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Abstract: China’s industry is still in the middle of industrialization. Land use activities are crucial to
the growth of carbon emissions. However, few scholars focus on the influence mechanism between
industrial land use efficiency (ILUE) and industrial carbon emissions. In this paper, the threshold
model and the spatial Durbin model are used to investigate the spatial threshold effect of industrial
land use efficiency on industrial carbon emission from 2003 to 2018. The results show that ILUE of
China’s provinces basically shows an improvement trend, with little difference in spatial distribution,
showing a pattern of high in the eastern region and low in the western region. When economic
development level (A) and technical level (T) are taken as the threshold variable, ILUE has a single
threshold effect on industrial carbon emissions in the eastern region. In the central region, with a as
the threshold variable, ILUE shows a double threshold effect on industrial carbon emission. Under the
0–1 geographical proximity weight matrix, the indirect spillover effect of ILUE on reducing regional
carbon emissions is significant, and the indirect effect is even greater than that on regional carbon
emissions. The spatial spillover effect is not significant in the eastern region. These findings have
important practical significance for promoting regional industrial transformation and upgrading,
optimizing land space and realizing high-quality economic development.

Keywords: industrial carbon emissions; industrial land efficiency; panel threshold-model; spatial
Durbin model

1. Introduction

The rapid industrialization and urbanization occurring in China has caused significant
environmental pollution problems, particularly the emission of greenhouse gases, which
have drawn the attention of scholars’ worldwide [1]. In 2006, China surpassed the United
States to become the world’s largest carbon emitter and faces increasing pressure to reduce
its carbon emissions. In order to do so, China promised to achieve a carbon peak by 2030
and carbon neutrality by 2060 as part of the Paris Agreement [2,3]. China’s economy is
currently characterized by high growth, high investment, high energy consumption, and
high carbon emissions. The total industrial output only accounts for approximately 35%
of the GDP, while energy consumption accounts for nearly 70%, and carbon emissions
exceeds 80% [4]. Land use activities are a major source of carbon emissions [5]. Intensive
industrial land use helped to facilitate reductions in CO2 emissions. Improving the quality
of land use is an important method for reducing environmental pollution [6,7]. Therefore,
improving industrial land use efficiency (ILUE) is important for reducing industrial carbon
emissions.

ILUE refers to the ability of regions or industries that allocate and use industrial
land to obtain economic outputs [8]. The impact of ILUE on industrial carbon emissions
varies depending upon the restraint mechanisms in place. The government’s strategies for
improving ILUE also vary depending on the area’s state of economic and technological
development. As shown in Figure 1, during the initial stage of economic development,
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the primary goal of the government is to pursue further economic growth. At the same
time, due to factors such as a lack of capital, the government can only attract investment
by selling large amounts of land at low prices. During this stage, the industrial structure
is based primarily on heavy industry. Although industrial land use efficiency has been
somewhat improved, the overall efficiency remains low. These high-energy consumption
and high-carbon emitting industrial clusters further increase industrial carbon emissions.
In the middle and late stages of economic development, the government’s pursuit of
economic development slows down. At the same time, increases in industrial land use
efficiency do not depend on the scale of the industry, but instead rely upon technological
progress and upgrading the existing industrial structures. Industrial land use efficiency is
continuously improved by the adoption of cleaner, more efficient production techniques as
well as improvements to the industrial structures, all of which contributes to effectively
curbing industrial carbon emissions.
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The impact of industrial land use efficiency on industrial carbon emissions also varies
depending on the area’s level of technological development. When the level of technologi-
cal development is low, the main purpose of introducing further technology is to increase
profits. This leads to a lack of environmental protection technology which causes serious
problems with carbon emissions. Although the industrial land use efficiency is increased,
industrial carbon emissions continue to rise. When the level of technological develop-
ment improves further, the government pays more attention to investing in green and
clean technologies, and promotes industrial upgrading through technological innovations
which improve energy conservation [9]. Thus, improving ILUE can inhibit industrial
carbon emissions.

Generally speaking, previous studies have focused on the calculation methods, influ-
ence factors and spatial pattern evolution of industrial land use efficiency. Few scholars
focus on the influence mechanism between industrial land use efficiency and industrial car-
bon emissions. In fact, it is a complex that the relation between the two and there may have
be nonlinear effects. When different regions are at different economic and technological
levels, the impact of ILUE on industrial carbon emissions is vary. Therefore, the threshold
model is implied to study the non-linear relationship between ILUE and industrial carbon
emissions. Furthermore, the spatial spillover effect of ILUE on industrial carbon emission
is deeply analyzed by using spatial Durbin model, and the regional differences of three
regions in China are further discussed. This study aims to assess China’s industrial land
use efficiency, investigate spatiotemporal distribution characteristics of industrial land
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use efficiency, and analyze the spatial threshold effect of industrial land use efficiency on
industrial carbon emission. The conclusions have important reference value for optimizing
industrial layout and realizing carbon emission reduction.

The remainder of this paper is organized as follows. Section 2 presents the literature
review. Section 3 introduces the methods. Section 4 shows the data source. Section 5 reports
the empirical results and discussion. Conclusions and policy suggestions are presented in
Section 6.

2. Literature Review

With the growing urbanization and industrialization of China, land use plays an
increasingly important role in carbon emissions [10]. Researcher have considered how
to reduce carbon emissions by controlling the factors that influence land use. Land use
primarily affects carbon emissions through changes in what the land is being used for and in
what kinds of human activities occur on the land [11]. Extensive land use activities increase
carbon emissions. Efforts to increase the economic output of land are the primary factor
driving the growth of carbon emissions [12,13]. Industrial land use is the most important
type of land use when considering carbon emissions and has attracted considerable research
attention. The existing research mainly focuses on the efficiency of industrial land use,
including measurement, influencing factors, spatial differences, and effects. However, there
is no unified method for the calculation of ILUE. Some scholars choose economic indicators
such as the total industrial output value and the industrial added value as output indicators
to measure ILUE [14]. Other scholars believe that using economic benefits to express output
is too one-sided. They take a more comprehensive approach, and consider environmental
benefits and social benefits, among other aspects [15,16]. The primary factors that influence
ILUE include the region’s level of economic development, industrial development, and the
level of scientific and technological development [17–20]. In addition, land use efficiency
can have spatial spillover effects; the improvement of land use efficiency in one region can
have an impact on other regions through technological and industrial transfer [21,22].

With the continuous deterioration of the global climate, intensive land use has become
a major research focus. Land use efficiency is widely considered a representative index of
intensive land use. Li and Chen [23] studied Nanjing as an example case, and concluded
that it was necessary to improve land use efficiency in order to reduce carbon emissions.
Wang et al. [24] concluded that land use intensity had a positive impact on carbon emissions.
Dong et al. [25] used the generalized method of moments (GMM) to show that there was
a significant, dynamic correlation between urban land use efficiency and the intensity of
carbon emissions. In the short term, urban land use efficiency had a driving negative effect
on the intensity of carbon emissions. Wang et al. [26] analyzed the dynamic changes in
the total factor carbon emission performances of industrial land in China, and found that
the eastern region’s industrial land had better carbon emission performance than that of
the central and western regions. Xie et al. [27] studied the relationship between carbon
emissions and intensive industrial land use based on the STIRPAT (Stochastic Impacts by
Regression on Population, Affluence, and Technology) model, and found that intensive
industrial land use had a significant impact on carbon emission.

The research on industrial carbon emissions primarily focuses on the measurement of
industrial carbon emissions, the factors influencing industrial carbon emissions, and the
spatial nature of industrial carbon emissions. The existing literature on China’s industrial
carbon emissions can be traced back to an early study by Shrestha and Timilsina [28], who
analyzed the CO2 emission intensity of the power industry in 12 Asian countries, including
China. The industrial output value was found to be the main factor driving the increase
of industrial carbon emissions [29,30]. The region’s level of economic development and
population factors also led to increases in carbon emissions. Reductions in energy intensity
and the optimization of industrial structures were found to be key factors in reducing
carbon emissions [31,32]. Industrial carbon emissions have both spatial correlations and
spatial heterogeneity, and the spatial spillover effect should be considered [33,34].
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The panel threshold approach has been widely used in many areas of applied eco-
nomics and econometrics. Its basic principle is to select an economic parameter as the
threshold variable, divide the regression sample into multiple intervals according to the
selected threshold value, and then compare the changes of the influence coefficients of core
economic parameters in different intervals [35,36]. Compared with traditional methods,
the threshold model can test and estimate the existence of threshold effects according to
the randomness of the exogenous variable grouping. At the same time, the samples are
grouped endogenously according to the specific threshold. The threshold model can also
repeatedly extract samples through the bootstrap method in order to improve the efficiency
of significance testing [37]. At present, the threshold model is mainly used to test the
nonlinear influencing factors of carbon emissions. Li et al. [38] used the panel model to
study the impact of technological progress on carbon emissions. The study holds that when
economic development exceeds a certain threshold, the impact of technological progress on
carbon emissions changes from positive to negative. Similarly, Song [39] used the threshold
model to analyze the impact of economic growth on carbon emissions. Wu et al. [40]
discussed the impact of energy consumption on carbon emissions under different envi-
ronmental regulations by using the dynamic threshold panel model. Zhang and Ma [41]
used the extended dynamic threshold model to systematically analyze the relationship
between industrial structures and the carbon emission intensity of 21 industrial sectors
with different levels of economic development in eight developed countries from 1971 to
2014. Sun and Wang [42] used a threshold analysis to assess the impact of urbanization on
carbon emissions.

3. Methods
3.1. Calculation of Industrial Carbon Emission

Carbon emissions from industrial energy consumption were calculated according
to the method provided in the 2006 IPCC National Greenhouse Gas Emission Inventory
Guidelines [43]. The calculation method provided by the IPCC is the most widely recog-
nized calculation method in the world. It has the advantage of being highly authoritative
and easy to perform. The specific calculation formula is as follows:

C = ∑
j

Ej × Tj × Fj (1)

where C represents carbon emissions. This paper calculates the consumption of raw coal,
coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas, and electric power; Tj
represents the conversion coefficient of class J energy standard coal, and Fj is the carbon
emission coefficient of the energy. The carbon emission coefficient is provided by the
IPCC (2006).

3.2. Calculation of Industrial Land Efficiency

ILUE is a reflection of the extent of the industrial land utilization and the correspond-
ing industrial output. Single factor productivity can measure the unit output capacity of
the land, which is helpful for evaluating the efficiency of land usage and the dynamic
change of land factors [44]. Therefore, this paper uses the industrial output per unit land
area to measure the ILUE. This method can directly reflect the relationship between land
input and economic output. The specific calculation formula is as follows:

ILUEit =
TIOVit
TILAit

(2)

where ILUEit refers to the industrial land use efficiency of province i in year t, TIOVit
refers to the total industrial output value of province i in year t, and TILAit refers to the
total industrial land area of province i in year t.
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3.3. Panel Threshold Regression Model

The panel threshold model can divide the interval endogenously according to the
characteristics of the data itself [35]. The panel threshold models can also study the non-
uniform links between explained variables and the explanatory variables. In addition, if
the sample segmentation and non-uniform relations between the dependent variables and
independent variables are jointly determined, this model can solve problems related to
the assumption that sample segmentation is exogenous, which were an issue in previous
studies [45]. In this paper, the panel threshold regression model is used to test the threshold
effect of industrial land use efficiency on industrial carbon emissions.

The single-threshold model is:

Yit = µit + β1Xit I(qit ≤ γ) + β2Xit I(qit > γ) + εit (3)

where the explained variable Y is scalar, µ is the fixed-effect, X is a vector of the regressors,
I(·) is an indicative function, q is the threshold variable, and ε is also scalar.

When the minimum sum of squares of the residuals is S1(γ), the optimal estimation
of the corresponding threshold is:

∧
γ = argγminS1(γ) (4)

The panel threshold model involves two hypothesis tests: (1) Testing whether the
threshold effect exists; and (2) Testing whether the estimated threshold value is equal to
the true value. The first test and alternative hypotheses are given as follows:

H0 : β1 = β2 H1 : β1 6= β2 (5)

The statistics are obtained as follows:

F1 =
S0 − S1(

∧
γ)

∧
σ2

(6)

If the standard distribution assumption is not satisfied, the bootstrap method is used

to obtain the critical value of the approximate distribution. The second test H0:γ =
∧
γ

statistic LR1 is obtained as follows:

LR1 =
S1 − S1(

∧
γ)

∧
σ2

(7)

For the case of multiple thresholds, the model is set such that:

Yit = µi + β1Xit I(qit ≤ γ1) + β2Xit I(γ1 < qit ≤ γ2) + β3Xit I(qit > γ2) + εit (8)

In order to better verify the nonlinear relationship between industrial land use effi-
ciency and industrial carbon emissions, this paper refers to the panel threshold regression
model proposed by Hansen [35] and introduces the per capita GDP and proportion of R&D
expenditure as threshold variables. Considering the possible multi-threshold results, the
following multi-threshold model is constructed:

ln Cit = ln αit + β1 ln ILUEit + β2 ln Ait + β3 ln Tit + β4 ln ISit
+β5 ln EIit + β6 ln ECit + β7 ln ILUEit · I(ln hit ≤ γ1)+
β8 ln ILUEit · I(γ1 < ln hit ≤ γ2) + β9 ln ILUEit · I(ln hit > γ2) + ln εit

(9)

where Cit is the annual industrial carbon dioxide emissions of each province; Ait is the
per capita GDP; Tit is the proportion of R&D expenditure in the main business income of
an industry; ISit is the proportion of the main business income of high-tech industry in
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the total main business income of industries above a designated size; EIit is the energy
intensity; and ECit is the energy structure. The sum of the threshold value, hit, is the
threshold variable, and I(·) is the index function. The increase in per capita income im-
proves both the population’s ability and willingness to consume energy and consequently
affects carbon emissions. Technological progress can improve energy efficiency and thus
reduce carbon emissions. The transformation of industrial structures can shift resources
to low-carbon, high-tech enterprises and reduce carbon emissions as a result. Becoming
less energy-intensive leads to improvements in energy efficiency. Despite other factors
remaining unchanged, carbon emissions due to energy utilization will inevitably decrease,
and vice versa. Moreover, the growth of carbon emissions is primarily driven by an energy
consumption structure dominated by fossil fuels. Therefore, this paper opts to treat an
area’s level of economic development, its industrial structure, its level of technological
development, energy intensity, and energy structure as control variables. The descriptions
of these variables are shown in Table 1.

Table 1. Description of variables.

Variable Definition Unit

Industrial carbon emissions (C) Carbon emissions from the industrial sector 104 t
Industrial land use efficiency (ILUE) Industrial output value per unit industrial land of province i 104 yuan/km2

Economic development level (A) Per capita GDP yuan

Technical level (T) Proportion of R&D expenditure in main business income of
Industrial Enterprises above Designated Size %

Industrial structure (IS)
Proportion of main business income of high-tech industry in

main business income of Industrial Enterprises above
Designated Size

%

Energy intensity (EI) Proportion of industrial standard coal consumption in
industrial added value t/104 yuan

Energy structure (EC) Proportion of industrial coal consumption standard coal in total
consumption standard coal %

3.4. Spatial Durbin Model

As the efficiency of industrial land use has spatial spillover, we use a spatial econo-
metric model. There are three basic forms of spatial econometric models: the spatial lag
model (SAR), the spatial error model (SEM), and the spatial Durbin model (SDM). The
spatial Durbin model includes both the spatial lag terms of the dependent variables and
the spatial lag term of the error as independent variables, which improves its ability to
explain the relationships between spatial variables. Therefore, the spatial Durbin model is
established as:

ln Cit = α + ρ
N

∑
j=1

Wij ln Cit + φXit + θ
N

∑
j=1

WijXit + ci + µt + εit (10)

where ρ is the impact of local industrial carbon emissions on industrial carbon emissions in
neighboring areas; X includes industrial land use efficiency, per capita GDP, proportion
of high-tech industries, proportion of R&D expenditure, energy intensity, and energy
structure; W is the spatial weight matrix; ci is the individual fixed-effect; µt is the time
fixed-effect; and εit is the random error.

In the spatial Durbin model, the dependent variables of one region potentially affect
the dependent variables of other regions. Lesage and Pace [46] argued that using the re-
gression results to directly explain the influence of independent variables on the dependent
variables was inaccurate, so the partial differential equation is used to divide the spatial
effect into a direct effect and an indirect effect instead:

ln Cit = (1− ρW)−1 + (1− ρW)−1(Xφ + WXθ) + (1− ρW)−1ε (11)
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The partial differential equation matrix of the k-th variable in the dependent variable
is as follows: [

∂ ln C
∂X1k

· · · ∂ ln C
∂Xnk

]
=


∂ ln C21

∂X1k
· · · ∂ ln C2n

∂Xnk
· · · · · · · · ·

∂ ln C2n
∂X1k

· · · ∂ ln C2n
∂Xnk


= (1− ρW)−1


ϕk W12θk · · · W1nθk

W21θk ϕk · · · W2nθk
· · · · · · · · · · · ·

Wn1θk Wn2θk · · · ϕk


(12)

The average values of diagonal and off-diagonal elements represent direct and indirect
effects, respectively, and the sum of the matrices is the total effect.

4. Data Source

This study selected 30 provinces, autonomous regions and municipalities directly
under the central government (excluding Hong Kong, Macao, Taiwan and Tibet) as the
research objects. The initial research year was 2003. The data on carbon emissions were
calculated according to the formula in the Intergovernmental Panel on Climate Change
(IPCC, 2006). The data on industrial land efficiency were collected from the China Ur-
ban Statistical Yearbook (2004–2019), the China Urban Construction Statistical Yearbook
(2003–2018), Statistical Bulletins of national economic and social development of local cities
and Statistical Yearbooks of local cities. The data on energy intensity and energy resource
structures come from the China Energy Statistical Yearbook (2004–2019). The data on per
capita GDP and technological development levels come from the China Statistical Yearbook
(2004–2019). The data on industrial structures come from the China High Tech Industry
Statistical Yearbook (2004–2019).

5. Results and Discussion
5.1. Spatiotemporal Distribution Characteristics of Industrial Land Use Efficiency

To more intuitively show the spatial distribution of ILUE in China’s provinces, this
paper uses the ArcGIS software platform. The study analyzes the spatial distribution of
ILUE in four stages, namely during 2003, 2008, 2013, and 2018. As shown in Figure 2, the
spatial distributions of ILUE in different provinces of China are noticeably different, but the
intensity of the change trends during the four time periods remains small. There are few
provinces with high level of ILUE, and the distribution difference is obvious, mainly in the
eastern coastal regions. From 2003 to 2013, the ILUE of China’s provinces displayed a trend
of overall improvement, with little difference in spatial distribution, showing a pattern of
high ILUE in the eastern region and low ILUE in the western region. In 2013 and 2018, the
overall trend was similar, and the ILUE in some provinces began to decline. In the Midwest,
only Qinghai province had a high level of ILUE. The data on industrial land use efficiency
was an aggregation of data from prefecture-level cities in each province, chosen for this
study primarily due to their availability. There is only one prefecture-level city in Qinghai
province, and other provinces with high levels of ILUE are concentrated in the eastern
region. In general, ILUE in the eastern region is higher than that in the central and western
regions. Due to its geographical advantages, the eastern region enjoyed early industrial
development, the rapid upgrading and transformation of its industrial structures, and the
strong presence of industrial R&D.

5.2. Regression Results of Threshold Model

In order to investigate the nonlinear relationship between ILUE and industrial carbon
emissions, this study tested whether there were thresholds before conducting the regression.
We chose to include the level of per capita GDP (A) and technological development level
(T) in the model as the threshold variables. The study used “self-sampling” to obtain the
p-value and to determine the number of thresholds. As shown in Tables 2–4, in the eastern
region, both the A and T threshold variables had a single-threshold effect at the 1% level
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and the 5% level. The model of the central region revealed that the threshold variable A
had a double-threshold effect, with a significance level of 10%. However, the model of the
western region indicated no thresholds.
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Table 2. Tests for threshold effect and threshold value estimation of the eastern region.

Threshold Variable Number of Thresholds F-Statistic Threshold Value 95% Confidence Interval

lnA

Single 50.31 *** 10.8197 (10.7910, 10.8292)
Double 10.72 10.8197 (10.7910, 10.8292)

9.6039 (9.5850, 9.6182)
Triple 13.03 9.8974 (9.8803, 9.9027)

lnT

Single 28.92 ** −6.5548 (−6.9425, −6.3814)
Double 9.11 −6.5548 (−6.9425, −6.3814)

−5.1616 (−5.1924, −5.1552)
Triple 7.94 −5.1720 (−5.2055, −5.1584)

Note: *** and ** represent significance level of at 10% and 5% respectively.

As shown in Table 5, the effect of ILUE on industrial carbon emissions was different
in the eastern, central, and western regions. When A was taken as the threshold variable,
the ILUE had a single-threshold effect on industrial carbon emissions in the eastern region.
Therefore, a single-threshold model was established for the regression analysis. The
threshold value A was 49,996.09 yuan for industrial carbon emissions. In different A
intervals, the influence of ILUE on industrial carbon emissions differed, showing significant
nonlinear characteristics. When A was lower than 49,996.09 yuan, ILUE had a remarkably
positive influence on industrial carbon emissions (the coefficient was 0.3152). When A was
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greater than 49,996.09 yuan, the influence on ILUE was positive (the coefficient was 0.2747),
but the positive effect was significantly reduced. The results showed that after A reached a
certain level, the positive effect of ILUE on industrial carbon emissions was reduced. This
illustrated that, although the eastern region was economically developed, there were also
some problems in its development, such as unreasonable industrial structures and serious
industrial pollution. As for the other control variables, A, T, and EI had a promotional effect
on industrial carbon emissions. This is consistent with the results of related studies [47].
Economic growth is often accompanied by rapid energy consumption, resulting in an
increase in carbon emissions. Energy intensity is the energy consumption per unit of GDP,
that is, the greater the energy intensity, the more carbon emissions. The possible reason is
that there are still heavy industrial projects with high energy consumption in the eastern
region, which is not conducive to carbon emission reduction. IS and EC are opposites,
which was also verified in other relevant studies [48]. The increase in the proportion of
high-tech industries means that the mode of production is more intensive and cleaner,
which is conducive to reducing carbon emissions.

Table 3. Tests for threshold effect and threshold value estimation of the central region.

Threshold Variable Number of Thresholds F-Statistic Threshold Value 95% Confidence Interval

lnA

Single 9.84 9.2997 (9.2867, 9.3037)
Double 14.80 * 9.3994 (9.3959, 9.3995)

9.3787 (9.3759, 9.3840)
Triple 3.55 9.3871 (9.3855, 9.3900)

lnT

Single 13.00 −4.7340 (−4.7682, −4.6823)
Double 8.41 −4.7340 (−4.7674, −4.6823)

−5.2701 (−5.3749, −5.2661)
Triple 6.36 −5.9458

Note: * represent significance level of at 1%.

Table 4. Tests for threshold effect and threshold value estimation of the western region.

Threshold Variable Number of Thresholds F-Statistic Threshold Value 95% Confidence Interval

lnA

Single 16.94 8.4129 (8.3394, 8.5996)
Double 13.78 8.4129 (8.3531, 8.5996)

9.1698 (9.1590, 9.1783)
Triple 5.04 9.6093 (9.5847, 9.6183)

lnT

Single 5.84 −5.6743 (−5.6899, −5.6668)
Double 3.99 −5.6743 (−5.6899, −5.6668)

−4.5932
Triple 4.00 −5.4743 (−5.4806, −5.4655)

When T was taken as the threshold variable, ILUE had a single-threshold effect on
industrial carbon emissions in the eastern region. In this case, a single-threshold model
was used for the analysis. As shown in Table 5, the threshold value of T was 0.0014 for
industrial carbon emissions. In different T intervals, the impact of ILUE on industrial
carbon emissions differed, showing significant nonlinear characteristics. When T was less
than 0.0014, the influence of ILUE on industrial carbon emissions was both positive and
significant (the coefficient was 0.3786). When T was greater than 0.0014, the influence
on ILUE was positive and significant (the coefficient was 0.3285), but the positive effect
was significantly reduced. The results showed that after T reached a certain level, the
positive influence of ILUE on industrial carbon emissions was reduced. This is contrary
to the negative result we expected. A possible reason for this is the rebound effect of
technology. Technological progress can reduce carbon emissions, but it is also accompanied
by greater energy consumption [49]. The rebound effect of the environment can partially
or completely offset the expected reduction in carbon emissions, so that the final impact
coefficient is still positive. This is consistent with the conclusion of Wang et al. [50].
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Table 5. Threshold A regression results in the eastern, central, and western regions.

Eastern Region Central Region

Variable A Variable T Variable A

lnA 1.3927 *** lnA 1.6263 *** lnA 1.0152 ***
(8.08) (8.69) (8.29)

lnT 0.1492 *** lnT 0.3263 *** lnT −0.0477
(4.45) (7.31) (−1.09)

lnEC −0.4065 *** lnEC −0.2264 *** lnEC 0.2995 ***
(−8.06) (−4.39) (6.14)

lnEI 0.6077 *** lnEI 0.8417 *** lnEI 0.3516 ***
(11.14) (14.17) (8.00)

lnIS −0.1288 * lnIS −0.1085 lnIS 0.0019
(−1.91) (−1.53) (0.06)

lnILUE
(q1 < 10.8197) 0.3152 *** lnILUE

(q1 < −6.5548) 0.3786 *** lnILUE (q1 < 9.3787) 0.4175 ***

(6.35) (7.32) (12.00)
lnILUE

(q1 ≥ 10.8197) 0.2747 *** lnILUE
(q1 ≥ −6.5548) 0.3285 *** lnILUE

(9.3787 ≤ q1 < 9.3994) 0.4040 ***

(5.42) (6.34) (11.63)
lnILUE (q1 ≥ 9.3994) 0.4144 ***

(11.68)
_cons −9.6990 *** _cons −11.0256 *** _cons −6.6708 ***

(−6.54) (−7.01) (−7.52)

Note: ***and * represent significance level of at 10% and 1%, respectively.

Taking A as the threshold variable, in central China, ILUE showed a double-threshold
effect on industrial carbon emissions. Based on this finding, the double-threshold model
was employed to carry out the regression analysis. As shown in Table 5, the industrial
carbon emission threshold A is 11,833.62 yuan and 12,081.13 yuan, respectively. When A is
in a different interval, the impact of ILUE on industrial carbon emissions differs, showing
significant nonlinear characteristics. When A is less than 11,833.62 yuan, the influence of
ILUE on industrial carbon emissions is significant and positive (the coefficient is 0.4175).
When A is greater than or equal to 11,833.62 yuan and less than 12,081.13 yuan, the influence
of ILUE on industrial carbon emissions is significant and positive (the coefficient is 0.4040),
and the positive effect is slightly reduced. When A is greater than 12,081.13 yuan, the
impact coefficient is 0.4143, and the promotion effect is enhanced. Therefore, the increase
in ILUE is not beneficial to the environment in the central region. Although the economy
has transitioned through different stages, the harmful impacts of relying on heavy industry
have not been alleviated.

5.3. Regression Results of Spatial Durbin Model
5.3.1. Estimation Results of Spatial Panel Durbin Model

This paper used a 0–1 geographical proximity matrix as the spatial weight matrix, and
constructed SDM for the relationship between ILUE and industrial carbon emissions. The
0–1 geographical proximity matrix can accurately describe the geographical relationships
between provinces. The results are shown in Table 6. Comparing the effects of the three
models of space, time, and a double fixed-effect model of space and time, it was found that
the double fixed-effect model of space and time performed better than the other two models.
Therefore, we employed the double fixed-effect model of space and time to examine the
impacts of ILUE on carbon emissions.

To allow an in-depth analysis, this study decomposed the spatial spillover effect. As
shown in Table 7, the total effect can be divided into two parts, one of which is the direct
effect, which represents the impact of ILUE on local carbon emissions. The other part is the
indirect effect, that is, the spillover effect, which represents the influence of local ILUE on
carbon emissions in areas using a spatial correlation. Under the 0–1 geographical proximity
weight matrix, the indirect spillover effect of ILUE on reducing regional carbon emissions
was significant, and the indirect effect was even greater than that on local carbon emissions.
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Table 6. Results of Durbin regression.

Variables Individual Fixed Time Fixed Both

lnILUE 0.1469 *** 0.6582 *** 0.0587 ***
lnA 0.9940 *** 0.1648 * 1.0400 ***
lnT 0.0748 *** 0.2141 *** 0.0223

lnEC −0.0861 ** 0.4058 *** −0.0465
lnEI 0.6384 *** −0.0275 0.6537 ***
lnIS 0.0461 * −0.1361 *** 0.0302

WlnILUE 0.1803 *** 0.8314 *** −0.0857 *
WlnA 0.1978 −0.3430 * 0.5289 ***
WlnT 0.0254 −0.1607 −0.1659 ***

WlnEC −0.0860 0.8464 *** −0.0864
WlnEI −0.0388 0.0685 0.3116 ***
WlnIS 0.0768 ** −0.3361 *** 0.1127 **

Spatial rho 0.1788 *** −0.0305 −0.2991 ***
R2 0.8537

290.0283
0.0174 ***

480

0.5986
−380.8563
0.2859 ***

480

0.0447
365.5730
0.0126 ***

480

Log-L
sigma2

obs
Note: ***, ** and * represent significance level of at 10%, 5% and 1%, respectively.

Table 7. Spatial Durbin indirect effect and direct effect.

Variable Both

Direct Effect Indirect Effect Total Effect

lnILUE 0.0662 *** −0.0861 ** −0.0199
lnA 1.0212 *** 0.1808 1.2019 ***
lnT 0.0359 −0.1415 *** −0.1056 **

lnEC −0.0424 −0.0579 −0.1003 **
lnEI 0.6457 *** 0.0951 ** 0.7408 ***
lnIS 0.0242 0.0895 ** 0.1136 ***

Note: *** and ** represent significance level of at 10% and 5% respectively.

The original effect coefficient and the direct effect coefficient of ILUE are 0.0587 and
0.0662, respectively, and both pass the 1% significance test, indicating that the promotion
effect is statistically significant. At the same time, the spatial effect coefficient and indirect
effect coefficient of ILUE are −0.0857 and −0.0861, respectively. The former means that
increasing ILUE in neighboring provinces reduces carbon emission levels in a province,
while the latter refers to the province where ILUE increases reduce the carbon emission
levels of ILUE in neighboring provinces. The former passes a significance test of 10%,
and the latter passes a significance test of 5%. After the industrial land efficiency of each
province is improved, this more intensive industrial land use mode can promote the
carbon emission effect of adjacent provinces. On the one hand, it reduces the radiation of
carbon emissions to neighboring areas through the industrial transmission mechanism. On
the other hand, neighboring areas improve efficiency by learning advanced measures of
intensive use of industrial land, so as to realize carbon emission reduction. This shows
that each province involved in the process of improving ILUE can alter its own carbon
emission effects while having a restraining effect on the carbon emissions of neighboring
provinces. The total effect of ILUE on carbon emission levels is −0.0199, but the result is
non-significant. This stems from the on-going development of China, which remains in an
intermediate period of industrial development and still suffers serious problems with the
extensive use of industrial land. Consequently, improvements in ILUE do not fully take
into account the environmental impacts. Therefore, while ILUE does have a certain degree
of impact on carbon emission levels, it does not have a strong effect.

A had a significant promotional effect on the direct impact of industrial carbon emis-
sions. China is in a mid- to late-stage of industrial development. The main driving force
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behind economic growth is energy consumption, which intensifies carbon emissions [51].
The indirect effect of A is positive but non-significant, which indicates that the transmission
of economic growth to neighboring provinces is a long-term process, and the effect is
non-significant in the short term. Based on its overall effect, the influence of A on industrial
carbon emissions is positive. This is also largely consistent with the research results of
Ren et al. [52]. The direct effect of T on industrial carbon emissions is positive but non-
significant, indicating that technological innovation with preferences for a rebound effect
do not play a role in reducing carbon emissions. The indirect effect of the ratio of T to
industrial carbon emissions is −0.1415, indicating that the improvement of technological
development levels in a province can inhibit the carbon emissions of neighboring provinces.
The production process is relatively advanced, with a high utilization rate. Through learn-
ing and exchange, all of the provinces have improved their production technologies and
reduced carbon emissions. From the overall effect, for a long time, the influence of techno-
logical progress of each province on the level of carbon emissions has a certain inhibitory
effect [53]. IS and EI play significant parts in promoting carbon emissions. In other words,
the high energy consumption of economic growth, extensive energy use, and ineffective
industrial structures have not been effectively addressed and controlled [54].

5.3.2. Estimation Results of Regional Panel Durbin Model

As shown in Table 8, SDM was used to analyze the impact of ILUE on industrial
carbon emissions in different regions. The spatial spillover effect was non-significant in
the eastern region, while the spatial spillover effect was significant in the central and
western regions. Except for the central region, the three effects of ILUE on industrial carbon
emissions were non-significant. Specifically, the direct effect coefficient and the indirect
effect coefficient of ILUE were 0.2288 and 0.1247, respectively. The former illustrates that
the increase in ILUE in the local province increased its carbon emission level, while the
latter indicates that the increase in ILUE in the local province increased the carbon emission
levels of ILUE in neighboring provinces. This showed that each province had a promotional
influence on both its own the carbon emissions and those of surrounding provinces. The
total effect of ILUE on carbon emission levels was positive (0.3535) at the significance
level of 1%. A possible reason for this is that the industrial structure of the central region
is still dominated by heavy industry. Although ILUE was improved, the problematic
industrial structure led to the increase in industrial carbon emissions. At the same time,
there was a spatial spillover effect in the central region. The increase in ILUE in one region
may cause the industrial carbon emissions of that region to flow into the adjacent regions
through high-carbon industries and emissions, resulting in increased carbon emissions in
the adjacent regions.

Table 8. Spatial Durbin indirect effect and direct effect of eastern, central and western regions.

Variable Both

Eastern Region Central Region Western Region

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

lnILUE 0.0782 * −0.1235 ** −0.0453 0.2288 *** 0.1247 * 0.3535 *** 0.0361 0.0114 0.0475
lnA 0.9590 *** 0.6768 *** 1.6359 *** 0.9480 *** 0.1294 1.0775 *** 0.6405 *** −0.3724 0.2681
lnT 0.0229 0.1936 *** 0.2165 *** −0.2342 *** −0.0116 −0.2458 * 0.0793 * −0.1544 * −0.0751

lnEC −0.2984 *** −0.0128 −0.3112 *** 0.0734 −0.2734 *** −0.2000 ** −0.1053 * −0.0323 −0.1376
lnEI 0.8489 *** −0.3903 *** 0.4585 *** 0.3719 *** 0.1039 0.4758 *** 0.6310 *** 0.0272 0.6583 ***
lnIS −0.0189 −0.0016 −0.0205 −0.0640 −0.0731 −0.1371 ** 0.0223 −0.1493 *** −0.1269 **

Spatial rho 0.0433 −0.1849 ** −0.3529 ***

Note: ***, ** and * represent significance level of at 10%, 5% and 1%, respectively.

6. Conclusions and Policy Implications

This paper studies the impacts of industrial land use efficiency on the carbon emissions
of 30 provinces in China. The panel threshold regression model was used to test the
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threshold effect of industrial land use efficiency on industrial carbon emissions. The spatial
Durbin model was used for the in-depth analysis of ILUE on the spatial spillover effects
of carbon emissions. The results showed that the overall ILUE in China was higher in the
eastern region and lower in the western region. The threshold effects of T in the central
and western regions were non-significant, which indicates that the overall technological
development levels of the central and western regions were low. The spatial spillover effect
of ILUE on industrial carbon emissions is non-significant in China.

The above conclusions have value as references for the government’s efforts to formu-
late reasonable industrial policies.

Firstly, the government should ensure industrial parks are well-planned, work to pro-
mote the good layout of industrial spaces, and make full use of industrial sites to improve
the utilization efficiency of industrial land. If utilization efficiency improves, pollution
and emissions will be reduced. At different stages of economic development, the govern-
ment should take targeted measures to improve ILUE in specific regions. For the eastern
region, where the economy is at an advanced stage of development, the results indicate
that the current industrial structure promotes carbon emission reductions, indicating that
the proportion of high-tech industries in the eastern region is high, and transforming and
upgrading the industrial structure is reasonable. However, increases in ILUE in the eastern
region still have positive effects on industrial carbon emissions. The local government
should continue to develop clean energy and clean technologies to reduce their industrial
carbon emissions. For the central and western regions, where the economies are at an
early stage of development, there may also be a model of growth based on “promoting
development by land”, which may carry the cost of higher carbon emissions. In light
of this, the government should strengthen the examination and approval standards of
industrial land, set a high access threshold for industrial enterprises, carefully plan the
use of industrial parks, vigorously support the entry of intensive industrial enterprises,
and avoid the waste of idle industrial land. Moreover, the government should increase
investment in technological innovation in the central and western regions. We suggest
increasing the incentive for industrial enterprises to innovate, in order to develop more
efficient production technologies, innovative abilities and management methods, and to
promote the improvement of industrial green production efficiency and environmentally
friendly qualities.

Secondly, supporting policies for industrial land supply should also be taken into
consideration, including increasing the weight of green development in performance ap-
praisals, strengthening environmental regulations, pursuing innovation in green financial
policies, etc. For example, a big data platform based on a comprehensive informational
survey of the economy, society, and the environment of industrial land could provide
basic information for optimizing decision-making and research processes involving the
industrial land supply.

The conclusion has provided relevant reference for the government to improve the
efficiency of industrial land use and reduce carbon emissions in China. However, the
research is still preliminary. This paper uses single factor productivity to calculate industrial
land efficiency, without considering the impact of other production factors on output.
Besides, since industries include different sectors, the impact of industrial land efficiency
on carbon emissions may be different among different sectors. However, this paper does
not take into account the differences.
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