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In this paper, a hybrid deep neural network scheduler (HDNNS) is proposed to solve job-shop scheduling problems (JSSPs). In
order to mine the state information of schedule processing, a job-shop scheduling problem is divided into several classification-
based subproblems. And a deep learning framework is used for solving these subproblems. HDNNS applies the convolution two-
dimensional transformation method (CTDT) to transform irregular scheduling information into regular features so that the
convolution operation of deep learning can be introduced into dealing with JSSP.+e simulation experiments designed for testing
HDNNS are in the context of JSSPs with different scales of machines and jobs as well as different time distributions for processing
procedures.+e results show that theMAKESPAN index of HDNNS is 9% better than that of HNN and the index is also 4% better
than that of ANN in ZLP dataset. With the same neural network structure, the training time of the HDNNS method is obviously
shorter than that of the DEEPRM method. In addition, the scheduler has an excellent generalization performance, which can
address large-scale scheduling problems with only small-scale training data.

1. Introduction

Job-shop scheduling problem (JSSP) [1] is one of the most
famous problems in the industrial production, and it is
categorized as a large class of intractable numerical problems
known as NP-hard [2]. +e solution space for an m∗ n JSSP
(wherem is the number of machines and n is the number of
jobs) is (n!)m [3].

As it will be discussed in Section 2, many scholars have
tried to solve this type of problems with population-based
methods [4], gene-based methods [5], and heuristic
methods [6]. However, in the face of large-scale problems,
the response rate of the above methods has no distinct
advantages. Many current researches show that data
mining and machine learning methods have great po-
tential in effect and efficiency [7]. In this paper, a hybrid
deep neural network scheduler (HDNNS) is put forward
to promote the scheduling capability. And convolution

two-dimensional transformation (CTDT) is developed to
convert JSSP’s state information into regular information
so that the process can be simplified in the convolutional
network.

HDNNS has contributions in the following aspects:

(i) Based on the work ofWeckman [3], Metan et al. [8],
and Paolo et al. [9], HDNNS transforms JSSP into
several classification subproblems. HDNNS’s main
innovation is the classification of the processing
sequence of each job on each machine. +e more
precise classification method makes HDNNS more
effective in the large-scale problems.

(ii) Convolution two-dimensional transformation (CTDT)
comes up in this paper. +e function of CTDT is to
convert the irregular scheduling data into regular
multidimensional data with the form of Cartesian
product. +e transformed multidimensional data can
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be effectively processed in the deep convolution
networks.

(iii) HDNNS designs a hybrid neural network com-
bining the deep convolution network [10] and the
BP neural network [11]. In the first half of the
network structure, convolution network and BP
network are used to deal with the structural features
and irregular features, respectively. After a certain
number of layers of network processing, HDNNS
merges these two networks with flattening opera-
tion for further feature extraction.

Our experimental results prove that the scheduling re-
sults of HDNNS are superior to many learning-based
methods (ANN, HNN, and reinforcement learning
methods), traditional classification methods (SVM, GOSS,
and others), and attribute-oriented induction methods
(AOI) [9] for the MAKESPAN index. HDNNS can occupy
an advantage in the JSSPs compared with population-based
methods (GA) and optimization methods (BBM). +e value
of HDNNS is not negated in the tests because GA and BBM
are time consuming in computation. Besides, unlike GA and
BBM, the HDNNS method has strong generalization per-
formance. Our experiments certificate that a model trained
by the data of small-scale JSSPs can address a large-scale one.

Although the training of the model requires extra time,
the training process can be finished in advance. When the
application environment remains stable, the model may not
even need further updates. Such characteristics can increase
the application value of the model to a certain extent. +e
training process can also be effectively accelerated by
hardware such as GPU. Also, with the appropriate hardware
(such as GPU and FPGA), the training speed will be sig-
nificantly boosted.

+e structure of this paper is as follows. In Section 2, a
part of the most related work on the solution methods for
JSSP has been reviewed along with neural network and other
approaches available in the literature. In Section 3, the
mathematical model of JSSP is proposed. In Section 4, the
framework of the HDNNS is introduced, which includes
scheduler structure, convolution two-dimensional trans-
formation, and the basis of deep neural network. In Section
5, a 6∗ 8 JSSP example is applied to explain our method. In
Section 6, six experiments are utilized to test the effectiveness
and the generalization performance of the proposedmethod.

2. Related Works

2.1. Population-Based and Gene-Based Methods for JSSP.
Over the last decades, JSSP has attracted much attention in
the academia. Hence, a wide range of approaches have been
developed for JSSP. Recently, population-based and gene-
based methods are investigated to find optimal or near-
optimal solutions.

Zhao et al. [12] proposed an improved particle swarm
optimization with a decline disturbance index to improve
the ability of particles in exploring global and local optimum
solutions and to reduce the probability of particles being
trapped into a local one. Peng et al. [13] combined a tabu

search procedure with path relinking and showed that their
method had a high performance in solving benchmark
problem instances. Asadzadeh [14] tried to improve the
efficiency of the genetic algorithm in solving JSSP by par-
allelizing populations and using an agent-based approach.
Kurdi et al. [15] presented a modified island model genetic
algorithm (IMGA) for JSSP. In this model, a nature-inspired
evolutionary method and a migration selection mechanism
have been added to the classical IMGA to improve di-
versification and delay premature convergence. Park et al.
[16] proposed a dynamic JSSP and applied genetic pro-
gramming-based hyper-heuristic methods with ensemble
combination schemes to solve it. +e investigated schemes
had majority voting, linear combination, weighted majority
voting, and weighted linear combination. It was concluded
from the experiments that for the dynamic JSSP, the linear
combination outperformed the other methods. Jiang et al.
[17] employed the grey wolf optimization (GWO) to deal
with two combinatorial optimization problems in the
manufacturing field: job-shop and flexible job-shop
scheduling cases. +e discrete GWO algorithm was com-
pared with other published algorithms for two scheduling
cases. Experimental results demonstrate that our algorithm
outperforms other algorithms for the scheduling problems
under study. Fu et al. [18] proposed a fireworks algorithm
with special strategies to solute the flow-shop scheduling
problem under the consideration of multiple objectives,
time-dependent processing time, and uncertainty. Sharma
et al. [19] developed a variant of the ABC algorithm inspired
from beer froth decay phenomenon to deal with job-shop
scheduling problems.

+ere is no doubt that population-based and gene-based
strategies are effective to solve JSSPs. However, faced with
large-scale problems, the number of repeated iterations and
updating operations often take a long time.+erefore, it is of
great value to study a learning-based scheduler with fast
response.

2.2. Learning-Based and Neural Network-Based Methods for
Solving JSSP. With the further development of machine
learning, some scholars try to solve JSSPs with learning-
based methods. In this field, researches can be divided into
two categories.

In the first category, learning methods are used to op-
timize population-based and gene-based methods. Learning
methods optimize the updates of solutions, which thus
improve the efficiency of optimization. Yang and Lu et al.
[20] proposed a hybrid dynamic preemptive and competitive
NN approach called the advanced preventive competitive
NN method. A CNN was used to classify the system con-
ditions into 50 groups. For each production interval, the
current system status group was determined by CNN. Shiue
et al. [21] extended the previous work by considering both
the input control and the dispatching rule, such as those in a
wafer fabrication manufacturing environment. In a novel
recent work by Mirshekarian and Sormaz [22], a statistical
study of the relationship between JSSP feature and optimal
MAKESPAN was conducted. Ramanan et al. [23] proposed
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an artificial neural network-based heuristic method. +is
method utilized ANN to generate a solution of JSSP and then
took it as the initial sequence to a heuristic proposed by
Suliman. Adibi et al. [24] used a trained artificial neural
network (ANN) to update parameters of a metaheuristic
method at any rescheduling point in a dynamic JSSP
according to the problem condition. Maroosi et al. [25]
proposed an approach which utilizes the parallel membrane
computing method and the harmony search method to solve
flexible job shop problems. Information from the best so-
lutions was used to boost the speed of convergence while
preventing premature convergence to a local minimum.

In the second category, a reinforcement learning or
machine learning framework is applied to build a learning-
based model (ANN [11], SVM [26], CNN [27], or others).
+en, the model is trained to master scheduling rules and
complete automatic scheduling tasks. Weckman et al. [3]
developed a neural network (NN) scheduler for JSSP in
which the genetic algorithm was used to generate optimal or
near-optimal solutions for a benchmark problem instance,
and then, an NN was used to capture the predictive
knowledge regarding the sequence of operations. Chen et al.
[28] proposed a rule-driven dispatching method based on
data envelopment analysis and reinforcement learning for
the multiobjective scheduling problem. Mao et al. [29]
presented the deep reinforcement learning method
(DEEPRM) and translated the problem of packing tasks with
multiple resource demands into a learning problem. +is
solution has an essential inspiration for solving the JSSP.
Moreover, the initial results show that DEEPRM performs
comparably to state-of-the-art heuristics, adapts to different
conditions, converges quickly, and learns strategies that are
sensible in hindsight. Shahrabi et al. [30] proposed a re-
inforcement learning (RL) with a Q-factor algorithm to
enhance the performance of the scheduling method pro-
posed for dynamic JSSP which considered random job ar-
rivals and machine breakdowns. Nasiri et al. [31] used
discrete event simulation andmultilayer perceptron artificial
neural network to solve the open-shop scheduling problem.
Mohammad et al. [9] proposed a data mining-based ap-
proach to generate an improved initial population for
population-based heuristics solving the JSSP. +is method
applied a combination of “attribute-oriented induction” and
“association rule mining” techniques to extract the rules
behind the optimal or near-optimal schedules of JSSP. Fi-
nally, their experiments verify the significant amount of FEs
that can be saved using the proposed approach and the
superiority of the proposed method in comparison with the
method of Koonce and Tsai [32].

According to the retrospective literature, none of the
previous studies directly applied deep learning frameworks
to JSSP. +is paper creates a convolution two-dimensional
transformation and designs network structure to solve
JSSP.

3. Mixed Integer Programming Model of JSSP

Job-shop scheduling problem (JSSP) can be described as a
mixed integer programming problem.

+e mathematical description is [33]

min: Cmax, (1)

s.t.: 􏽘
j∈J

xijk � 1, ∀i ∈M, k ∈ 1, · · · , n{ },

(2)

􏽘
k�1

n

xijk � 1, ∀j ∈ J, i ∈M, (3)

hik + 􏽘
j∈J

pijxijk ≤ hi,k+1, ∀i ∈M, k ∈ 1, · · · , n{ }, (4)

􏽘
i∈M

rijlhik + 􏽘
i∈M

rijlpil ≤V · 1− 􏽘
i∈M

rijlxijk
⎛⎝ ⎞⎠

+ V · 1− 􏽘
i∈M

rij,l+1xijk′
⎛⎝ ⎞⎠ + 􏽘

i∈M
rij,l+1hik′

⎛⎝ ⎞⎠,

∀j ∈ J, i ∈M, k, k′ ∈ 1, · · · , n{ }, l ∈ 1, 2, · · · , m− 1,

(5)

hin + 􏽘
i∈J

pijxijk ≤Cmax, ∀i ∈M, (6)

hik ≥ 0, ∀i ∈M, k ∈ 1, · · · , n{ }, (7)

xijk ∈ 0, 1{ }, ∀i ∈M, j ∈ J, k ∈ 1, · · · , n{ }. (8)

+e decision variables are defined as follows:

(i) xijk is equal to 1 if job j is scheduled at the k-th
position on machine i

(ii) hik denotes the start time of the job at the k-th
position of machine i

+e parameters are defined as follows:

(i) J is the set of the jobs, and M is the set of the
machines

(ii) n is the number of the jobs, and n � card(J)

(iii) m is the number of the machines, and m � card(M)

(iv) pij is a non-negative integer which represents the
processing time of job j and machine i

(v) rijk � 1 if the k-th position of job j requires machine i

+e objective function is in (1). Constraint (2) ensures
that each position on each machine is assigned to exactly
one job. Constraint (3) ensures that each job only gets one
position on a machine. Constraint (4) states that the start
time of a job on a machine should be larger than the
completion time of the job scheduled at the previous
position. Constraint (5) is the precedence constraint. It
ensures that all operations of a job are executed in the
given order. In (5), V is 􏽐i∈J􏽐i∈Mpij since the completion
time of any operation cannot exceed the summation of the
processing times from all the operations. Constraint (6)
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ensures that the MAKESPAN is at least the largest
completion time of the last job on all machines. Con-
straint (7) ensures that the start time of all jobs at all
positions is greater or equal to 0.

4. Hybrid Deep Neural Network Scheduler

4.1. Scheduler Structure. A hybrid deep neural network
scheduler (HDNNS) is designed based on convolution two-
dimensional transformation (CTDT) and hybrid deep
neural network.

+e structure of the scheduler is shown in Figure 1.
HDNNS is divided into two sections: training section

and scheduling section.
+e training section has six steps (Step 1.1–Step 1.6).

First, a large number of JSSPs are generated according to
the JSSP description in Step 1.1. +e description includes
the number of machines m, the number of jobs n, and the
distribution function of processing time F(p). Next, the
generated problems are solved by state-of-the-art
methods (BBM or GA in this paper). Moreover, corre-
sponding scheduling results are generated in Step 1.2. In
Step 1.3, each JSSP is divided into several subproblems,
described as the features of a job processing and the
priority in the machine. Features of job processing gen-
erate the 1D and 2D input data with CTDT in Step 1.4.
Moreover, the priority in the machine generates onehot
target data in Step 1.5. Finally, the scheduler training is in
Step 1.6.

+e training section has five steps (Step 2.1–Step 2.5).
First, Step 2.1 is started when a new JSSP requires to
schedule. +en, 1D input and 2D input can be produced by
generating subproblem operation (same as Step 1.3) and
convolution two-dimensional transformation operations
(same as Step 1.4). In Step 2.4, we use a trained neural
network to obtain the priority of each process in each job
corresponding to the input of two groups of the neural
network. In Step 2.5, a complete scheduling result is created
with all priority results taken into account.

4.2. Mathematical Representation of Standard Solver and
Division of Subproblems. Combined with the MIP de-
scription of JSSP in Section 3, all solvers are abstracted as
follows:

X, H � S(P, R). (9)

In (9), X is the set of 0-1 decision variables xijk, H is the
set of integer decision variables hik, P is the set of processing
time data pij, and R is the set of operation requiring data rijk.
And S(·) can be any scheduler for JSSP, such as genetic
algorithm (GA) [14], branch and boundmethod (BBM) [34],
and tabu search algorithm [13].

In order to improve the generalization performance of
the model, HDNNS classifies a complete JSSP into several
subproblems. Specifically, each subproblem determines
the priority category on machine of the job processing
process:

􏽢Aij � S P, R, F
∗
ij􏼐 􏼑. (10)

In (10), F∗ij is the processing feature of job j’s k-th
position in machine i and the relationship between the
job’s position and the machine is given by R. S(·) is a
subproblem scheduler from the S(·) in (9), and
􏽢Aij ∈ 1, 2, · · · , n{ } is the integer priority of job processing
on the machine (if in schedule result X, job j is processed
in the order k in machine i, then Aij � k). +e genera-
tion of F∗ij and Aij will be introduced in Sections 4.3 and
4.4.

+e subproblem generation process is shown in Figure 2.

4.3. Convolution Two-Dimensional Transformation

4.3.1. Definition of One-Dimensional Features. +is paper
designs a convolution two-dimensional transformation
(CTDT) to extract scheduling features. Convolution
operation is commonly used to extract features in the
field of artificial intelligence and image processing
[35, 36]. Many scholars believe that deep convolution
operation is an effective way to extract complex combined
features [37]. +e CTDT is proposed to transform the
irregular data in scheduling process (which cannot be
convoluted directly) into regular data by the form of
Cartesian product.

First, we define the 1-dimensional matrix relative ma-
chine processing time pl from P as

P
l

� T1,1, T1,2, · · · , T1,j2
, · · · , T1,n, · · · , Tj1 ,j2

, · · · , Tn,n􏽨 􏽩.

(11)

In (11), Tj1 ,j2
, j1, j2 ∈ J is the ratio of processing time of

job j1 to that of job j2, which are represented as follows:

Tj1 ,j2
�

􏽐i∈Jpij1

􏽐i∈Jpij2

, (12)

Pl will provide the scheduler with relative information about
the processing time of jobs.

+en, we define the 1-dimensional matrix’s earliest start
time El from P and R as

E
l

� e1k, e2k, · · · , ejk, · · · , enk􏽨 􏽩. (13)

In (13), ejk, j ∈ J, k ∈ 1, 2, · · · , n{ }, is the earliest start
time of job j’s k-th position shown as follows:

ejk � 􏽘
i∈M,k∗∈ 1,2,···,k−1{ }

rijk∗pijk∗ . (14)

In (14), Pl provides the urgency information of jobs.
Similarly, we define the 1-dimensional other features Fl

ij

as

F
l
ij � f

∗
ij,1, f
∗
ij,2, · · · , f

∗
ij,Nf

􏼔 􏼕. (15)

In (15), Fl
ij consists of a series of important features in

reference and application. Nf is the number of the features,
and in this paper, Nf � 10. +e features are given in
Table 1.

4 Computational Intelligence and Neuroscience



In Table 1, the variables in tables are defined as follows:

T
total

� 􏽘
i∈M,j∈J

pij, (16)

T
cmp
i � 􏽘

i∈M
pij, (17)

T
cjp
j � 􏽘

j∈J
pij. (18)

In (16)–(18), Ttotal is the total processing time, Tcmp
i is the

processing time of machine i, and T
cjp
j is the processing time

of job j.
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4.3.2. Convolution Two-Dimensional Transformation and
Definition of Two-Dimensional Matrix. Cartesian product
operation can combine linear features and convert one-
dimensional feature data into two-dimensional feature data.
+is paper designs convolution two-dimensional trans-
formation (CTDT) based on Cartesian product.

+e transformation is described in

D
2d
ml

1 ,ml
2

� T m
l
1, m

l
2, α, β􏼐 􏼑 � sigmoid α · m

l
1 × m

l
2􏼐 􏼑

β
􏼒 􏼓,

(19)

m
l
1 × m

l
2 � x · y | x ∈ m

l
1,∧y ∈ m

l
2􏽮 􏽯. (20)

In (19), ml
1 and ml

2 are the two one-dimensional features
and × is the sign of Cartesian product; the mathematical
definition is shown in (20). α and β are the parameters of this
transformation. sigmoid(·) is a nonlinear activation func-
tion. +is function will match the model parameters and
extract new features in different horizons. +e sigmoid
function is shown in

sigmoid(x) �
1

1 + e−x
. (21)

In (21), x is a matrix.
An example of a T(·) function is shown in Figure 3.
In Figure 3, ml

1 and ml
2 are the two one-dimensional data

likePl,El, and Fl
ij in Section 4.3.1.+eCartesian product ofml

1
and ml

2 is ml
1 × ml

2. +ree sets of parameters are used to
normalizeml

1 × ml
2 in Figure 3. Different parametersmean that

the model pays attention to different data scales, which helps
the model to discover the characteristics of different scales.

4.4. Training Labels. HDNNS transforms the scheduling
problem into classification problems. So, this paper uses
onehot encoding [38] to define training labels.

Job i’s k-th position (onemachine j) onehot priority label
􏽢ok

ij is shown in (22). +ree examples are given in Figure 4:

􏽢o
k
ij �

1, if k � 􏽢Aij,

0, if k≠ 􏽢Aij.

⎧⎪⎨

⎪⎩
(22)

In (22), Aij is the number of positions in job imachine j,
defined in Section 4.2.

4.5. Structure of Hybrid Deep Neural Network Scheduler.
In this section, an innovative hybrid deep neural network
structure for JSSP is introduced.

As shown in Figure 1, the inputs of the hybrid deep neural
network scheduler are one-dimensional input Input1, two-
dimensional input Input2, and target input Target.

+e expression is shown in

Input1 � F
l
ij,

Input2 � D
2d
Pl,Pl , D

2d
Pl,El , D

2d
Pl,Fl

ij
, D

2d
El,El , D

2d
El,Fl

ij
, D

2d
Fl

ij
,Fl

ij
􏼔 􏼕,

Target � 􏽢oij.

(23)

+e general structure of the network is shown in
Figure 5.

In Figure 5, the left side of the structure diagram is the
input part of the network.

For Input1, HDNNS uses L1 layers (fully connected
layer) [39] (FCL in the figure) to preliminarily extract one-
dimensional features. As shown in Figure 5, the output of the
g-th layer is defined as DA

g and the output of the final layer is
DA

L1. +e fully connected layer is a typical combination of
neurons in the deep convolution network [39].

For Input2, HDNNS uses L1 layers (convolutional layer)
[39] (CL in the figure) to preliminarily extract two-di-
mensional features.+e size of the convolution kernel [39] is
set to 3∗ 3. As shown in Figure 5, the output of the g-th layer
is defined as DB

g to DG
g in different features in (23) and the

weight of the g-th layer is defined as WB
g to WG

g .

Table 1: Description and formula of hybrid deep neural network input.

Feature Description Formula
f∗ij,1 Position order [3] k/n
f∗ij,2 Ratio of machine index i to machine number m [23] i/m

f∗ij,3 Ratio of job index j to job number n [23] j/n

f∗ij,4 Remaining processing time of job j [3] (T
cjp
j − ejk)/Tcjp

j

f∗ij,5
Ratio of operation processing time pij to total

processing time [23] pij/Ttotal

f∗ij,6
Ratio of operation processing time pij to processing

time of machine i [23] pij/T
cmp
i

f∗ij,7
Ratio of operation processing time pij to processing

time of job j [11] pij/T
cjp
j

f∗ij,8
Ratio of processing time of machine i to total

processing time [11] T
cmp
i /Ttotal

f∗ij,9
Ratio of job j’s processing time to total job processing

time T
cjp
j /Ttotal

f∗ij,10
Ratio of job j’s processing time to processing time of

machine i T
cjp
j /Tcmp

i

References indicate that this feature has been used in the corresponding literature.
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At the L1 + 1th layer of the network, one-dimensional
features and two-dimensional features are combined by
flattening operation in the flattened layer [40], described as

D
M
i,q � 􏽘

​
W

A
L1,q · D

A
L1 + 􏽘

​
W

B
L1,q · D

B
L1 + · · · + 􏽘

​
W

G
L1,q · D

G
L1.

(24)

In (24), WA
L1,q, WB

L1,q, · · · , andWG
L1,q are the network

weights of layers FCLL1, CL1.L1, · · · , CL6.L1 and q is a
neural index.

After L2 fully connected layers, the feature passes
through a Softmax layer [39] containing only n neurons.

+is layer converts the feature signal into a meaningful
probability description oij. oij has the same shape with the
target 􏽢oij. However, oij is not a 0-1 variable, but a con-
tinuous quantity, which satisfies o

p
ij ∈ [0− 1], where

p ∈ 1, 2, · · · , n{ }. o
p
ij can be interpreted as the possibility of

selecting priority p.
After defining the structure of the neural network, we use

the error backpropagation (BP) method [39] to train the
network parameter.

A trained neural network can be described as a function
mapping in the scheduling section of Figure 1, which is
shown in the following formula:

A14 = 1
1 0 0 0 0 0 0

ô1
14 ô2

14 ô3
14 ô4

14 ô5
14 ô6

14 ô7
14

10 0 0 00 0

ô1
23 ô2

23 ô3
23 ô4

23 ô5
23 ô6

23 ô7
23

100 0 0 0 0

ô1
35 ô2

35 ô3
35 ô4

35 ô5
35 ô6

35 ô7
35

A23 = 6

A35 = 3

Figure 4: Concise sketch map of linear structure.

T(ml
1, ml

2, α, β) = sigmoid (α · (ml
1 × ml

2)β)
ml

1 × ml
2 = {(x, y)|x ∈ ml

1, ^y ∈ ml
2}

ml
1

T(ml
1, ml

2, 1, 1/4)

ml
2

T(ml
1, ml

2, 1, 1/2)

T(ml
1, ml

2, 1, 3/4)

ml
1 × ml

2

Figure 3: Concise sketch map of linear structure.
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oij � DNNS(Input1, Input2). (25)

In (25), DNNS(·) is the deep neural network
scheduler and the input function is Input1 and Input2 in
Figure 1 and (23). +e oij is the possibility that the current
subproblem belongs to each priority. +ere are n pri-
orities, so there are n elements in oij, each of which is
described as

o
k
ij � p xijk �� 1 | Input1, Input2􏼐 􏼑,

k ∈ 1, 2, · · · , n{ },

Input1 � F
l
ij,

Input2 � D
2d
Pl,Pl , D

2d
Pl,El , D

2d
Pl,Fl

ij
, D

2d
El,El ,D

2d
El,Fl

ij
, D

2d
Fl

ij
,Fl

ij
􏼔 􏼕.

(26)

4.6. Scheduling Sequence Generation Method. In (10), the
whole problem is decomposed into several subproblems. In
this part, a scheduling sequence generation algorithm
combines the solutions of the subproblems into a complete
solution of JSSP.

+e pseudocode description of the method is shown in
Algorithm 1.

In Algorithm 1, each cycle for i will determine the
scheduling order of one machine. Each cycle for j will
determine the scheduling sequence of one job in the ma-
chine i.

When determining the order of jobs, in Step 7, the al-
gorithm first chooses the most assured judgment of the

neural network scheduler, and the most reliable judgment is
the output probability closest to 1. In Step 8 and Step 9, when
the job Ij is selected as priority Ip, the other data of job Ij

and priority Ip are set to 0 according to constraints (2) and
(3) to avoid the conflict in the next loop. In Step 9, the
algorithm updates the value of the output matrix.

4.7. Generalization Performance of HDNNS. HDNNS al-
gorithm has a reliable generalization. Specifically, we can
easily extend the training results of smaller-scale JSSPs
(the number of machines is small) to solve larger-scale
JSSPs (the number of machines is significant). Such
characteristics give HDNNS a unique advantage. When
the solution of a large-scale problem is difficult to be
generated by the existing methods, HDNNS can use the
solution of a small-scale problem to train the network and
then use the trained model to schedule a large-scale
problem.

In (26), the input parameters of the trained scheduler are
composed of two sets of data, one of which is one-di-
mensional data and the other is two-dimensional data
generated by CTDT. For all inputs, as the number of ma-
chines increases, the input and output structures of the
neural network will not change.

Although the absolute value of the parameter changes,
the correlation between the parameters still exists. +e
scheduler will use these features with relationship to com-
plete the scheduling. Of course, the more significant the gap
between the scale of training data and the scale of actual
scheduling data, the bigger the error of results. +is paper
will discuss it in the experiment.

... ... ... ... ...
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...

...

...
...

L1 layer L2 layer

FCL 1
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CL 1.1 CL 1.2 CL 1.3 CL 1.L1
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n+1
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Figure 5: Schematic diagram of a hybrid deep neural network structure.
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5. An Example of HDNNS

In this section, we illustrate HDNNS with an example
(m � 6, n � 8).

In the training section of Figure 1, we generate a series of
JSSP and solve them as the training data.

An example of algorithm generation of JSSP is described
as Tables 2 and 3.

Tables 2 and 3 describe a 6 ∗ 8 JSSP, and Figure 6
shows the Gantt chart of the optimal solution (with
BBM). In Table 2, the number in line j and column k is the
time required for job j’s k-th position. In Table 3, the
number in line j and column k is the machine required for
job j’s k-th position.

In Figure 6, the horizontal axis is the time axis and the
ordinate axis is the machines axis. Each block represents a
processing, and different colors represent different jobs. +e
text j · k in the boxes means that the processing of job j’s k-th
position starts at the time of the left side of the block and
ends at the right side of the block.

+en, 48 subproblems are generated according to (10).
One-dimensional and two-dimensional features are
extracted for each subproblem, and training data such as
(23) are generated in Table 4.

Six groups of two-dimensional features are selected for
visual display, and the pictures are shown in Figure 7.

Six groups of matrices generated by CTDTare shown in
Figure 7. Among them, (a), (c), and (e) have a high priority
and the other three have a low priority.

In this extreme case of the highest priority and the lowest
priority, it is easy to find that images with the same priority
have a lot in common. In general, the hue of matrix D2d

Pl,Fl
ij

,

D2d
El,Fl

ij

, and D2d
Fl

ij
,Fl

ij

in (a), (c), and (d) is darker and that of

matrix D2d
Pl,Fl

ij

, D2d
El,Fl

ij

, D2d
Fl

ij
,Fl

ij

in (b), (d), and (e) is brighter.

+e remaining three matrices describe the whole problem
rather than the subproblem. +erefore, the same graphics
are shown in different subproblems.

Although identifying similar priority categories is more
difficult for human beings, our deep learning-based
scheduler can effectively extract the priority information.

After training the network with the data in Table 4, we
get a scheduler that can respond quickly. When a new
scheduling problem arrives, the scheduler processes the
problem according to (25) and gets the priority matrix O.
For this problem, the output example of matrix O is shown
in Table 5.

Finally, the scheduling sequence generation algorithm is
used to process the outputmatrix and the scheduling orderX
and the time result in Figure 6 can be obtained.

6. Results and Discussion

6.1. Parameters and Effect Experiment. In this part, the
training process of HDNNS and the influence of different
parameters on HDNNS are discussed.

Dataset ZLP (7∗ 7) [41] is used in this part to validate the
effectiveness of the method effectively. ZLP (7∗ 7) dataset
contains 2000 7∗ 7 (m � 7, n � 7) JSSPs, and it corresponds
to solutions.

+is experiment trains the scheduler with the first 1500
questions and labels and then tests the scheduler with the last
500 questions. +e learning rate of the network is 0.01. +e
training process curve is plotted in Figures 8–10.

In Figures 8–10, the horizontal axis is the number of
training loops and the vertical axis is the classification
correctness, classification loss, and MAKESPAN [22]
(completion time of processing). +e curves of different
colors represent the experimental results obtained by
choosing different model parameters L1 and L2. Among
them, the loss evaluation index calculation formula is

L(􏽢o, o) � −logP(o | Input1; Input2)

�
1

Ntest
􏽘

Ntest

c�1
􏽘

n

k�1
yck log ock( 􏼁.

(27)

Require:
(1) Priority matrix, O;
(2) Number of jobs, n;
(3) Number of machines, m;
Ensure: Scheduling output matrix, X; init the scheduling output matrix X : X � zeros((m, n, n))

(4) For i � 0; i<m; i + + do

(5) Init the temp matrix Temp : Temp⟵Ok
ij, i ∈ J, k ∈ 1, 2, · · · , n{ }

(6) For j � 0; i< n; i + + do

(7) Find the most accurate judgment of neural network in machine i, and get the index Ij and
Ik : Ij, Ip⟵findMaxNumber(Temp)

(8) Set the Temp’s Ij line to zero: Tempk
Ij
⟵ 0, 1, 2, · · · , n{ }

(9) Set the Temp’s Ik column to zero: Temp
Ik

j⟵ 0, j ∈ J

(10) X[i, Ij, Ip]⟵ 1
(11) End for
(12) End for
(13) Return X;

ALGORITHM 1: Scheduling sequence generation algorithm.
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In (27), 􏽢o is the target output, o is the probabilistic
description of current features belonging to various classi-
fications, and L(·) is the loss function. yck is the bool value,
and this value indicates whether the target class of input
features Input1, Input2 instance is k. ock is the probability of
input features Input1, Input2 belonging to class k predicted
by the model. +ere is a one-to-one mathematical re-
lationship between ockand ok

ij in (26).

+e three figures show that the performance of the model
improves gradually with the increase of the number of training
cycles. +is improvement can be achieved until the classifi-
cation accuracy reaches more than 90% and the model loss
reaches less than 1. Moreover, the disparity between the
scheduling result and the optimal solution reaches less than 5%.
+e above experiments show that the HDNNS can effectively
train the scheduler to complete the JSSP scheduling task.

Table 2: Processing time of the example 6∗ 8 JSSP.

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
Job 1 15 26 18 11 25 12
Job 2 24 12 23 12 28 13
Job 3 22 29 12 27 20 15
Job 4 27 26 13 21 15 29
Job 5 11 29 21 12 24 18
Job 6 26 17 19 16 27 28
Job 7 24 29 18 27 14 23
Job 8 14 12 18 24 17 22
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Figure 6: Gantt chart of current JSSP.

Table 3: Processing order of the example 6∗ 8 JSSP.

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
Job 1 6 5 4 2 1 3
Job 2 3 6 2 1 4 5
Job 3 2 1 4 3 6 5
Job 4 2 1 3 5 4 6
Job 5 5 4 2 3 6 1
Job 6 3 6 2 4 5 1
Job 7 5 1 3 2 4 6
Job 8 4 6 3 1 2 5

Table 4: Data example of training deep scheduling neural network scheduler.

i j k Input1 Input2 Target

6 1 1 Fl
11 D2d

Pl,Pl D2d
Pl,El D2d

Pl,Fl
11

D2d
El,El D2d

El,Fl
11

D2d
Fl
11Fl

11
1 0 0 0 0 0 0 0

5 1 2 Fl
12 D2d

Pl,Pl D2d
Pl,El D2d

Pl,Fl
12

D2d
El,El D2d

El,Fl
12

D2d
Fl
12Fl

12
0 1 0 0 0 0 0 0

4 1 3 Fl
13 D2d

Pl,Pl D2d
Pl,El D2d

Pl,Fl
13

D2d
El,El D2d

El,Fl
13

D2d
Fl
13Fl

13
0 0 1 0 0 0 0 0

3 1 4 Fl
14 D2d

Pl,Pl D2d
Pl,El D2d

Pl,Fl
14

D2d
El,El D2d

El,Fl
14

D2d
Fl
14Fl

14
0 0 0 1 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 8 6 Fl
86 D2d

Pl,Pl D2d
Pl,El D2d

Pl,Fl
86

D2d
El,El D2d

El,Fl
86

D2d
Fl
86Fl

86
0 0 0 0 0 0 0 1
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Seven groups of different model parameters were se-
lected and tested. +e experimental results show that among
all the parameters, L1 � 3 and L2 � 12 have better results.
When L1 � 3 and L2 � 12, the classification accuracy of the
centralized test is more than 93%, the loss is less than 85%,
and the gap of MAKESPAN is less than 4%.

6.2. Confusion Matrix of the Result. In order to measure the
effectiveness of HDNNS, this paper compares it with the
classical ANN [3] method.

Dataset ZLP (7∗ 7) [41] is used in this part to train two
kinds of neural networks. +is experiment trains the

scheduler with the first 1500 questions and labels. +en, this
experiment tests the scheduler with the last 500 questions.
For HDNNS, the size of the convolution kernel is 3∗ 3, and
L1 � 3, L2 � 12, and learning rate is 0.01. For the ANN
method, the ANN structure is 11-12-10-7 and learning rate
is 0.01.

+e classification confusion matrix of ANN and HDNNS
(the output of Step 2.4 in Figure 1) is shown in Tables 6 and 7.

In Tables 6 and 7, the line i and column j is the number of
times that the job with the ith position of the machine has
been assigned to the jth position of the machine.+e priority
of job 2 in machine 1 is 2, meaning that this job is in the
second position of machine 1’s processing. If a scheduler
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Figure 7: Feasibility analysis of CTDT. (a) Subproblem of i � 3, j � 1, k � 6. (b) Subproblem of i � 6, j � 1, k � 1. (c) Subproblem of
i � 5, j � 2, k � 6. (d) Subproblem of i � 2, j � 4, k � 1. (e) Subproblem of i � 6, j � 7, k � 6. (f ) Subproblem of i � 4, j � 5, k � 1.
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classifies the location of job 2 in the machine 1 as 2, one will
be added to the second row and the second column of the
confusion matrix. If a scheduler classifies the location of job
2 in the machine 1 as 3, one will be added to the second row
and the third column of the confusion matrix.+erefore, the
larger the number on the diagonal line, the higher the ac-
curacy of the model.

+e bar figure of the confusion matrix is shown in
Figures 11 and 12.

Tables 6 and 7 and Figures 11 and 12 show that the
classification performance of HDNNS is better than ANN.
On the stability of classification, twomethods can classify the
highest and lowest priority jobs more accurately because the
boundary of classification will introduce less noise in-
terference. However, the classification accuracy of each
priority of the HDNNS method is more stable. +e accuracy
of classification results of the HDNNS method fluctuates
between 88% and 98%. In terms of classification accuracy,
HDNNS can achieve 90% classification accuracy. It is better
than 60% of the ANN method.

+e essence of the learning-based method is to estimate
the probability from input to output by finding the implicit
relationship between them. Because the ANN method does
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Figure 10: MAKESPAN change diagram during training under
different parameters.
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under different parameters.
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Figure 9: Loss change diagram during training under different
parameters.

Table 5: Output example of training deep scheduling neural network scheduler.

Job info Output
i j k p(xij1 � 1) p(xij2 � 1) p(xij3 � 1) p(xij4 � 1) p(xij5 � 1) p(xij6 � 1) p(xij7 � 1) p(xij8 � 1)

6 1 1 0.860 0.140 0.000 0.000 0.000 0.000 0.000 0.000
5 1 2 0.162 0.573 0.236 0.029 0.000 0.000 0.000 0.000
4 1 3 0.004 0.143 0.142 0.544 0.305 0.005 0.000 0.000
3 1 4 0.028 0.200 0.724 0.020 0.028 0.000 0.000 0.000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 8 6 0.000 0.000 0.000 0.000 0.020 0.000 0.265 0.735
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not consider the depth of local features combination, its
effect is not ideal. For example, the pij has no noticeable
effect on its priority. However, the combination of pij, the
pij/T

cmp
i , and the T

cmp
i /Ttotal has a more significant impact

on the final output.
+e traditional neural network does not have strong

ability to deal with combined features. +us, ANN is dif-
ficult to achieve effective training because of the disap-
pearance of the gradient [36]. In this paper, deep
convolutional network is introduced into the scheduling
problem to solve the problem of learning and training
combined features, which improves the accuracy of net-
work classification.

6.3.MAKESPANandTimeConsumptionComparisons inZLP
Dataset. JSSP scheduling methods are divided into two
categories: population-based (gene-based) method and
learning-based method. +e population-based (gene-
based) method obtains the near-optimal solution by
updating the solutions set. +e effect of this method is
often better than the other two algorithms. Because iter-
ation will produce a lot of time cost, this kind of method
can often get excellent scheduling results. +erefore, this
subsection does not compare population-based (gene-
based) methods.

+is subsection will discuss the performance of HDNNS
algorithm from the above two aspects. +is part tests the
performance of deep reinforcement learning (DEEPRL)
[29, 42], deep Q learning (DQN) [43], artificial neural
network (ANN) [3], Hopfield neural network (HNN) [44],
stochastic processing time (SHPT) [45] method, and
shortest processing time (SPT) [46] method.

Table 6: Confusion matrix table of the ANN.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5 Priority 6 Priority 7
Priority 1 621 66 11 0 0 0 2
Priority 2 35 543 85 12 5 1 19
Priority 3 30 70 436 96 17 21 30
Priority 4 5 14 153 357 74 24 73
Priority 5 2 6 11 198 363 62 58
Priority 6 7 1 4 34 176 457 21
Priority 7 0 0 0 3 65 135 497
Classification accuracy 0.89 0.78 0.62 0.51 0.52 0.65 0.71
Total accuracy 0.67
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Figure 11: Confusion matrix bar graph of ANN.
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Figure 12: Confusion matrix bar graph of HDNNS.

Table 7: Confusion matrix table of the HDNNS.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5 Priority 6 Priority 7
Priority 1 683 14 1 0 0 0 2
Priority 2 15 639 26 3 5 1 11
Priority 3 2 32 641 17 0 3 5
Priority 4 0 8 24 615 21 0 32
Priority 5 0 7 4 48 621 12 8
Priority 6 0 0 4 14 26 634 22
Priority 7 0 0 0 3 27 50 620
Classification accuracy 0.98 0.91 0.92 0.88 0.89 0.91 0.89
Total accuracy 0.91
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+edataset is ZLP dataset [41], which contains 2000 8∗ 8
JSSPs (m � 8, n � 8) and 13∗13 JSSPs (m � 13, n � 13). +e
solution of JSSPs above is generated with the BBM method
[47]. +e processing time matrix p of each JSSP satisfies the
uniform distribution U(a, b). For HDNNS, ANN and the
first 1500 JSSPs are used in the training section. +e last 500
JSSPs are used in scheduling section to test the performance
of the model. +e DEEPRMmethod is trained by interacting
with the JSSP model. +e size of the convolution kernel is
3∗ 3, and L1 � 3 and L2 � 12. +e learning rate of HDNNS,
ANN, and DEEPRL is 0.01.+e number of learning epochs is
100. For HNN, SHPT, and SPT, the performance of the
method is tested directly with the last 500 data. +e ex-
perimental environment is Lenovo k4450, Ubuntu 16, CPU
i4700 2.1MHZ, Python, and Tensorflow.

+e results of the experiment are shown in Table 8. Four
indexes are discussed in the table: average MAKESPAN,
scheduling score, scheduling time, and training time. +e
scheduling score is calculated according to

S(A, D) �
M Optimal, D􏼐 􏼑

M Current, D( 􏼁
. (28)

In (28), the scheduling capacity S(A, D) of current al-
gorithm A in databaseD is defined as the ratio of the average
optimal MAKESPAN M(Optimal, D) to the current algo-
rithm’s MAKESPAN M(Current, D).

Eight groups of JSSPs are tested in Table 8. +e first four
groups are 8∗ 8 JSSPs, and the last four groups are 13∗13
JSSPs. Each problem is generated by random-based function,
and its processing time satisfies the uniform distribution
p∼U(a, b).

For the learning-based method (HDNNS, DQN,
DEEPRL, and HNN), the time consumption is divided into
training time and scheduling time. +e training time is the
total time needed for 100 epochs of model training. +e
scheduling time recorded the total time of testing 500
JSSPs.

+e ANN method is tested in two cases, one (ANN (1D)
in proposed in [3]) using only one-dimensional feature as
the input feature and the other (ANN (ALL)) using flattened
one-dimensional features and two-dimensional features as
input features. ANN (1D) has a smaller network structure, so
it has faster training efficiency and scheduling efficiency.
Although the scheduling results of ANN (ALL) are better
than that of ANN (1D), its training time is significantly
improved with the JSSP scale. It is because the network
structure of ANN has no advantage in dealing with complex
scheduling information. Moreover, it cannot adequately deal
with the relationship between the combination features and
the output. In general, the scheduling effect of ANN network
is better than the SPT method and STPT method.

Hopfield neural network (HNN) can also effectively
obtain the scheduling results. But, unlike ANN, HNN seeks
stability point through evolution and achieves the purpose of
scheduling. HNN has a good effect on small-scale problems
but suffers from the resolution of large-scale problems.

DEEPRM and DQN are scheduling methods based on
reinforcement learning (DEEPRM’s network structure is the

same as that of HDNNS, and DQN use a standard deep
network). +ese methods do not need labeled training data
in the training section, but they need much interaction with
the scheduling environment. In most cases, interaction
learning is much slower than learning through training data.
For JSSP which has easy access to label data, DEEPRM and
DQN have disadvantages in training efficiency.

HDNNS is stable in different processing time distribu-
tions p∼N(a, b) and different problem scales m and n.
Moreover, the scheduling ability is maintained at 90% of the
optimal solution, which is superior to the same ANN and
HNN. Although the training time of HDNNS is longer than
that of ANN (1D), it does not affect the real-time scheduling
of the scheduler in applications because the training phase
can be completed beforehand. Considering the scheduling
performance of all the algorithms, HDNNS has significant
advantages.

6.4. MAKESPAN and Time Consumption Comparisons in
Traditional Dataset. +is subsection uses the same methods
as in Section 6.3 to solve the classical JSSPs, which include
ft10 [48], ft20 [48], la24 [49], la36 [49], abz7 [50], and yn1
[51].

+e experimental procedure is as follows. First, 2000
JSSPs of the same scale as the under test JSSP are generated.
+en, the state-of-the-art method is used to find the optimal
solution (near-optimal solution) as the training data. In this
experiment, the solution of smaller JSSP (ft10, ft20, la24) is
generated by the BBM method [47]. Moreover, the solution
of larger JSSP (la36, abz7, yn1) is generated by the GA
method.+e first 1500 JSSPs are used in the training section.
+e last 500 JSSPs are used in scheduling section to test the
performance of the mode.

+e DEEPRM method is trained by interacting with the
JSSP model. +e learning rate of HDNNS, ANN, and
DEEPRM is 0.01. +e number of learning epochs is 100. +e
experimental environment is Lenovo k4450, Ubuntu 16, and
CPU i4700 2.1MHZ.

+e test results are shown in Table 9.
+e structure of Table 9 is the same as that of Table 8.+e

first column shows the optimal solution. Six popular JSSPs
are tested in Table 9. +e brackets below the JSSP name
indicate the size of the problem.

Testing with separate test questions introduces ran-
domness, so we recommend using the average of a large
number of test results to measure the effectiveness of the
algorithm (like ZLP datasets).

6.5.MAKESPANComparisonswith Traditional Classification
Algorithms. In this subsection, several traditional classifi-
cation methods are used to compare with HDNNS.
HDNNS is essentially a classification-based method, so it is
necessary to compare it with some traditional classification
methods. We replace the deep neural network scheduler in
Figure 1 with other classification methods and measure its
effect.

In this experiment, we test k-nearest neighbor (KNN)
[52], support vector machine (SVM) [26], decision tree (DT)
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[53], extremely randomized trees (ERT) [54], and Gaussian
model (GOSS) [55].

+e test dataset is ZLP dataset [41], which contains 2000
15∗12 JSSPs (m � 15, n � 12) and 2000 15∗18 JSSPs
(m � 15, n � 18). +e solution of JSSPs above is generated
with the GA method. +e first 1500 JSSPs are used as the
training section.+en, the performance of themethod is tested
with the last 500 data. +e parameters of the above classifi-
cation methods are the default parameters of Python 3’s
sklearn tool kit.+e result of the solution is shown in Table 10.

+e experimental results show that HDNNS has a
significant advantage over traditional classification algo-
rithms. Although the traditional method has an advantage
in efficiency, it can only achieve the 80% of near-optimal
solution. +erefore, HDNNS has a big advantage in the
framework of this paper.

6.6. Analysis of Generalization Performance. HDNNS has a
good scalability, and a trained scheduler can be used to solve
problems of different machine numbers m. In other words,
models trained with less complex problems can be used to
solve more complex problems. Based on this premise, it is
necessary to measure the generalization of models at dif-
ferent levels of complexity.

+is subsection discusses the performance of models
trained with small-scale data in solving large-scale prob-
lems. In the experiment, 1500 JSSPs (labels are generated
with GA) are used as the training section. +en, groups of
larger problems (larger machine number m) are applied to
test the scheduling capability of HDNNS. In order to get a
credible conclusion, the experiment generates 500 different
JSSPs and corresponding near-optimal solution for each
group.

+e box diagram of the experiment is shown in
Figure 13.

In Figure 13, each box in the diagram represents a test
result of a group.+e top and bottommultiplication symbols
represent the maximum and minimum values in the test.
Moreover, the top and bottom triangles between the mul-
tiplication symbol is the 1% point and the 99% point of the
200 data. +e lower and upper bounds of the boxes are 25%
and 75% of the 200 data. +e horizontal longer line in the
middle of the box is the median number, and the horizontal
shorter line is the average number.

Figure 13 shows that the closer the scale of test problems
and training problems is, the better their performance wil l
be. +e average ratio of MAKESPAN obtained by HDNNS
to GA is 0.97, and the MAKESPAN of the scheduling result
is also stable.

Table 9: Comparison of HDNNS with other methods on traditional datasets.

Optimal HDNNS (our) DQN DEEPRM ANN (1D) ANN (all) STPT SPT

ft10
(10∗10)

MAKESPAN 930 1023 1023 1025 1154 1054 1152 1169
Scheduling score — 90.91 90.9 90.7 80.5 88.2 80.7 79.5
Training time — 1804.5 13321.7 12212.2 426.1 3245.6 — —

Scheduling time — 3.6 3.9 3.8 1.2 4.7 1.0 1.0

ft20
(20∗10)

MAKESPAN 1165 1391 1342 1317 1524 1504 1434 1544
Scheduling score — 83.7 86.8 88.4 76.4 77.4 81.2 75.4
Training time — 3954.1 16532.1 17548.3 436.5 4689.5 — —

Scheduling time — 7.6 7.4 7.2 2.4 9.2 1.9 1.9

la24
(20∗10)

MAKESPAN 935 1056 1088 1071 1564 1564 1580 1569
Scheduling score — 88.5 85.9 87.30 59.7 59.7 59.1 59.5
Training time — 3976.5 16844.3 16254.5 487.6 4684.4 — —

Scheduling time — 7.6 8.2 7.3 2.5 2.5 1.9 1.9

la36
(15∗15)

MAKESPAN 1268 1318 1465 1465 1721 1721 1729 1729
Scheduling score — 96.2 86.55 86.5 73.6 73.6 73.3 73.3
Training time — 15318.1 63172.0 62251.4 578.5 21688.1 — —

Scheduling time — 38.4 39.3 39.2 3.3 42.5 8.3 7.2

abz7
(20∗15)

MAKESPAN 665 726 739 720 940 940 980 1026
Scheduling score — 91.6 89.9 92.3 70.7 70.7 67.8 64.8
Training time — 22124.2 90584.4 92584.4 683.4 29258.3 — —

Scheduling time — 51.3 48.3 50.24 4.8 89.5 13.3 12.3

yn1
(20∗ 20)

MAKESPAN 886 995 1183 1067 1183 1183 1208 1207
Scheduling score — 89.0 74.8 83.04 74.8 74.8 73.3 73.4
Training time — 30688.8 126689.2 125845.4 536.0 35648.2 — —

Scheduling time — 177.2 188.0 184.5 65.4 194.5 78.4 73.5

Average

MAKESPAN 974.83 1084.83 1140.0 1110.8 1347.6 1327.6 1347.1 1374.0
Scheduling score — 90.01 85.5 88.0 72.6 74.1 72.6 71.0
Training time — 12977.7 54523.9 54449.4 524.7 16535.7 — —

Scheduling time — 47.6 49.1 48.7 13.3 57.1 17.5 16.3
MAKESPAN rank 1 3 2 5 4 6 7
Training time 2 4 3 1 5 — —

Scheduling time RANK 4 6 5 1 7 3 2
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With the increase in the number of machines, the
model’s efficiency gradually decreases, which is embodied
in the decline of the excellent degree of the solution and
the stability of the solution. However, the decline in
solving ability is not rapid and unacceptable.

We are happy to see that our scheduler can extract
scheduling knowledge from a simple JSSP and use it
successfully in a more complex scheduling problem.

Specifically, the excellent degree of solutions of all test
problems is greater than 0.86 (average).

7. Conclusion

A hybrid deep neural network scheduler with the char-
acteristics of offline training and online real-time sched-
uling is created in this paper. In this scheduler, we present
two innovations based on the machine learning framework.
One is the convolution two-dimensional transformation
(CTDT), which converts the irregular data in the sched-
uling process into regular data; this enables deep con-
volutional operation to be used to solve JSSP. Another is
hybrid deep neural network structure including convolu-
tion layer, fully connected layer, and flattening layer. And,
this structure can effectively complete the extraction of
scheduling knowledge.

+e results show that the MAKESPAN index of
HDNNS is 9% better than that of HNN and is 4% better
than that of ANN in ZLP dataset. +e training time of the
HDNNS method is obviously faster than that of the
DEEPRM method with the same neural network structure.
Besides, the scheduler has brilliant generalization ability,
which can solve large-scale scheduling issues with small-
scale training data.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Table 10: Comparison tables with traditional classification methods on ZLP datasets.

Near optimal HDNNS (our) ANN (1D) KNN SVM DT ERT GOSS
ZLP (15∗12)
p∼U (10, 40)

Average MAKESPAN 320.14 334.88 369.68 424.03 426.29 403.20 398.69 400.18
Scheduling score — 95.6 86.6 75.5 75.1 79.4 80.3 80

ZLP (15∗12)
p∼U (10, 50)

Average MAKESPAN 375.04 398.55 434.57 498.72 512.34 482.67 464.73 472.34
Scheduling score — 94.1 86.3 75.2 73.2 77.7 80.7 79.4

ZLP (15∗12)
p∼U (10, 60)

Average MAKESPAN 443.97 450.27 513.85 584.94 599.96 581.11 547.44 550.15
Scheduling score — 98.6 86.4 75.9 74 76.4 81.1 80.7

ZLP (15∗12)
p∼U (10, 70)

Average MAKESPAN 513.13 551.16 591.16 676.95 686.00 645.45 636.64 635.85
Scheduling score — 93.1 86.8 75.8 74.8 79.5 80.6 80.7

ZLP (15∗12)
p∼U (10, 80)

Average MAKESPAN 560.94 618.46 653.78 751.93 744.94 705.59 702.93 704.70
Scheduling score — 90.7 85.8 74.6 75.3 79.5 79.8 79.6

ZLP (15∗18)
p∼U (10, 40)

Average MAKESPAN 476.40 508.43 550.75 617.90 649.05 606.88 597.74 599.25
Scheduling score — 93.7 86.5 77.1 73.4 78.5 79.7 79.5

ZLP (15∗18)
p∼U (10, 50)

Average MAKESPAN 571.62 617.97 660.83 737.57 774.55 725.41 711.86 732.85
Scheduling score — 92.5 86.5 77.5 73.8 78.8 80.3 78

ZLP (15∗18)
p∼U (10, 60)

Average MAKESPAN 681.60 745.73 789.80 898.02 926.09 874.97 846.71 858.44
Scheduling score — 91.4 86.3 75.9 73.6 77.9 80.5 79.4

ZLP (15∗18)
p∼U (10, 70)

Average MAKESPAN 794.26 849.48 920.35 1034.19 1074.78 1024.85 990.35 1019.59
Scheduling score — 93.5 86.3 76.8 73.9 77.5 80.2 77.9

ZLP (15∗18)
p∼U (10, 80)

Average MAKESPAN 900.40 971.31 1043.34 1176.99 1210.22 1151.41 1138.31 1151.41
Scheduling score — 92.7 86.3 76.5 74.4 78.2 79.1 78.2

Average Average MAKESPAN 563.75 604.62 652.81 740.13 760.42 720.15 703.54 712.47
Scheduling score — 93.59 86.38 76.08 74.15 78.34 80.23 79.34

Average MAKESPAN rank 1 2 6 7 5 3 4
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Figure 13: Box diagram of testing the model trained by 15∗15
dataset with a larger scale problem.
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