation. The participants produced the vowel sound for the duration 
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the visual cue displayed on the screen (~2.5 seconds), and then stopped phonation for the next 2.5 seconds during 
which time the screen was blank. After every 15 trials participants were cued for an optional break time.

Perturbation was accomplished by a digital signal processing (DSP) program running a real-time speech 
feedback alteration procedure. The input signal for DSP was the participant’s phonation, as picked up by 
an MEG-compatible optical microphone (Phone-Or Ltd., Or-Yehuda, Israel). The output from the DSP was fed 
back to the participant via MEG-compatible earplug earphones (model EAR-3A, Etymotic Research, Inc., Elk 
Grove Village, IL). The feedback alteration program was a vocoder process that recorded incoming speech and 
decomposed it into pitch and spectral envelope features32,33. The program then altered the pitch of the signal as 
it synthesized the outgoing speech signal. This process incurred a feedback delay of 12 ms. The data acquisition 
setup allowed us to simultaneously acquire MEG data, and several analog channels which included the micro-
phone signal as well as an additional analog signal which showed the exact onset of the perturbation. The high 
signal-to-noise ratio in these analog channels enabled the easy identification of a threshold crossing to accurately 
mark the times of the voice onset and perturbation onset in the MEG data.

Data processing and analysis.  Audio data analysis.  Raw audio data for each trial was first analyzed into 
time-course of pitch, using an autocorrelation-based pitch tracking method34. Trials with pitch tracking errors or 
incomplete utterances were excluded (50.7% and 14.8% for patients with AD and controls, respectively). In both 
AD patients and controls, among the trials that got excluded, about 50% were excluded due to incomplete utter-
ances and the other 50% were excluded due to pitch tracking errors. However, exclusion of trials were based on 
criterion unrelated to the magnitude of the perturbation response and hence do not have any bearing on the anal-
ysis of included trials. We performed additional measures to verify the normality of our patient data and to ensure 
robust data analyses. An outlier detection analysis within the distribution of the percentages of excluded trials 
showed normal distribution across patients as determined by four different tests of normality (Shapiro-Wilk, 
P = 0.3584; Kolmogorov-Smirnov, P > 0.1500; Cramer-von Mises, P > 0.2500; Anderson-Darling, P > 0.2500), 
and with no outliers as determined by a Robust State Measures analysis in SAS. Next, we examined the distribu-
tion of each subject’s data to determine that they are normally distributed. This analysis identified three out of 16 
AD patients and six out of the 13 control participants having skewed distributions. To ensure robust statistical 
analysis, we used a two‐tailed alpha‐trimming procedure in each of these participants with non-normal distri-
butions to remove the extreme values that were greater than 2.5 SDs from their respective means. After the alpha 
trimming procedure, the percentage of total excluded trials were 51.2% and 16.7% for patients with AD and con-
trols, respectively. The subsequent group statistics were performed on the alpha-trimmed data.

For each trial, an analysis interval of 1200 ms (−200–1000 ms from the perturbation-onset) was extracted, 
and the pitch changes were converted from hertz to cents relative to pre-perturbation baseline. For each partici-
pant, the pitch track for each trial was processed and expressed as deviations from the mean pitch track, averaged 
across all trials (i.e., up and down pitch-perturbations). Next, for each participant, responses to both upward and 
downward perturbations were combined into a single dataset depicting the absolute magnitude of the response 
(total number of trials per participant = combined trials of upward and downward perturbations for each par-
ticipant). To generate the combined data set for each participant, the deviations from the mean time-course in 
response to the upward perturbations were first flipped (i.e., negate the cents deviation values of the time-course), 
and then the flipped trials were added to the data set of deviations from the mean time-course in response to the 
downward perturbations. The number of trials in the combined data set for each participant was equal to the 
number of trials in upward perturbations plus the number of trials in downward perturbations. To account for 
the trial-by-trial variability within participants and the variable number of analyzable trials (after excluding the 
trials with pitch tracking errors and incomplete utterances) between participants, we analyzed the behavioral 
data by combining all trials per subject in each group (total number of trials: AD = 965; controls = 1639), keeping 
the subject identity. We measured the peak behavioral response in each trial and compared the group differences 
using a linear mixed model analysis in SAS (PROC MIXED procedure), including the subject identification as a 
repeated measure.

MEG data analysis.  The MEG sensor data were manually marked at the speech onset and at the perturba-
tion onset. Third gradient noise correction filters were applied to the data and the data were corrected for a 
direct-current-offset based on the whole trial. Artifact rejection of abnormally large signals due to head move-
ment, eye blinks, or saccades was first performed quantitatively by automated algorithms and then qualitatively 
by visual inspection. Sensor data was filtered at 120 Hz with a notch filter (4 Hz width).

We selected high-gamma band (65–150 Hz) response for the analysis of neural response as previous studies 
have reported that 65–150 Hz shows a reliable signal during the pitch perturbation response in human subjects35. 
Spatiotemporal estimates of neural sources of the induced high-gamma band activity were generated using a 
time–frequency optimized adaptive spatial filtering technique implemented in the Neurodynamic Utility Toolbox 
for MEG (NUTMEG; http://nutmeg.berkeley.edu). We used a variant of linearly constrained time frequency opti-
mized minimum variance adaptive beamformers for the spatial filter as described in our prior publications21,36,37. 
Specifically, the spatial filter at each voxel was estimated from both the lead field matrix, the MEG data at each 
active window of interest, and MEG data at a corresponding baseline window. Importantly, the time frequency 
optimized spatial filter used distinct covariance matrices of the MEG data computed for every time frequency 
window of interest. The tomographic volume of source locations (voxels) was computed through an adaptive 
spatial filter (5 mm grid) that weights each location relative to the signal of the MEG sensors36,38. The source space 
reconstruction approach provided amplitude estimations at each voxel derived through the linear combination 
of spatial weighting matrix with the sensor data matrix21,36,39. A high-resolution structural MRI was obtained 
for each subject (see below) and was spatially normalized, with the resulting parameters being applied to each 
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individual subject’s source space reconstruction through NUTMEG [standard Montreal Neurological Institute 
(MNI) template, statistical parametric mapping (SPM8) http://www.fil.ion.ucl.ac.uk/spm/software/spm8/].

Noise-corrected pseudo-F ratios were computed between the active windows (following the perturbation 
onset) and the pre-stimulus control baseline (preceding the onset of perturbation). We examined the period 
100–300 ms post-perturbation-onset in 25 ms intervals. Group statistics were performed using statistical non-
parametric mapping methods incorporated in the NUTMEG toolbox38. To minimize spatial frequency noise in 
the beamformer volumes, average and variance maps for each individual frequency band were calculated and 
smoothed using a Gaussian kernel with a width of 20 × 20 × 20 mm full-width-at-half-maximum40. High-gamma 
band MEG signals from deep brain structures have a low signal-to-noise ratio and therefore contribute to spatial 
blur and greater uncertainty of activity estimations. We restricted our analysis to the cortical surface by remov-
ing voxels corresponding to deep brain structures. We used a permutation test to create a null distribution from 
which the empirical p-values for the statistical contrast between groups were computed. Statistical significance 
was estimated by the significance of the test statistic (i.e. pseudo-F ratio) value from its position in this permuted 
distribution. To correct for multiple comparisons across space and time, we used 5% False Discovery Rate (FDR) 
in our analysis and thresholded the images with adjusted P values. Specifically, we determined the corrected P 
value threshold level at the 5% FDR cutoff level for all voxels that showed effects across the eight time-windows at 
the uncorrected (P < 0.05) threshold. The voxels that survived the FDR correction were then further thresholded 
using cluster correction in NUTMEG21,38 with a cutoff level of 30 voxels (clusters with more than 30 congruent 
voxels). Clusters in the thresholded statistical maps were discarded if they fell below the 95% of null-distribution 
cut-off following permutation testing and did not meet the required minimum value of 30 contiguous voxels. This 
approach minimized the possibility of observing spurious effects. The images were thresholded as such that only 
the voxels that exceeded the significance threshold can be seen in the figures.

Neural-behavioral correlation analysis.  The group contrast between AD patients and controls demonstrated 
anatomic areas showing significantly increased and decreased high-gamma activity across the 100–300 ms 
post-perturbation time window. We identified the brain regions (see results, and Supplementary Table 2) that 
showed distinct group differences after applying the above described space and time varying multiple compar-
isons thresholds (Supplementary Table 2). To identify the neural-behavioral associations of these brain regions 
and the behavioral response, we used a general linear model (GLM) including the full cohort of patients and con-
trols in which the predictor variables included the high-gamma band activity of each of the eight ROIs (for each 
subject), and the group identity (patient vs. control). The dependent variable was the peak behavioral response. 
This analysis identified two ROIs as significant predictors of the model, namely left prefrontal and right middle 
temporal regions. Next, we used an extended model of GLM including the interaction between group identity 
and the neural responses of left prefrontal and right middle temporal regions in addition to the previously entered 
variables. In our previous behavioral experiment, we found that the peak behavioral response was significantly 
correlated with executive function abilities. To examine the relationship between neural activity and peak behav-
ioral response above and beyond the associations of executive abilities we further included the composite execu-
tive function score into the extended GLM model.

Next, we examined the associations between the peak behavioral response and the high-gamma band time 
series activity within each of the 25 ms time windows for the two ROIs, identified from the GLM. To this end we 
employed an analysis of covariance (ANCOVA) model including the full cohort of patients and controls in which 
the predictor variables included the peak behavioral response in each subject and the group identity (patient vs. 
control). The dependent variable was the mean high gamma power of each ROI, namely, left prefrontal cortex and 
right middle temporal region. A separate ANCOVA model was used for each ROI. We examined the associations 
between the peak behavioral response and the high-gamma band activity within each of the 25 ms time windows 
for these two ROIs, using identical ANCOVA models. The left prefrontal cortex activity was evaluated during the 
100–250 ms post perturbation onset while the right middle temporal region activity was evaluated during the 
200–300 ms post-perturbation time windows. We examined the relationships between peak behavior and the 
neural activity of left prefrontal and right middle temporal regions, first averaged across each of their respective 
time durations; next, within 25 ms bins.

Magnetic resonance image acquisition.  Structural MRI images were acquired on a 3-Tesla Siemens MRI scanner 
at the Neuroscience Imaging Center-UCSF for 15 of the 16 AD patients, and for all control participants. The 
remaining 1 patient was evaluated with an MRI scan obtained at an outside facility within 2 years of the MEG 
evaluation. The structural MRIs were used to generate head models for source space reconstruction of the MEG 
sensor data.

Results
Clinical and demographic characteristics of participants.  Patients with AD were mild to moderately 
impaired with a mean CDR of 0.84 ± 0.24 (n = 5 patients with CDR of 0.5, n = 11 patients with CDR of 1) and a 
mean MMSE of 21.50 ± 3.44 (Table 1). Control participants were matched with AD patients in age, sex, hand-
edness and race, yet showed a significantly higher number of years in education than patients (Table 1). Patients 
with AD were 1.56 standard deviations below the executive composite scores derived from age-matched norma-
tive control populations at the UCSF Memory and Aging Center.

Patients with AD showed an elevated behavioral pitch perturbation response compared to 
age-matched controls.  In a previous study we reported the behavioral response to perturbed pitch of the 
auditory feedback during speaking in patients with AD and age-matched controls (Ranasinghe et al., 2017). 
The behavioral results in the current study, which included a partially overlapping participant cohort from the 
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previous study, were similar. In brief, the behavioral response to pitch-perturbations in auditory feedback in both 
patients and controls was compensatory—opposite to the direction of perturbation. When time locked to the 
perturbation onset both groups started responding around 200 ms post-perturbation-onset (Fig. 1C) and reached 
a peak response around ~500 ms post-perturbation-onset (peak latency: controls (Mean ± SE) = 487 ± 7.0 ms; 
patients (Mean ± SE) = 485 ± 9.9 ms; linear mixed model, F(1) = 0.03, P = 0.87). The average peak behavioral 
response of control participants in the current experiments was 18.4 ± 0.75 cents (Mean ± SE) and was consistent 
with the responses recorded from younger normal controls in previous studies5,21,41. Patients with AD, in contrast, 
showed a significantly elevated peak behavioral response averaging at 24.3 ± 1.4 cents (Mean ± SE; linear mixed 
model F (1) = 16.05, P < 0.0001; Fig. 1C).

Controls
(n = 13)

AD Patients
(n = 16) P Value¶

Age – yr 63.70 ± 5.54 60.02 ± 9.84 0.240

Female sex – no. (%) 10 (76.92) 11 (68.75) 0.624

White – no. (%)† 12 (100.00) 14 (100.00) 1.000

Education – yr 17.69 ± 1.60 15.63 ± 2.83 0.023

Right handedness – no. (%) 13 (100.00) 14 (87.50) 0.187

MMSE‡ 29.77 ± 0.44 21.5 ± 3.44 <0.0001

CDR 0 ± 0 0.84 ± 0.24 <0.0001

CDR-SOB 0 ± 0 4.91 ± 1.19 <0.0001

Table 1.  Participant demographics. Abbreviations: AD = Alzheimer’s disease; CDR = Clinical Dementia 
Rating; CDR-SOB = CDR Sum of Boxes; MMSE = Mini-Mental State examination. The AD cohort included five 
patients with CDR = 0.5 and 11 patients with CDR = 1; Values for age are means ± SD. Age ranges are 48.99–
84.32 and 56.22–75.56, for Alzheimer’s disease patients and control participants respectively. ¶Statistical tests 
were unpaired t-test for age, education, MMSE; Fisher Exact test for sex, race, and handedness. †Race was self-
reported; one control participant and 2 patients with AD withheld from reporting race. ‡Scores on the MMSE 
range from 0 to 30, with higher scores denoting better cognitive function.

Figure 2.  Cortical responses during pitch perturbation. MEGI derived high-gamma activity (65–150 Hz) 
aligned to perturbation onset, in 25 ms intervals, for controls AD patients. The color maps indicate differences 
in high-gamma power as compared to pre-perturbation baseline in each group. Color scale represents t-values. 
Hot colors indicate higher activity, and cold colors indicate lower activity, compared to baseline. The controls 
show robust responses in frontal cortex and posterior parietal cortex, especially during the early part of the 
response (i.e. 100–200 ms post-perturbation-onset). Patients with AD, in contrast, show attenuated responses 
in frontal and posterior parietal cortices. Abbreviations: AD = Alzheimer’s disease; L = left hemisphere; 
MEGI = magnetoencephalographic imaging; R = right hemisphere.
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Patients with AD showed distinctive changes of high-gamma activity during pitch pertur-
bation response.  Neural activity preceding the onset of behavioral response presumably involves the 
detection of the feedback error and preparation for the corrected motor response. During the 100–200 ms 
post-perturbation-onset, age-matched normal controls showed robust elevations of high-gamma band activity 
over the left prefrontal and left posterior parietal cortices (Fig. 2). High-gamma activity was also evident in the 
right prefrontal and parietal cortices during 100–175 ms from perturbation onset in the control group (Fig. 2, 
Control response). After 200 ms from perturbation onset, high-gamma activity diminished in controls. During 
200–300 ms post-perturbation-onset, the high-gamma activity in the left anterior temporal lobe and right poste-
rior parietal cortex were significantly below the baseline in the controls (Fig. 2, Control response). Collectively, 
these results are consistent with a strong involvement of higher order auditory regions, premotor and frontal 
cortices in detection and correction for auditory feedback errors, as predicted by current models4.

Patients with AD, in contrast, showed an attenuated response over the higher order auditory regions and 
virtually absent high-gamma activity in frontal cortex, during 100–200 ms post-perturbation-onset (Fig. 2, AD 
response). Instead, AD patients showed a significantly elevated high-gamma activity over posterior parietal 
and occipital regions in both the left and right hemispheres (Fig. 2, AD response). Furthermore, such poste-
rior dominant activity patterns were consistent throughout the duration of 100–300 ms post-perturbation-onset 
and showed an evolving increase over the time course until ~275 ms post-perturbation-onset. Starting from 
175–200 ms post-perturbation-onset, there was also a progressively increasing high-gamma activity in the right 
posterior middle temporal cortex. High-gamma activity was also seen in the left ventral motor cortex between 
175–250 ms. AD patients also showed reduced high-gamma activity over the left superior precentral regions 
throughout the duration (Fig. 2). The only consistent pattern in both controls and patients was the reduced left 
anterior temporal lobe activity during 200–275 ms post-perturbation-onset.

A direct comparison between patients and controls clearly illustrated the altered patterns of high-gamma 
activity patterns in patients with AD (Fig. 3, AD vs. control). The most salient differences found in AD patients 
included: reduced high-gamma activity in the left prefrontal, and occipital cortices during early response (i.e. 
100–250 ms post-perturbation-onset); increased high-gamma activity in the right posterior middle temporal cor-
tex during late response (i.e. 200–300 ms post-perturbation-onset); increased high-gamma activity in the right 
posterior parietal and bilateral occipital cortices during late response (i.e. 175–300 ms post-perturbation-onset); 
and decreased high-gamma activity in the left superior-precentral regions, throughout (100–300 ms 
post-perturbation-onset).

Left prefrontal and right middle temporal high-gamma activity reveal neural correlates of pitch 
perturbation response.  We next sought to investigate the specific neural underpinnings of the elevated 
pitch perturbation response in AD patients. We identified eight regions-of-interest (ROIs) that showed statistically 
significant differences between patients and controls (Supplementary Table 1). To examine the specific contribu-
tions of the activity patterns in each of the eight ROIs in predicting the peak behavioral response, we used a GLM 
model with the peak behavioral response as the dependent variable, while the activity patterns within each of the 
eight ROIs and group identity were predictor variables. The overall model explained 61.3% of the variance of the 
peak behavior (model-R2 = 61.3; F = 2.45; P = 0.047) and identified two ROIs as statistically significant predic-
tors of peak behavioral response. These included the left prefrontal cortex (Fig. 3, white dotted circles), and right 
middle temporal cortex (Fig. 3, yellow dotted circles), which independently predicted the degree of peak behavior 
(Left prefrontal: F = 7.96, P = 0.012; right middle temporal: F = 6.79, P = 0.018). Specifically, lower activity in 
the left prefrontal cortex predicted higher peak behavioral response (Beta = −313.53 ± 124.06), whereas higher 

Figure 3.  The altered patterns of high-gamma activity in patients with AD during perturbation. The images 
show the direct comparison of MEGI derived high-gamma activity (65–150 Hz) between patients with AD and 
controls. Specifically, the patterns indicate the activity in patients after subtracting the activity of controls, 
time locked to perturbation onset in 25 ms intervals. Color scale represents t-values. Hot colors indicate 
higher activity, and cold colors indicate lower activity, compared to controls. Statistical models identified the 
left prefrontal (white dotted circles) region and right middle temporal region (yellow dotted circles) activity 
as significantly associated with the peak behavioral response in pitch perturbation response. Abbreviations: 
AD = Alzheimer’s disease; L = left hemisphere; MEGI = magnetoencephalographic imaging; R = right 
hemisphere.
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activity in the right middle temporal region predicted higher peak behavioral response (Beta = 98.14 ± 79.27). 
In an extended GLM model we included the group-by-ROI interaction effects into the model with relation to 
left prefrontal and right middle temporal regions and also a composite score of executive function abilities. The 
extended model identified left prefrontal and right middle temporal regions as significant predictors of peak 
behavioral response, even after inclusion of the aforementioned additional covariates. Moreover, there were 
no significant group-by-ROI interaction effects (Group-by-left prefrontal: F = 0.06; P = 0.80; Group-by-right 
middle temporal: F = 0.78, P = 0.39). Both models further revealed that there was no significant main effect of 
group identity towards this association (F = 1.96; P = 0.18).

An ANCOVA model with the main effects of peak behavioral response and group identity as predictor 
variables revealed significant associations with the left prefrontal cortex activity averaged across 100–250 ms 
post-perturbation-onset (Fig. 4A; model-F = 5.52, model-P = 0.010, model-R2 = 0.30). The results further 
showed that lower activity in the left prefrontal cortex was predicted by higher peak behavioral response (F = 4.58, 
P = 0.042). An extended ANCOVA model with interaction between peak behavioral response and group identity 
included as predictor variables in addition to their main effects, showed no significant interaction between the 
peak behavioral response and the group identity (interaction-F = 0.13, interaction-P = 0.723; model-F = 3.60, 
model-P = 0.027). This finding demonstrated that the slopes between patients and controls are not significantly 
different from each other indicating the homogeneity of slopes between the two groups, and thereby strengthened 
the design of the ANCOVA model on the combined data set. Similar simple ANCOVA models (models without 
interaction) at each 25 ms window of 100 to 250 ms post perturbation time period showed significant associations 
between left prefrontal high gamma band activity and peak behavioral response (Fig. 4B).

A separate analysis based on identical ANCOVA models was used to examine the neural-behavioral associa-
tions of the right middle temporal region showed significant positive associations with the activity averaged across 
200–300 ms post-perturbation-onset (Fig. 4C; model-F = 4.60, model-P = 0.019, model-R2 = 0.26). Specifically, 
higher peak behavioral response showed a trend for a positive association with the degree of right middle tempo-
ral region (F = 3.5, P = 0.072). Similar to the findings in the left prefrontal cortex, a full ANCOVA model with the 
interaction between peak behavioral response and group identity included as predictors showed no significant 
interaction between the peak behavioral response and the group identity, indicating the homogeneity of slopes for 
patients and controls (interaction-F = 0.28, interaction-P = 0.601; model-F = 3.08, model-P = 0.046). ANCOVA 
models for each 25 ms interval during 200–250 ms interval showed significant neural behavioral relationships 
(Fig. 4D).

Figure 4.  Left prefrontal activity and right middle temporal activity predict peak behavioral response in 
pitch perturbation response. (A) In an analysis of covariance model (ANCOVA) on the combined cohort of 
both patients and controls, the average high-gamma activity of left prefrontal cortex across the 100–250 ms 
post-perturbation-onset was significantly negatively correlated with the peak behavioral response. (B) The R2 
of the model predictions (pink circles; left-side Y axis) and the p-values (green stars; right-side Y axis) of the 
association between left prefrontal activity and peak behavioral response in each 25 ms window. (C) The average 
high-gamma activity of the right posterior middle temporal cortex across the 200–300 ms post-perturbation-
onset was significantly positively correlated with the peak behavioral response. (D) The R2 of the model 
predictions (pink circles; left-side Y axis) and the p-values (green stars; right-side Y axis) of the association 
between right middle temporal activity and peak behavioral response in each 25 ms window. Abbreviations: 
AD = Alzheimer’s disease; L = Left hemisphere.
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Collectively, our results indicate that reduced high gamma band activity in the left prefrontal region during 
early phase of perturbation (100–250 ms post perturbation onset) and increased high gamma band activity in the 
right middle temporal region during the late phase of the perturbation (200–300 ms post-perturbation onset) are 
significant neural correlates of a higher peak behavioral response in pitch perturbation response.

Discussion
In this study we examined the neural correlates of abnormal sensorimotor integration processes in AD. In 
response to perturbed pitch in the auditory feedback while speaking, AD patients demonstrated distinct 
high-gamma band network activity when compared to age-matched controls. In particular, AD patients showed 
reduced high-gamma activity in the left prefrontal cortex and increased high-gamma activity in the right pos-
terior middle temporal cortex. Importantly the impaired left prefrontal activity occurred early, followed by the 
increased right middle temporal activity, demonstrating the temporal evolution of speech-motor control activity. 
Reduced prefrontal activation and enhanced recruitment of right temporal cortices were significant contributors 
to abnormally enhanced pitch perturbation response, in AD patients. These results signify potential neural sub-
strates of disrupted cortico-cortical connections in neural networks in AD.

Growing evidence from advanced neuroimaging techniques strongly supports the notion that the underlying 
architecture of cognitive function consists of dynamically interactive neural networks42,43. This understanding is 
a clear shift from an earlier view where each cognitive process was localized to a specific anatomic region in the 
brain. Indeed, the anatomic involvements of neurodegenerative diseases, of which the cardinal manifestations are 
progressive loss of cognitive abilities, have been directly mapped onto large-scale neural networks in the brain13,44. 
In this context, quantification of network dysfunctions and their behavioral correlates are important markers of 
neurodegenerative disease processes45. The current results demonstrate that speech-motor control network activ-
ity reliably yields neural as well as behavioral measures of network dysfunction in AD. Because pitch perturbation 
response is involuntary46, it has the added advantage of minimizing the confounding behavioral effects of cogni-
tive deficits on the task performance, in patients with AD. As such, the neural and behavioral correlates of pitch 
perturbation response could potentially provide useful scales of network integrity to gauge disease progression 
and therapeutic efficacy in clinical trials of AD47.

AD is considered as primarily affecting the higher level cognitive functions such as executive, memory, visu-
ospatial and language48. However, the presence of an abnormal pitch perturbation response demonstrates that 
patients with AD also have significant abnormalities in low-level sensorimotor integration processes. It is con-
ceivable that aberrant neural integration mechanisms may be shared across neural circuits responsible for senso-
rimotor integration and higher cognitive processes and may occur either at network level or at molecular level. At 
network-level, a common anatomic region may serve as a critical hub in separate networks. At molecular-level, 
the same pathophysiological cellular and molecular processes may affect neural circuitry in separate networks. 
The neurobehavioral correlates of the current study demonstrate strong associations between left prefrontal 
cortex activity and speech-motor-control network output. Left prefrontal cortex has been identified as a key 
anatomic region involved in executive and cognitive control behaviors49,50. It is therefore likely that left prefron-
tal cortex acts as a common hub for both circuits—speech-motor control and executive function, and hence a 
mutual target of network disruption in AD. The current results, however, do not exclude the possibility of shared 
pathophysiological cellular and molecular processes affecting distinct networks. For example, when comparing 
AD patients and age-matched controls we also found that other brain regions including the dorsal parietal and 
occipital cortices also show significantly reduced neural activity patterns, although these regions did not show 
significant neurobehavioral correlations with the pitch perturbation response. As such, it is still a possibility that 
shared cellular level abnormalities associated with AD pathophysiology may give rise to the abnormal activity 
reductions in these additional regions, although they are not necessarily recruited by the speech motor control 
network during the task.

 Increased activity patterns in patients with AD compared to controls have been demonstrated in task engaged 
brain networks, and also in resting brain networks based on FDG-PET imaging51,52. Such evidence has supported 
the hypothesis that additional neural resources are recruited to achieve behavioral goals in AD. Consistent with 
these observations we found that AD patients showed increased neural activity over the right posterior middle 
temporal cortex compared to age-matched controls and that these patterns showed a significant trend in its asso-
ciations with peak behavioral response in pitch perturbation paradigm. However, the overall behavioral outcome 
in AD patients as demonstrated in our previous experiment and shown again in the current experiment, is abnor-
mally increased compared to age-matched elderly participants, indicating that these additional neural resources 
fall short of achieving the optimal behavioral target. Collectively, these findings would suggest that additional 
brain regions with enhanced activity may represent various neural processes involved in AD brains that mediate 
the behavioral goals yet give little indication of how successfully these processes are able to support the projected 
outcome.

Several previous experiments reported an elevated behavioral response to pitch feedback perturbations in 
patients with other neurological disorders, such as Parkinson’s disease (PD)53–56, and cerebellar degeneration 
(CD)57. The abnormal sensorimotor integration in PD has been linked to impaired feedforward signals delivered 
by basal ganglia, the latter region being a major target of the pathophysiological processes in PD. Likewise, the 
abnormal feedback response in CD has been linked to impaired feedforward signals from cerebellum. In both 
conditions, it is hypothesized that the balance between sensory feedback and motor feedforward processes in the 
speech motor control network is biased towards sensory feedback. The increased reliance on auditory feedback 
may increase the sensitivity to perturbations thus leading to an enhanced behavioral pitch perturbation response. 
Simultaneous EEG recordings have demonstrated larger event related potentials indicating enhanced activity 
in the inferior frontal gyrus, precentral gyrus, postcentral gyrus, and middle temporal gyrus associated with 
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the enhanced behavioral response in PD patients53. Taken together with the results from the current study it is 
reasonable to infer that distinct underlying mechanisms may subserve enhanced pitch perturbation response in 
different disease processes.

The current study is also the first to report brain activity dynamics during the pitch perturbation response 
in healthy older adults. Compared to previous reports in healthy young subjects21,41, one striking difference in 
healthy older adults is the significant involvement of left prefrontal cortex during the early phase of response. 
Despite these neural differences, both old and young subjects showed a similar degree of behavioral response to 
altered pitch in their auditory feedback (18.62 cents vs. 18.98 cents per 100 cents perturbation, in old and young 
healthy subjects, respectively)21. These results are consistent with previous reports on other psychophysical tasks 
showing that young and old participants reach the same behavioral performance, albeit with distinct patterns of 
neural activity. For example fMRI experiments based on visual object processing58,59, visual and verbal memory 
tasks60, and on cognitive control61, have demonstrated that both young and old individuals achieve the same 
behavioral accuracy although the older individuals generate neural activity patterns that are distinctly different 
from the younger subjects. Indeed, a consistent finding in these experiments was the comparatively stronger 
prefrontal activity in the older subjects62. Models of cognitive aging have explained the age dependent hyperac-
tivity as a mechanism compensating for functional declines elsewhere or for increased ‘noise’ generated by the 
reduced precision of receptive field properties63. Although, the current results do not distinguish between these 
explanations they certainly provide evidence for functional reorganization of the left prefrontal regions support-
ing cognitive abilities of the aging brain. Moreover, our results further demonstrated that patients with AD have 
significantly impaired left prefrontal cortex activity compared to healthy older individuals indicating deficits in 
neural substrates of cognitive reserve in AD patients64.

Our study is not without limitations. First, the neural activity patterns we recorded contain both the auditory 
afferent as well as the motor efferent processes4. Studying neural responses for passive listening to audio feedback 
will allow us to separate out these phenomena. Future studies comparing these individual effects between patients 
with AD and older controls will enlighten us on disease specific manifestations of auditory feedback encoding 
and motor command processing. Second, the current study was primarily designed to understand the differences 
between patients with AD and healthy older subjects. As such, we did not present a comprehensive analysis of 
the age-related changes in the sensorimotor integration of pitch perturbation response by comparing healthy 
old and young participants. A future study comparing old and young would allow us to understand the specific 
age-related changes. Third, we identified the anatomic regions in relation to neurobehavioral correlations by sub-
tracting the activity between controls and AD patients. This methodology was based on the assumption that both 
healthy older subjects and AD patients will recruit similar anatomic regions albeit at different levels of activity. 
Although definite validation of this assumption would come from significant neurobehavioral correlations within 
each group itself, the sample sizes of the current cohorts were underpowered to test effects within each diagnos-
tic group separately. Nonetheless, the significant findings in the ANCOVA analysis in the combined sample of 
patients and controls supported this assumption.

Data Availability
Anonymized data will be shared on request from qualified investigators for the purposes of replicating procedures 
and results, and for other non-commercial research purposes within the limits of participants’ consent.
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