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Abstract

Background: Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments
using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control
bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic
properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the
blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked
whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis
formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings: Intravenous injection of human breast cancer MDA-B02 cells with forced expression of
ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by
increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer
4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C
mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and
decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in
presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor
vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/
MCSF-induced osteoclastogenesis.

Conclusion/Significance: Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work
demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast
differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve
the outcome of patients with bone metastases.

Citation: David M, Wannecq E, Descotes F, Jansen S, Deux B, et al. (2010) Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse
through Lysophosphatidic Acid-Dependent Activation of Osteoclasts. PLoS ONE 5(3): e9741. doi:10.1371/journal.pone.0009741

Editor: Erik H. j. Danen, Leiden/Amsterdam Center for Drug Research, Leiden University, Netherlands

Received January 14, 2010; Accepted February 26, 2010; Published March 17, 2010

Copyright: � 2010 David et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the INSERM (O.P. and P.C.), the Comité départemental de la Loire de la Ligue Nationale contre le Cancer (O.P.),
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Introduction

Bone is a common metastatic site for many cancers [1]. Bone

metastases are associated with hypocalcaemia due to bone

destruction, intractable bone pain and pathological fractures.

Tumor cells present at the bone metastatic site stimulate

osteoclast-mediated bone resorption, and bone-derived growth

factors released from resorbed bone promote tumor growth,

leading to the development of a vicious cycle. [2]. Unfortunately,

current treatments using powerful anti-resorptive agents (bisphos-

phonates) fail to provide life-prolonging benefit to patients with

bone metastases raising the need for a better knowledge of the

molecular mechanisms involved in this pathology [3]. We have

recently found that lysophosphatidic acid (LPA) derived from

blood platelets acts locally on tumor cells to promote the

progression of bone metastases [4]. Among the cell surface specific

receptors for LPA (LPA1–6) expressed by tumor cells, we

demonstrated that LPA1 activity prevailed during bone metastasis
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progression and that targeting this receptor was a new therapeutic

strategy against bone metastases [5]. However, how LPA is

generated at the tumor site and how LPA produced by tumor cells

themselves might contribute to the progression of bone metastases

are still unknown.

Autotaxin (ATX, NPP2) belongs to the nucleotide pyrophos-

phate phosphodiesterase (NPP) family [6]. In addition to the

conserved phosphodiesterase (PDE) activity among all NPPs,

autotaxin has a unique lysophospholipase D (lysoPLD) activity,

allowing the generation of LPA from lysophosphatidylcholine

(LPC) [7]. The biological significance of PDE and lysoPLD

activities in autotaxin functions remains to be determined.

However, the functional relevance of the catalytic activity of

autotaxin in vivo was recently demonstrated from knockout mice

studies showing that autotaxin is responsible for the levels of LPA

in the blood circulation [8,9]. A link between increased lysoPLD

activity and the formation of LPA was found in various pathologies

such as rheumatoid arthritis [10], neuropathic pain [11], chronic

hepatitis C [12] and adipocyte insulin-resistance in obesity [13].

Autotaxin is a glycoprotein initially identified as an autocrine

motility factor secreted by human melanoma cells [14,15].

Increased expression of autotaxin was shown to correlate with

increased invasiveness of breast cancer cells [16] and was found to

enhance the metastatic potential of ras-transformed 3T3 fibro-

blasts [17]. Expression of autotaxin mRNA was detected at a basal

level in almost all human tissues [18]. Intriguingly, upregulation of

autotaxin gene was reported in a large variety of cancers such as

glioblastoma [19], aggressive neuroblastoma [20], non small cell

lung cancer [21], uveal melanoma associated with poor prognosis

[22], thyroid carcinoma [23], hepatocellular carcinoma with

metastases [24], and breast cancer [16]. MMTV-atx transgenic

mice with specifically increased expression of autotaxin in the

mammary gland showed an increased in the incidence of

spontaneous mammary tumors over a two-year period, illustrating

the pro-oncogenic function of autotaxin [25].

Here, we provide experimental evidence that breast cancer cells

expressing autotaxin have a selective advantage to induce the

formation of osteolytic bone metastases as a result of a novel pro-

osteoclastic function of autotaxin-derived product LPA. These

results illustrate the role of autotaxin in advanced breast cancers

and suggest that targeting the autotaxin/LPA track might provide

additional benefit for patients suffering from bone metastases.

Results

De novo autotaxin expression increases proliferation and
invasion of human MDA-B02 breast cancer cells in vitro

We have shown previously that MDA-B02 cells do not express

autotaxin at steady state [4]. To assess whether or not autotaxin

plays a role in the metastasis dissemination of breast tumor cells,

we introduced the cDNA of rat autotaxin into MDA-B02 cells. We

used the tet-Off-regulated expression system in which autotaxin

expression along with the luciferase is achieved specifically in the

absence of the repressor, doxycycline [4]. As a unique member of

the NPP family, autotaxin exhibits both lysoPLD and phospho-

diesterase activities [26,27]. Therefore, as a control cell line we

transfected MDA-B02 cells with an expression vector coding for

mouse NPP1, which acts as a nucleotide phosphodiesterase but

that lacks for the lysoPLD activity.

For each construct, we selected two stable clones: MDA-B02-

ATX clone no. 30 and no. 38, and MDA-B02-NPP1 clones

no. 10.5 and no. 42. The expression of autotaxin as a secreted

protein and NPP1 as a membrane-bound protein were confirmed

by western blotting using specific antibodies (Figure 1A). Clone

selections were based on high luciferase expression in absence of

doxycycline (Figure 1B). As expected, we observed that in the

absence of doxycycline only MDA-B02-ATX clones acquired a

lysoPLD activity (Figure 1B), whereas both MDA-B02-ATX and

MDA-B02-NPP1 clones had an increased PDE activity, as

compared to parental cells (Figure 1B).

We have shown previously that the treatment with LPA

increases the proliferation of MDA-B02 cells [4]. Here, we

observed that, in the absence of doxycycline, LPC had a mitogenic

activity by itself on both the parental MDA-B02 cells and

transfected clones (Figure 1C). This findings might reflect the

expression LPC receptors (GPR4, TDAG8) in MDA-B02 cells as

well as in breast tumors [28]. However, LPC-dependent

proliferation was further increased in MDA-B02-ATX cells, but

not in MDA-B02-NPP1 cells or parental cells. Moreover, the

treatment of cells with Ki16425, an antagonist of LPA1 and LPA3

receptors, totally blocked autotaxin-dependent but not LPC-

dependent cell proliferation (Figure 1C). This indicated that

recombinant ATX expressed by MDA-B02-ATX cells produced

active LPA that stimulated cell proliferation through a LPA1–3

receptor-dependent pathway.

Autotaxin has been implicated in the invasiveness of ras-

transformed fibroblasts and breast cancer cells [16,17]. We

observed that, in absence of doxycycline, MDA-B02-ATX clones

had a significantly higher capacity to invade MatrigelTM in response

to FBS than in the presence of doxycycline (Figure 1D). The gain of

invasiveness of MDA-B02-ATX clones was also observed when

compared to parental cells and MDA-B02-NPP1 clones, placed

either in absence or presence of doxycycline. These results

confirmed that autotaxin increased the invasive potential of breast

cancer cells by a mechanism that required its lysoPLD activity.

De novo autotaxin expression enhances in vivo MDA-B02
bone metastasis formation

We have previously demonstrated that LPA derived from platelets

supports the progression of bone metastases mediated by MDA-B02

cells in mice [4]. We hypothesized that elevated tumor cell-derived

lysoPLD activity might also promote bone metastasis. Thirty two days

after the intravenous inoculation of tumor cells into nude mice,

radiographic analyses revealed that animals bearing MDA-B02-ATX

clones exhibited a 40% to 70% increase in the extent of osteolytic

lesions, as compared to that seen with MDA-B02-NPP1 clones and

parental cells (Figure 2A). Histological examinations and histomor-

phometric analyses confirmed the radiographic observations and

showed that de novo expression of autotaxin by breast cancer cells

resulted in a reduction of bone volume (BV/TV) and increased skeletal

tumor burden (Figure 2A). We observed no difference on legs of

metastatic animals bearing MDA-B02-NPP1 clones compared to

MDA-B02 parental cells at the histological level (Figure 2B). We have

previously shown that LPA stimulates the potency of tumor cells to

increase the recruitment of osteoclasts at the bone metastatic site [4].

Here, we observed that the surface of active osteoclasts per trabecular

bone area located at the bone/tumor cell interface was increased in

animals bearing MDA-B02-ATX clones, as compared to that observed

in mice bearing parental or NPP1-expressing tumor cells (Figure 3).

Altogether, our results indicated that increased expression of

autotaxin by MDA-B02 cells enhanced the formation of osteolytic

bone metastases.

Downregulation of autotaxin expression inhibits invasion
but not proliferation of mouse 4T1 breast cancer cells

To address the role of autotaxin in bone metastasis formation in

an immunocompetent context, we exploited the 4T1 cell line that

Autotaxin and Bone Metastases
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is derived from a single mouse mammary tumor and recapitulates

the distinct steps of metastasis when engrafted into the mammary

gland of syngenic female BALB/C mice [29]. Firstly, we found

that 4T1 cells expressed the mRNA of all forms of LPA receptors

and responded to LPA stimulation (Figure 4A and 4B).

Additionally, we found that 4T1 cells expressed the autotaxin

transcript and protein (Figure 4A and 4C), accounting for the

secretion of an enzymatically active autotaxin protein (Figure 4C).

Figure 1. Characterization of forced expression of autotaxin in human breast cancer MDA-B02 cells. (A) Cells transfected with
bidirectional expression vectors pBiL-ATX or pBil-NPP1 were plated with (+) or without (-) doxycycline (Dox). Proteins from conditioned media (CM) or
lysates of tumor cells (CL) of two stable clones (no. 30 and no. 38 to ATX, no. 10.5 and no. 42 to NPP1) were electrophorezed then immunoblotted
with an anti-ATX antibody (Left panel) or anti-Myc antibody (Right panel). (B) Quantifications of luciferase activity (Left panel), lysoPLD activity (Middle
panel) and PDE activity (Right panel) in each clone and parental MDA-B02 cells. (C) Cell proliferation was stimulated with LPC (10 mM) in absence or
presence Ki16425 (10 mM). Results are expressed as the % of BrdU incorporation compared to unstimulated MDA-B02 parental cells. Data correspond
to the mean 6 SD of 6 replicates and are representative of at least 3 independent experiments. (D) Cell invasion was stimulated with 10% FBS used as
chemoattractant. Results are the mean 6 SD of cells of 3 replicates and are representative of at least 3 independent experiments. Data are expressed
as the number of cells/mm2. *, P,0.05. **, P,0.01
doi:10.1371/journal.pone.0009741.g001
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To analyze the function of endogenous expression of autotaxin by

breast cancer cells in bone metastasis formation we used the RNA

interference method to establish a series of three clones of 4T1

cells with stably down-regulated autotaxin expression (4T1-

siATX), together with three control 4T1 clones with unaltered

expression of autotaxin (4T1-sbATX) (Figure 4C). Following

individual characterization of each clone for the levels of protein

expressions and lysoPLD activities, subsequent in vitro and in vivo

experiments were carried out using pools of the three clones for the

4T1-siATX and the 4T1-sbATX cell lines, respectively.

As previously observed for MDA-B02 cells in vitro (Figure 1C),

LPC exhibited a mitogenic action on 4T1 cells (Figure 4D).

However, silencing of autotaxin expression did not alter the

proliferation of 4T1-siATX cells compared to that observed for

control and parental cell lines (Figure 4D). This result was rather

surprising and might be the consequence of the remaining

lysoPLD activity in 4T1-siATX clones. An alternative explanation

would be that the proliferation of 4T1 cells was already maximally

stimulated by LPC. In contrast, using transwell migration

chambers coated with MatrigelTM, we observed that silencing

autotaxin expression inhibited FBS-driven invasion of 4T1-siATX

cells (Figure 4E). This inhibition was overcome by the addition of

LPA into the cell compartment of the migration chambers

demonstrating that invasion of 4T1 cells was controlled by

autotaxin through its lysoPLD activity.

Down-regulation of endogenous autotaxin expression in
4T1 cells inhibits osteolytic bone metastasis formation
independently of primary tumor growth in vivo

To find out whether endogenous expression of autotaxin in

breast cancer cells was important for bone metastasis formation,

4T1-siATX and control cell lines were injected into the left

ventricle of the heart of female syngenic BALB/C mice. This

strategy allows to bypass the lungs and to target the cells to other

visceral organs and bone. Two weeks after cell inoculation,

radiographic analyses revealed that animals bearing 4T1-siATX

Figure 2. Effect of forced expression of autotaxin on osteolytic bone metastasis formation of MDA-B02 cells. (A) (Left panels)
Representative radiographs of hind limbs from metastatic mice bearing MDA-B02 cells or MDA-B02-ATX clone no. 30 or MDA-B02-NPP1 clone no. 42,
29 days after tumor cell inoculation. Osteolytic lesions are indicated by arrows (scale bar: 0.5 cm). (Right panel) Quantification of osteolytic lesion
areas on radiographs in metastatic animals. Data correspond to the mean 6 SE of two independent experiments of 7 to 10 animals per group. (B)
(Left panels) Representative bone histology of Goldner’s trichrome-stained tibial metaphysis from metastatic animals. Bone is stained in blue; bone
marrow and tumor cells are stained in red. (scale bar: 1 mm). (Right panel) Histomorphometric analysis of metastatic hindlimbs using the bone
volume/tissue volume ration (BV/TV, black bars and left axis) and the tumor volume/tissue volume ratio (TumV/TV, open bars and right axis) as
referents. Values are the mean 6 SE of 7–10 animals per group representative of two independent experiments. *, P,0.05.
doi:10.1371/journal.pone.0009741.g002
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cells had a 50% decrease in the extent of osteolytic lesions, as

compared to animals injected with 4T1-sbATX or 4T1 parental

cells (Figure 5A). Histological analyses revealed that the surface of

active osteoclasts per trabecular bone area located at the bone/

tumor cell interface was significantly decreased in animals bearing

4T1-siATX cells, as compared to that observed in mice bearing

parental or 4T1-sbATX tumor cells (Figure 5B). We have

previously demonstrated that LPA is produced in the tumor

microenvironment by platelets [4]. To analyze the role of

endogenous autotaxin on breast cancer cells in vivo independently

of the bone microenvironment, 4T1-siATX and control cell lines

were inoculated into the fat-pad of female syngenic BALB/C

mice. After two weeks, which corresponded to the same time

frame of tumor growth than that used for bone metastasis

experiments, primary tumors were collected. We observed that

silencing autotaxin expression did not alter the growth of primary

tumors since there was no significant difference in the size of 4T1-

siATX tumors, as compared to those of 4T1-sbATX and parental

tumors (Figure 6A). In situ immunodetection of the Ki-67 nuclear

antigen in tumor sections did not show any difference in the

proliferation of 4T1-siATX and control cells (Figure 6B). Alto-

gether, these results indicated that endogenous expression of

autotaxin controlled bone metastasis formation but not the growth

of 4T1 cells in vivo.

In order to analyze the capacity of endogenous autotaxin to support

the formation of spontaneous metastases by 4T1 cells in vivo, cells were

injected into the mammary fat pad of female BALB/C mice. Primary

tumors were grown for two weeks, at which time they were resected,

allowing the emergence of spontaneous metastases. Three weeks after

the resection of primary tumors, animals were sacrificed. Lungs were

collected, fixed and embedded into paraffin. Lung tissue sections were

examined under a microscope for the presence of metastatic foci. We

found that mice inoculated with 4T1-siATX cells had a significantly

lower number of lung metastases (80% reduction) as compared to mice

inoculated with 4T1 parental cells (Figure 6C).

Altogether, these data indicated that the expression of

endogenous autotaxin controlled the capacity of 4T1 breast

cancer cells to metastasize and to induce the formation of

osteolytic bone metastases independently of cell proliferation.

Expression of autotaxin mRNA in primary tumors of
patients with breast cancers

We then asked whether the effects of autotaxin expression

observed in mouse preclinical models of breast cancers could

correlate with the human disease. We analyzed the expression of

the autotaxin expressing gene (ENNP2) by real time quantitative

PCR in a series of 167 breast tumor biopsies from patients without

(n = 145) or with (n = 22) identified metastases at the time of

diagnosis. We observed that the expression of ENPP2 normalized

to the genes encoding ribosomal protein L32 (L32) or TATA-box

binding protein (TBP, data not shown), was not significantly

modified in patients with bone or soft tissue metastases at the time

of diagnosis, as compared with non-metastatic patients (Figure 7).

We also found similar levels of ENPP2 mRNA in primary tumors

of non-metastatic patients that had developed bone or soft tissue

metastases over a five-year period (Figure 7). Then, we

investigated the expression of ENPP2 in relation to the clinical,

pathological and biological characteristics, as defined in Table 1.

We found that even if the absolute median values of ENPP2

transcript levels were consistently increased together with the

characteristics of poor prognostics, the differences did not reach

statistically significance. This indicated that the expression of

ENPP2 in primary tumors of breast cancer patients was

independent of the tumor size, grade, node, estrogen receptor

(ER) and progesterone receptor (PgR) status (Table 1).

LPA controls directly osteoclast differentiation
We showed previously that LPA increases the potency of tumor

cells to induce the differentiation of osteoclasts in vitro and their

recruitment in vivo at the bone metastatic site [4]. In vitro,

conditioned media collected from MDA-B02-ATX clones signif-

icantly enhanced the differentiation of mature osteoclasts from

bone marrow cell precursors, as compared to conditioned media

prepared from parental cells or MDA-B02-NPP1 clones

(Figure 8A). Moreover, recombinant autotaxin increased signifi-

cantly M-CSF/RANK-L-induced osteoclast differentiation in vitro

(Figure 8B). To determine whether the effect of autotaxin was due

to its lysoPLD activity, we used a b-substituted analogue of LPA

Figure 3. Effect of forced expression of autotaxin in vivo on MDA-B02 cells increased the formation osteoclasts at the bone
metastatic site. (Upper left panels) Representative immunohistological examination of proximal tibia sections from metastatic animals 29 days after
tumor cell inoculation, using the anti-ATX antibody 4F1. T indicates tumor cells. (Lower left panels) Representative histological examination of TRAP-
stained proximal tibia sections from metastatic animals. T indicates tumor cells. Bone is stained in dark blue and osteoclats are stained in red (arrows).
(Right panel) Quantification of active-osteoclast resorption surface per trabecular bone surface (Oc.S/BS). Results are the mean 6 SE of 8–9 animals
per group. *: P,0.05. Scale bars: 200 mm.
doi:10.1371/journal.pone.0009741.g003
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Figure 4. Characterization of silencing autotaxin expression in mouse breast carcinoma 4T1 cells. (A) RT-PCR amplification products for
LPA receptors, LPA1 (1), LPA2 (2), LPA3 (3), LPA4 (4), LPA5 (5), GPR87, P2Y5, and autotaxin (ATX) from 4T1 cells total RNAs were analyzed on a 2%
agarose gel. MW, molecular weight marker. (B) Cell invasion was stimulated with increased LPA concentrations used as chemoattractant. Results are
the mean 6 SD of cells of 3 replicates and are representative of at least 3 independent experiments. Data are expressed as the number of cells/mm2.
(C) Autotaxin expression in 3 clones of 4T1 cells transfected with a pStrike vector coding for either irrelevant small hairpin RNAi (sbATX, clones no. 14,
no. 16, no. 20) or specific small hairpin RNAi (siATX, clones no. 1, no. 17, no. 52). (Upper panel) Immunoblotting using anti-ATX polyclonal antibody
or anti-?tubulin as loading control. (Lower panel) lysoPLD activity (pmol LPA/ml) measured in cell culture conditioned media. (D) Cell proliferation
assessed by BrdU incorporation of 4T1 cells and a pool of three 4T1-sbATX clones (no. 14, no. 16, no. 20) or three 4T1-siATX clones (no. 1, no. 17,
no. 52), in response to increased concentrations of LPC. Results are expressed in mean 6 SD of 6 replicates and are representative of 3 separates
experiments. (E) Invasion assay. Cells were placed in presence or absence of LPA (0.1–1 mM) in the upper chamber and FBS, used as chemoattractant,
was placed in the lower chamber. Results are the mean 6 SD of 3 replicates and are representative of at least 3 independent experiments. Data are
expressed as the number of cells/mm2. *, P,0.05.
doi:10.1371/journal.pone.0009741.g004
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(vpc8a202) described as a specific inhibitor [30]. We observed that

vpc8a202 inhibited the autotaxin-dependent increased osteoclas-

togenesis from bone marrow cells treated with M-CSF and

RANK-L (Figure 8B). We showed previously that LPA controls

indirectly breast cancer cell-induction of osteoclastogenesis

through the secretion of pro-osteoclastic cytokines, IL-6 and IL-

8, by tumor cells [4]. Serum is required for full osteoclast

differentiation upon stimulation osteoclast precursors with M-

CSF/RANK-L in vitro [31]. Serum contains high amounts of both

LPA and LPC [32]. Therefore, our results suggested that LPA

generated by autotaxin in the presence of serum might control

directly osteoclast differentiation. To test this hypothesis, we

treated fetal bovine serum with activated charcoal in order to

remove all lipid fractions. We observed that lipid-depleted serum

was not able to support osteoclastogenesis induced by M-CSF/

RANK-L (Figure 8C). This inhibitory effect of lipid-depleted

serum was rescued by the addition of purified LPA in the culture

media (Figure 8C). This result indicated that LPA was required for

serum/M-CSF/RANK-L induced osteoclastogenesis.

Discussion

In this study we demonstrated that expression of autotaxin

controlled the progression of osteolytic bone metastases induced by

breast cancer cells. We showed previously that lysophosphatidic

acid (LPA) produced in the tumor microenvironment controls the

progression of osteolytic bone metastases of breast cancer cells and

highlighted the important role of blood platelets in this process [4].

However, the molecular mechanisms involved in the production of

LPA and the direct role of LPA on bone cells at the bone

metastatic site are still unknown. Knockout animal analyses

revealed that autotaxin controls the levels of LPA in the blood

Figure 5. Effect of silencing autotaxin expression on osteolytic bone metastasis formation of 4T1 cells. (A) (Left panels) Representative
radiographs of hind limbs from BALB/C mice 14 days after intracardiac injection of 4T1 parental cells or pools of 4T1-sbATX clones (no. 14, no. 16,
no. 20) or 4T1-siATX clones (no. 1, no. 17, no. 52). Osteolytic lesions are indicated by arrows. (Right panel) Quantification of osteolytic lesion areas.
Values are expressed as the % of lesion areas compared to parental 4T1 cells. Data correspond to the mean 6 SE of two independent experiments of
8 to 10 animals per group. *, P,0.05. (B) (Left upper panels) Representative immunohistological examination of proximal tibia sections from
metastatic animals 14 days after tumor cell inoculation, using the anti-ATX antibody 4F1. T indicates tumor cells. (Lower left panels) Representative
histological examination of TRAP-stained proximal tibia sections from metastatic animals. T indicates tumor cells. Bone is stained in dark blue and
osteoclats are stained in red (arrows). (Right panel) Quantification of active-osteoclast resorption surface per trabecular bone surface (Oc.S/BS).
Results are the mean 6 SE of 8-10 animals per group. *: P,0.05. Scale bars: 200 mm.
doi:10.1371/journal.pone.0009741.g005
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circulation [8,9]. Forced expression of autotaxin in human breast

cancer MDA-B02 cells increased the formation of osteolytic bone

metastases in mice, whereas knockdown expression of endogenous

autotaxin in mouse mammary tumor 4T1 cells decreased the

extent of osteolytic lesions. It is known for two decades that

platelets are an abundant source of LPA in the serum [33,34].

Figure 6. Effect of autotaxin expression in orthotopic primary tumor growth and spontaneously metastasis dissemination of
mouse 4T1 cells. 4T1 parental cells, 4T1-sbATX clones and 4T1-siATX clones were injected in the mammary gland of normal syngenic female BALB/
C mice. At day 14, primary tumors were resected, and weighed. (A) Box plots represent tumor weight (in mg). (B) Primary tumors were embedded in
paraffin. Tumor tissue sections were analysed by mmunohistochemistry using a specific antibody directed against the nuclear ki-67 antigen. The
mitotic index (numbers in each panel) was calculated as the percentage of nuclei positive for ki-67 (results are the mean 6 SD, scale bar: 50 mm). (C)
Animals were sacrificed 35 days after tumor cell injection and lungs were collected to quantify spontaneously metastasis formation of 4T1 cells.
(Upper panels) representative photographs of lung tissue sections stained with eosin. (Lower panel) Quantification of lung metastasis foci. The
number of metastatic foci was enumerated under microscope. P,0,05. T indicates metastatic foci. Scale bar: 200 mm.
doi:10.1371/journal.pone.0009741.g006
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However, Aoki’s group demonstrated that LPA released directly

by platelets represents only a small part of serum LPA [32].

Platelet-derived LPA is produced mainly through the action of

plasma lysophospholipase D (e.g. autotaxin) on LPA precursors

(LPC, lysophosphatidylethanolamine, and lysophosphatidylserine)

released by activated platelets [32]. Therefore, in the context of

osteolytic bone metastasis progression, the procoagulant activity of

breast cancer cells is likely to induce the release of both LPA and

LPA precursors upon platelet aggregation. In agreement with a

local transformation of LPA precursors into LPA by tumor cell-

derived autotaxin that subsequently would act as a paracine/

autocrine factor, we found increased tumor burden and osteoclast-

mediated bone resorption in animals bearing autotaxin-expressing

tumors.

Expression of ENPP2 was detected among the set of genes that

are specifically upregulated in rat bone tissue under permanent

infusion with PTH(1–34) fragment [35]. Continuous exposure to

PTH increases bone resorption, hypercalcemia and bone loss [36].

It is tempting to hypothesize that autotaxin would be involved in

the control of osteoclast activity and bone resorption. The number

of osteoclasts was specifically increased at the interface between

tumors and bone in metastatic mice bearing autotaxin-expressing

tumors. This could be due to an indirect action of autotaxin via an

autocrine/LPA-dependant activation of tumor cells and the

release of pro-osteoclastic factors [4,5]. However, we observed

that incubation of bone marrow cells in vitro with autotaxin-

containing tumor cell conditioned media or recombinant auto-

taxin enhanced M-CSF/RANK-L induced differentiation of

mature osteoclasts, indicating that through its lysoPLD activity

autotaxin might also control directly osteoclastogenesis. Bone cells

were shown to be activated by LPA [37]. LPA has a mitogenic and

chemotatic activity on osteoblasts and induces dentritic outgrowth

of osteocytes [38,39,40]. LPA was also shown to cooperate with

1alpha, 25(OH)Vitamin D to stimulate osteoblastic cell activities

[41]. Here, we found that LPA present in the serum was required

to form mature osteoclasts in vitro from bone marrow cell

precursors. Therefore, in addition to a role on tumor growth,

both at primary and bone metastatic sites, LPA might also control

the progression of osteolytic bone metastases through a direct

action on bone cells (Figure 9).

Human MDA-B02 cells used in our study do not express

autotaxin at steady state, indicating that expression of autotaxin

was not involved in the tropism of breast cancer cells to the bone

tissue. This might explain why expression of autotaxin gene

(ENPP2) was not identified among the set of genes that defined the

gene signature of bone-seeking breast cancer cells [42,43].

However, expression of autotaxin both in human and mouse

breast cancer cells controlled the progression of osteolytic lesions,

once located in the bone tissue. Bone metastasis is the site of

complex cross-interactions occurring between tumor cells and the

bone microenvironment. Genes encoding for parathyroid hor-

mone related protein (PTHrP), cyclo-oxygenase 2 (Cox2) and

osteomimetic factors by tumor cells do not belong to the gene

signature of bone-seeking breast cancer cells, but are known to

play active roles during the progression of bone metastases

[44,45,46]. Our results strongly suggest that autotaxin belongs to

these additional factors that control the expansion of osteolytic

bone metastases in breast cancers.

Taghavi and collaborators observed that LPA receptors are

conditionally tumorigenic in mice [47]. A recent study showed

that transgenic overexpression of autotaxin or LPA1-3 receptors

in the mouse mammary gland is sufficient to initiate breast

cancers in mice, demonstrating that activation of the autotaxin/

LPA track induces carcinogenesis [25]. This confirms previous

reports indicating that expression of autotaxin is increased in

tumors compared to normal tissues of origin [26]. However, the

role of the autotaxin/LPA axis during the progression of breast

cancers in human is not well characterized yet. Increased

expression of LPA2 and LPA3 receptors correlates with late

stages of ovarian cancers, whereas expression of LPA1 receptor

links to the inhibition of the progression of ovarian tumors.

Specific variation of LPA receptor expression was not found in

DNA microarray databases of different stages and grades of

breast cancers, suggesting that LPA receptors are more prone to

control primary tumor progression of ovarian tumors than breast

cancers [48]. We found that the autotaxin transcript levels in

primary tumors of breast cancer patients was an independent

factor from the tumor size, grade, metastasis, node, ER and PgR

status. This suggested that autotaxin expression would not be

predictive for both the progression and metastatic dissemination

of breast cancer tumors.

In conclusion, in addition to the predominant role of autotaxin/

LPA track in the carcinogenesis of breast cancers our results

demonstrated that activation of autotaxin/LPA axis in breast

cancer cells controlled the progression of osteolytic bone

metastases by stimulating directly both cancer cells and osteoclasts.

Osteophylic cancers such as breast, thyroid, prostate and lung

cancers, share many common mechanisms during the progression

of bone metastases [2]. In addition, expressions of autotaxin and

LPA receptors are detected in these types of cancers [21,23,49].

Altogether, our results suggested that targeting autotaxin/LPA

track might contribute to the development of new therapies to

improve the care of patients with osteophylic solid tumors.

Figure 7. Expression of autotaxin mRNA in primary tumors of
breast cancer patients. Total RNA were extracted from primary
breast tumor biopsies of patients without or with metastases at the
time of diagnosis. Soft and Bone represent subsets of metastatic
patients with soft tissue only and bone metastases, respectively. W/O
Rec represent a subset of non metastatic patients with no recurrence of
metastasis during a five year period. Soft Rec and Bone Rec represent
subsets of patients with recurrence of metastases to soft tissue only and
to bone over a five year period, respectively. n indicates the numbers of
patients in each group. Expression of Enpp2/ATX mRNA was measured
by real-time quantitative by real time PCR. Quantifications were
normalized to corresponding L32 RNA values. Data are given as box
plots with the median. The box encompasses the 25th to 75th

percentiles. The 5th percentiles are displayed as error bars.
doi:10.1371/journal.pone.0009741.g007

Autotaxin and Bone Metastases

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9741



Materials and Methods

Ethics statement
The mice used in our study were handled according to the rules

of Décret Nu 87–848 du 19/10/1987, Paris. The experimental

protocol have been reviewed and approved by the Institutional

Animal Care and Use Committee of the Université Claude

Bernard Lyon-1 (Lyon, France). Studies were routinely inspected

by the attending veterinarian to ensure continued compliance with

the proposed protocols. BALB/C and BALB/C nude mice, 4

weeks of age, were housed under barrier conditions in laminar

flow isolated hoods. Autoclaved water and mouse chow were

provided ad libitum. Animals bearing tumor xenografts were

carefully monitored for established signs of distress and discomfort

and were humanely euthanized when these were confirmed.

Studies involving human primary breast tumors were performed

according to the principles embodied in the Declaration of

Helsinki. Tissue biopsies were obtained as part of surgical

treatments for the hormone receptor content determination.

Remaining samples were included anonymously in this study.

All human experiments were approved by the Experimental

Review Board from the Laennec School of Medicine that waived

the need for consent.

Drugs and reagents
Lysophosphatidic acid (LPA, Oleoyl C18:1) and lysophos-

phatidylcholine (LPC) were obtained from Avanti Polar Lipids.

Activated charcoal was obtained from VWR international. The

competitive inhibitor of LPA signaling pathways dependent on

LPA1 and LPA3 receptors, Ki16425, was obtained from

DebiopharmGroup. Vpc8a202 was kindly provided by Pr.

K.R. Lynch (University of Virginia, Charlottesville,VA)[30].

Recombinant Human autotaxin was purchased from R&D

System.

Cell lines and transfection
Cell lines (MDA-B02 and 4T1) and transfectants were cultured in

complete media, DMEM medium (Invitrogen), 10% (v/v) fetal bovine

serum (FBS, Perbio) and 1% penicillin/streptomycin (Invitrogen), at

37uC in a 5% CO2 incubator. Human MDA-MB-231 and mouse 4T1

breast cancer cell lines were obtained from the American Type Culture

Collection. Characteristics of MDA-MB-231/B02 (MDA-B02) breast

cancer cells were described elsewhere [50]. The cDNA encoding the

rat autotaxin and mice NPP1 were amplified by PCR using the

plasmid HA-RnNPP2-Myc and HA-NPP1-Myc as a template and 2

oligonucleotide primers (59-GCAGAGCTGGTTTAGTGAAC-39

and 59-CCTCTACAAATGTGGTATATGGC-39). The bidirection-

al vectors pBiL/ATX and pBiL/NPP1 were constructed by inserting

into the pBiL plasmid (Clonetech) the NotI/NheI PCR fragment

encoding the autotaxin and NPP1 sequence, respectively. MDA-MB-

231/B02-tet-Off cells were cotransfected with pBiL/ATX or pBiL/

NPP1 together with a vector conferring puromycin resistance (pPur;

Clontech). Selection of the clones was obtained after growing the cells

for 2 weeks in the presence of puromycin (2 mg/mL). Luciferase

induction was used to select clones among stable transfectants. Two

autotaxin transfectants (clones no. 30 and 38) and two NPP1

transfectants (clones no. 10.5 and 41) were used in the present study.

We designed small hairpin RNAs (SiRNA) and corresponding

SbRNA sequences directed to autotaxin mRNA target sites based

on the mouse sequence (GenBank accession NM_015744) using

the SIRNA TARGET DESIGNER (Promega). Pairwise oligonu-

cleotides for mouse siRNA-ATX 59-ACCGCCATCGGCGT-

CAATCTCTAAGTTCTCTAGAGATTGACGCCGATGGCT-

TTTTCC-39, 59-TGCAGAAAAAGCCATCGGCGTCAATCT-

CTAGAGAACTTAGAGATTGATTGACGCCGATGG-39 (target

nucleotide site: 97–115) as well as control oligonucleotides with

scrambled sequences (sbl-ATX) were cloned into psiSTRIKE

puromycin vector containing the U6 promoter (Promega).

Plasmids were transfected into 4T1 cells using the Transfast

Table 1. Distribution of ATX mRNA in different subsets of cases defined by classical prognostic parameters in primary tumors of
metastastic patients with bone metastases and of non metastatic patients without metastasis recurrence.

Patients with bone metastases Patients without metastasis recurrence

n = 14 n = 93

n Median p* n Median p*

Menopausal status pre
post

2
12

10.44
10.36 0.715

60
33

10.88
11.69 0.585

Surgical tumor size pT1
$ pT2

3
9

9.88
13.43

35
55

11.30
10.88 0.750

Histological type ductal
lobular

12
1

10.36
8.15 0.285

77
13

11.30
12.19 0.823

Histological grade** GI
GII
GIII

1
6
5

6.01
14.18
10.08 0.248

11
39
20

8.46
10.87
14.24 0.394

Node status pN0
pN+

0
11 10.079

38
55

10.87
11.95 0.160

ER status Positive
Negative

9
4

9.78
12.78 0.123

83
10

11.00
13.03 0.535

PgR status Positive
Negative

7
6

9.72
12.03 0.063

74
19

10.90
14.76 0.429

Data are expressed as the median of ATX/L32 mRNA ratio.
*p values were obtained using the non parametric Mann & Whitney test.
**in ductal carcinomas only and p values were obtained using the non parametric Kruskall-Wallis test.
doi:10.1371/journal.pone.0009741.t001

Autotaxin and Bone Metastases

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9741



Figure 8. Effect of lysoPLD activity of autotaxin on osteoclastogenesis. (A) Bone marrow cells were cultured in presence of FBS (10%),
mouse M-CSF, RANK-L and MDA-B02 cell or MDA-B02-ATX clone #30 or MDA-B02-NPP1 clone #10.5 conditioned media. (B) Bone marrow cells were
cultured in presence of FBS (10%), mouse M-CSF, RANK-L and recombinant ATX, in absence (-) or presence of increasing concentrations of ATX
inhibitor, vpc8a202. (C) Bone marrow cells were cultured in presence of mouse M-CSF, RANK-L and FBS (Control) or lipid-depleted FBS (Dep. FBS) in
absence or presence of 1-Oleoyl-LPA (1 mM). (Left panels) Representative images of multinucleated cells stained for the TRAP activity. (Right panels)
Quantification of osteoclast number was based on the multinucleation of TRAP-positive cells. Results are the mean 6 SD of 3 separate experiments. *:
P,0.05. Scale bars: 200 mm.
doi:10.1371/journal.pone.0009741.g008
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reagent (Promega). Cells were cultured for 2 weeks in presence of

puromycin (2 mg/mL) and 4T1-siATX and 4T1-sbl clones were

isolated using cloning cylinders. Autotaxin expression was assessed

by western-blotting and measure of lyso-PLD activity. Three

4T1SiRNA-ATX stable transfectants (clones no. 1, 17 and 52) and

three 4T1SblRNA-ATX stable transfectants (clones no. 14, 16

and 20) were used in the present study.

Reverse transcription and polymerase chain reaction (RT-
PCR)

Total RNA from 4T1 cells were extracted using Nucleospin RNAII

kit (Macherey-Nagel) and cDNA were synthesized using iScript cDNA

Synthesis kit (Biorad). PCR reactions were run using SYBRH Green

qPCR kit and sets of specific primers, LPA1-F (59-ATCTTTGGC-

TATGTTCGCCA-39) and LPA1-R (59-TTGCTGTGAACTC-

CAGCCA-39) for LPA1; LPA2-F (59-GTCAAGACGGTTGTCAT-

CATTCT-39) and LPA2-R (59-GAAGCATGATCCGCGTGCT-39)

for LPA2; LPA3-F (59-GAAGCATGATCCGCGTGCT-39) and

LPA3-R (59-TCATGATGGACATGTGTGTTTGC-39) for LPA3;

LPA4-F (59- GCATTGTTGACATTAGTGGTGGA -39) and LPA4-

R (59- AACCTGGCCCTCTCTGATTT-39) for LPA4; LPA5-F (59-

CCGTACATGTTCATCTGGAAGAT-39) and LPA5-R (59-CA-

GACTAATTTCTCTTCCCACCT-39) for LPA5; GPR87-F (59-CA-

GACTAATTTCTCTTCCCACCT-39) and GPR87-R (59-GGGG-

ATTCTGCACAAGTGAT-39) for GPR87; P2Y5-F (59-GAGCAG-

TCCCAGTGGCTTAG-39) and P2Y5-R (59-TGTTTCCAACTG-

CTGCTTTG-39) for P2Y5; ATX-F (59-GCCCTGATGTCCGTG-

TATCT-39) and ATX-R (59-CGTTTGAAGGCAGGGTACAT-39)

for autotaxin. Complementary DNAs were amplified by PCR for 35

cycles and PCR products were analyzed by electrophoresis on a 2%

agarose gel stained with ethidium bromide. Expression of Enpp2/

ATX mRNA was quantified by real-time quantitative RT-PCR on an

Eppendorf MastercyclerH RealPlex (Invitrogen) using the SYBRH
Green PCR kit (Finnzymes). Quantifications were normalized to

corresponding RNA L32 and TBP values. The cDNAs were amplified

by PCR for 35 cycles with the following specific PCR primers: human

ATX, 59- ACAACGAGGAGAGCTGCAAT-39 (forward) and 59- A-

GAAGTCCAGGCTGGTGAGA-39 (reverse); Human L32, 59- CA-

AGGAGCTGGAAGTGCTGC-39 (forward) and 59- CAGCTCT-

TTCCACGATGGC-39 (reverse); Human TBP, 59-TGGTGTGCA-

CAGGAGCAAG-39 (forward) and 59-TTCACATCACAGCTCCC-

CAC-39 (reverse). Each cycle consisted of 10 s of denaturation at 95uC,

15 s of annealing at 67uC, and 10 s of extension at 72uC.

Quantification of lysophosphilipase D (lysoPLD) and
phosphodiesterase (PDE) activities

lysoPLD activity was measured by conversion of radiolabeled

LPC into radiolabeled LPA as described previously [51]. Briefly,

a solution of [14C]palmitoyl-lysophosphatidylcholine at

0.0025 mCi/mL in DMEM supplemented with 1% free acid

BSA was first prepared, and 20 ml of this solution was incubated

with 500 ml of thawed CM plus 1 ml of sodium orthovanadate for

90 min at 37uC. At the end of the incubation period,

phospholipids were extracted with 500 ml of 1-butanol, evapo-

rated, spotted on a silica gel 60 TLC glass plate, and separated

using CHCl3/MeOH/NH4OH (60:35:8) as the migration

solvent. The plate was autoradiographed overnight at 280uC
using Biomax-MS film (Kodak) to localize radiolabeled LPA

spots, which were scraped and counted with 3 mL of scintillation

mixture. Nucleotide phosphodiesterase activities were deter-

mined from the release of p-nitrophenolate from p-nitrophenyl

thymidine 59-monophosphate. Briefly, the samples were incu-

bated at 37uC with 5 mM of the substrate, 5 mM CaCl2, 5 mM

MgCl2 and 100 mM Tris/HCl at pH 9.0 in a total volume of

35 mL. The reaction was stopped by the addition of 200 mL of 3%

(v/v) trichloroacetic acid. Subsequently, the mixture was

neutralized with NaOH and p-nitrophenolate was quantified

colorimetrically at 405 nm.

Western-blot analysis
Cells were cultured in 5 ml DMEM without FBS for one day.

Conditioned culture media were concentrated to 60 ml using

Centicon-Y30 (Millipore). Cell lysates were prepared from cells

cultured in complete medium. Protein were electrophoresed on a

7% SDS polyacrylamide gel and transferred onto an Immobilon

transfer membrane (Millipore). Membranes were incubated with

5% low fat-milk and 0.1% Triton X-100, pH 7.4 in PBS for one

hour at room temperature followed by an overnight incubation

with anti-ATX antibody (Cayman) or with anti-a-tubulin antibody

(Sigma Aldrich). Autotaxin and a-tubulin were visualized using

horseradish-peroxidase-donkey anti-rabbit IgG or anti-mouse IgG

(Amersham) and enhanced chemiluminenscence (Amersham). For

detection of HA-NPP1-myc, non-specific binding sites were

blocked with 3% bovine serum albumin (Serva) and 0.1%

Tween-20 in PBS. Following overnight incubation with anti-

Myc (clone 9E10) monoclonal anibodies, HANPP1myc was

visualized using horseradish-peroxidase-goat anti-mouse IgG

(Dako) and enhanced chemiluminesence (Perkin Elmer).

Figure 9. Schematic representation of LPA/autotaxin effects on
the progression of osteolytic bone metastases. Bone-residing
breast cancer cells (1) induce platelet (2) aggregation and the release of
LPA and LPA precursors (LPC) from activated platelets. Platelet-derived
LPA and LPA-derived from autotaxin (ATX) lysoPLD activity secreted by
cancer cells can act on tumor cells to stimulate both tumor growth and
the production of IL-6 and IL-8, which in turn induce the expression of
RANK-L by osteoblasts (3) that stimulate osteoclast precursors (4)
differentiation and osteoclast-mediated bone resorption. Platelet-
derived LPA and LPA derived from ATX activity can act directly on
osteoblasts to stimulate migration and proliferation, and on osteoclast
precursors to stimulate osteoclastogenesis. Doted arrows indicate
unknown origin.
doi:10.1371/journal.pone.0009741.g009
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Cell proliferation assay
Experiments were carried out in conditions described previously

[23]. Briefly, MDA-B02 cells (86103) and 4T1 cells (2.56103) were

seeded in 48-well and 96-well plates, respectively, and cultured in

complete medium for 24 h. Then, cells were synchronized in the

presence of serum-free medium for 24 h. Then, cell proliferation

was evaluated following BrdU incorporation for 7 h and the use of

the cell proliferation ELISA kit (Roche).

Cell Invasion assay
Invasion assays were carried out using Bio-Coat migration

chambers (Becton Dickinson) with 8 mm filters previously coated

with Matrigel as described previously [52]. MDA-B02 cells

(56104) or 4T1 cells (2.105) were plated in the upper chambers

and and the chemoattractant (10% FBS) in the lower chambers.

After incubation for 24 h at 37uC in 5% CO2 incubator, cells that

had migrated through the filters were fixed and stained. The

membranes were mounted on glass slides, and cells from 10

random microscopic fields (x400 magnification) were counted. All

experiments were run in duplicate, and invasion was expressed in

terms of cells/mm2.

Patients and tumor characteristics
Patients were selected according to the following criteria:

primary breast tumor without inflammatory feature, no previous

treatment. Patients tumors were provide by three medical centers

(Centre Hospitalier Régional Annecy, Chirurgie Oncologique

Centre Hospitalier Universitaire Lyon-Sud, and Clinique Mutua-

liste Saint Etienne, France) in which patients were included

between October 1994 and October 2001. Two groups of patients

were defined according to identified metastases at the time of

diagnosis (n = 22) or no identified metastases (n = 145). Breast

cancer tissue biopsies were obtained by surgery, selected by the

pathologist and immediately stored in liquid nitrogen until

processing. The biopsies were pulverized using a ‘‘Mikro-

Dismembrator’’ (B. Braun Biotech International, Melsungen,

Germany) and total RNAs were extracted using TRI Reagent

(Sigma, St Louis, MO). To remove any genomic DNA

contamination, total RNAs were treated with RNAse-free DNAse

I and purified using RNeasy micro columns (Qiagen, Hilden,

Germany). RNAs quality was verified using an Agilent Bioanalyser

2100 (Agilent Technologies, Santa Clara, CA).

Animal studies
Bone metastasis experiments using MDA-B02 cells and

transfectants were performed in female BALB/C nude mice of 4

weeks of age as previously described [4]. Cells were suspended at a

density of 56105 cells in 100 ml of PBS and inoculated

intravenously into animals. Bone metastasis experiments using

4T1 cells and transfectants were performed using female BALB/

cByJ mice of 6 weeks of age. Cells were suspended at a density of

105 cells in 100 ml of PBS and administered to the animals by

intracardiac injection. Radiographs (LifeRay HM Plus, Ferrania)

of animals were taken at day 28 and 14 after inoculation with

MDA-B02 cells and 4T1cells, respectively, using a cabinet X-ray

system (MX-20; Faxitron X-ray Corporation). Then, animals were

sacrificed by cervical dislocation and metastatic hind limbs were

collected for histology and histomorphometric analyzes. Areas of

osteolytic lesions were measured using the computerized image

analysis system MorphoExpert (Exploranova). The extent of bone

destruction for each animal was expressed in mm2.

Tumor fad pad experiments were performed using 4T1 parental

cells or pools of 3 independent clones of 4T1-siRNA-ATX or 4T1-

sblRNA-ATX cells (105 in 10 ml of PBS) injected into the fat pad

of the 4th mammary gland of female BALB/C mice of 6 weeks of

age (Charles River). Tumor weights were determined 14 days after

inoculation. For spontaneous metastasis dissemination studies 14

days after tumor cell injection, animals were anesthetized and

primary tumors were surgically removed. Mice were then followed

for an additional 3-week observation at which time they were

sacrificed and lungs collected for histological analysis.

Bone histomorphometry and histology
Hind limbs from animals were fixed, decalcified with 16% EDTA

and embedded in paraffin. Five-mm tissue sections were stained with

Goldner’s Trichrome and proceeded for histomorphometric

analyzes to calculate the BV/TV ratio (percentage of bone tissue)

and the TumV/TV ratio (percentage of tumor tissue). The in situ

detection of osteoclasts was carried out on metastatic bone tissue

sections using the tartrate-resistant acid phosphatase (TRAP)

activity kit assay (Sigma). The resorption surface (Oc.S/BS) was

calculated as the ratio of TRAP-positive trabecular bone surface

(Os.S) to the total trabecular bone surface (BS) using the

computerized image analysis system MorphoExpert (Exploranova).

Immunohistochemistry
Resected primary tumors and metastatic hind limbs were fixed

and embedded in paraffin. Five mm sections were subjected to

immunohistochemistry using a rat anti-mouse Ki67 monoclonal

antibody that specifically recognizes proliferative cells (DakoCy-

tomation) and a rat anti-ATX monoclonal antibody (clone 4F1).

Sections were de-paraffinized in methylcyclohexan, hydrated

through a graded series of ethanol, then immersed in a peroxidase

blocking reagent (DakoCytomation) 5 min. Sections were incu-

bated with normal goat serum for 30 min and incubated overnight

at 4uC in humid chambers with primary antibody to Ki67

(dilution1:25) and to ATX (dilution 1:200). The slides were

incubated with biotinylated polyclonal rabbit anti-rat immuno-

globulin (DakoCytomation) for 45 min. After washing, the slides

were treated with peroxidase conjugated streptavidin (DakoCyto-

mation) for 45 min and developed by addition of a solution of

3,39-diaminobenzidine tetrahydrochloride (DakoCytomation).

Light counterstaining was performed with Mayer’s hematoxylin.

The number of nuclei immunostained for Ki-67 was counted

under a microscope. The mitotic index was calculated as the ratio

of the number of Ki-67 positive nuclei to the total nucleus number

per field and expressed as the percentage of Ki-67-positive nuclei.

Osteoclastogenesis assay
Bone marrow cells from hind limbs of OF1 male mice were

collected and seeded in 12-well tissue culture plates at a density of

26105 cells per well in a-MEM medium (Invitrogen) supplemented

with macrophage–CSF (R&D Systems), receptor-activated nuclear

receptor factor kB ligand (RANK-L). Culture media were then

supplemented with 10% FBS, lipid-depleted FBS or conditioned

media collected from tumor cells, in presence or absence of 1-oleoyl

LPA, recombinant autotaxin or vpc8a202. After 6 days, mature

osteoclasts were enumerated under a microscope on the basis of the

number of nuclei (more than three nuclei) and the tartrate-resistant

acid phosphatase (TRAP) activity (Sigma). Results were expressed

as the number of osteoclasts per cm2.

Statistical analysis
Data were analyzed with the Stat-View 5.0 software using

unpaired Student’s t test for in vitro and in vivo studies, and the non

parametric Mann Whitney test or Kruskall-Wallis test for the
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clinical study. P values less than 0.05 were considered statistically

significant.
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