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In this paper, a hybrid deep neural network scheduler (HDNNS) is proposed to solve job-shop scheduling problems (JSSPs). In
order to mine the state information of schedule processing, a job-shop scheduling problem is divided into several classification-
based subproblems. And a deep learning framework is used for solving these subproblems. HDNNS applies the convolution two-
dimensional transformation method (CTDT) to transform irregular scheduling information into regular features so that the
convolution operation of deep learning can be introduced into dealing with JSSP. The simulation experiments designed for testing
HDNNS are in the context of JSSPs with different scales of machines and jobs as well as different time distributions for processing
procedures. The results show that the MAKESPAN index of HDNNS is 9% better than that of HNN and the index is also 4% better
than that of ANN in ZLP dataset. With the same neural network structure, the training time of the HDNNS method is obviously
shorter than that of the DEEPRM method. In addition, the scheduler has an excellent generalization performance, which can

address large-scale scheduling problems with only small-scale training data.

1. Introduction

Job-shop scheduling problem (JSSP) [1] is one of the most
famous problems in the industrial production, and it is
categorized as a large class of intractable numerical problems
known as NP-hard [2]. The solution space for an m * n JSSP
(where m is the number of machines and # is the number of
jobs) is (n!)™ [3].

As it will be discussed in Section 2, many scholars have
tried to solve this type of problems with population-based
methods [4], gene-based methods [5], and heuristic
methods [6]. However, in the face of large-scale problems,
the response rate of the above methods has no distinct
advantages. Many current researches show that data
mining and machine learning methods have great po-
tential in effect and efficiency [7]. In this paper, a hybrid
deep neural network scheduler (HDNNS) is put forward
to promote the scheduling capability. And convolution

two-dimensional transformation (CTDT) is developed to
convert JSSP’s state information into regular information
so that the process can be simplified in the convolutional
network.

HDNNS has contributions in the following aspects:

(i) Based on the work of Weckman [3], Metan et al. [8],
and Paolo et al. [9], HDNNS transforms JSSP into
several classification subproblems. HDNNS’s main
innovation is the classification of the processing
sequence of each job on each machine. The more
precise classification method makes HDNNS more
effective in the large-scale problems.

(ii) Convolution two-dimensional transformation (CTDT)
comes up in this paper. The function of CTDT is to
convert the irregular scheduling data into regular
multidimensional data with the form of Cartesian
product. The transformed multidimensional data can
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be effectively processed in the deep convolution
networks.

(iii) HDNNS designs a hybrid neural network com-
bining the deep convolution network [10] and the
BP neural network [11]. In the first half of the
network structure, convolution network and BP
network are used to deal with the structural features
and irregular features, respectively. After a certain
number of layers of network processing, HDNNS
merges these two networks with flattening opera-
tion for further feature extraction.

Our experimental results prove that the scheduling re-
sults of HDNNS are superior to many learning-based
methods (ANN, HNN, and reinforcement learning
methods), traditional classification methods (SVM, GOSS,
and others), and attribute-oriented induction methods
(AQI) [9] for the MAKESPAN index. HDNNS can occupy
an advantage in the JSSPs compared with population-based
methods (GA) and optimization methods (BBM). The value
of HDNNS is not negated in the tests because GA and BBM
are time consuming in computation. Besides, unlike GA and
BBM, the HDNNS method has strong generalization per-
formance. Our experiments certificate that a model trained
by the data of small-scale JSSPs can address a large-scale one.

Although the training of the model requires extra time,
the training process can be finished in advance. When the
application environment remains stable, the model may not
even need further updates. Such characteristics can increase
the application value of the model to a certain extent. The
training process can also be effectively accelerated by
hardware such as GPU. Also, with the appropriate hardware
(such as GPU and FPGA), the training speed will be sig-
nificantly boosted.

The structure of this paper is as follows. In Section 2, a
part of the most related work on the solution methods for
JSSP has been reviewed along with neural network and other
approaches available in the literature. In Section 3, the
mathematical model of JSSP is proposed. In Section 4, the
framework of the HDNNS is introduced, which includes
scheduler structure, convolution two-dimensional trans-
formation, and the basis of deep neural network. In Section
5,a 6 * 8 JSSP example is applied to explain our method. In
Section 6, six experiments are utilized to test the effectiveness
and the generalization performance of the proposed method.

2. Related Works

2.1. Population-Based and Gene-Based Methods for JSSP.
Over the last decades, JSSP has attracted much attention in
the academia. Hence, a wide range of approaches have been
developed for JSSP. Recently, population-based and gene-
based methods are investigated to find optimal or near-
optimal solutions.

Zhao et al. [12] proposed an improved particle swarm
optimization with a decline disturbance index to improve
the ability of particles in exploring global and local optimum
solutions and to reduce the probability of particles being
trapped into a local one. Peng et al. [13] combined a tabu
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search procedure with path relinking and showed that their
method had a high performance in solving benchmark
problem instances. Asadzadeh [14] tried to improve the
efficiency of the genetic algorithm in solving JSSP by par-
allelizing populations and using an agent-based approach.
Kurdi et al. [15] presented a modified island model genetic
algorithm (IMGA) for JSSP. In this model, a nature-inspired
evolutionary method and a migration selection mechanism
have been added to the classical IMGA to improve di-
versification and delay premature convergence. Park et al.
[16] proposed a dynamic JSSP and applied genetic pro-
gramming-based hyper-heuristic methods with ensemble
combination schemes to solve it. The investigated schemes
had majority voting, linear combination, weighted majority
voting, and weighted linear combination. It was concluded
from the experiments that for the dynamic JSSP, the linear
combination outperformed the other methods. Jiang et al.
[17] employed the grey wolf optimization (GWO) to deal
with two combinatorial optimization problems in the
manufacturing field: job-shop and flexible job-shop
scheduling cases. The discrete GWO algorithm was com-
pared with other published algorithms for two scheduling
cases. Experimental results demonstrate that our algorithm
outperforms other algorithms for the scheduling problems
under study. Fu et al. [18] proposed a fireworks algorithm
with special strategies to solute the flow-shop scheduling
problem under the consideration of multiple objectives,
time-dependent processing time, and uncertainty. Sharma
et al. [19] developed a variant of the ABC algorithm inspired
from beer froth decay phenomenon to deal with job-shop
scheduling problems.

There is no doubt that population-based and gene-based
strategies are effective to solve JSSPs. However, faced with
large-scale problems, the number of repeated iterations and
updating operations often take a long time. Therefore, it is of
great value to study a learning-based scheduler with fast
response.

2.2. Learning-Based and Neural Network-Based Methods for
Solving JSSP. With the further development of machine
learning, some scholars try to solve JSSPs with learning-
based methods. In this field, researches can be divided into
two categories.

In the first category, learning methods are used to op-
timize population-based and gene-based methods. Learning
methods optimize the updates of solutions, which thus
improve the efficiency of optimization. Yang and Lu et al.
[20] proposed a hybrid dynamic preemptive and competitive
NN approach called the advanced preventive competitive
NN method. A CNN was used to classify the system con-
ditions into 50 groups. For each production interval, the
current system status group was determined by CNN. Shiue
et al. [21] extended the previous work by considering both
the input control and the dispatching rule, such as those in a
wafer fabrication manufacturing environment. In a novel
recent work by Mirshekarian and Sormaz [22], a statistical
study of the relationship between JSSP feature and optimal
MAKESPAN was conducted. Ramanan et al. [23] proposed
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an artificial neural network-based heuristic method. This
method utilized ANN to generate a solution of JSSP and then
took it as the initial sequence to a heuristic proposed by
Suliman. Adibi et al. [24] used a trained artificial neural
network (ANN) to update parameters of a metaheuristic
method at any rescheduling point in a dynamic JSSP
according to the problem condition. Maroosi et al. [25]
proposed an approach which utilizes the parallel membrane
computing method and the harmony search method to solve
flexible job shop problems. Information from the best so-
lutions was used to boost the speed of convergence while
preventing premature convergence to a local minimum.

In the second category, a reinforcement learning or
machine learning framework is applied to build a learning-
based model (ANN [11], SVM [26], CNN [27], or others).
Then, the model is trained to master scheduling rules and
complete automatic scheduling tasks. Weckman et al. [3]
developed a neural network (NN) scheduler for JSSP in
which the genetic algorithm was used to generate optimal or
near-optimal solutions for a benchmark problem instance,
and then, an NN was used to capture the predictive
knowledge regarding the sequence of operations. Chen et al.
[28] proposed a rule-driven dispatching method based on
data envelopment analysis and reinforcement learning for
the multiobjective scheduling problem. Mao et al. [29]
presented the deep reinforcement learning method
(DEEPRM) and translated the problem of packing tasks with
multiple resource demands into a learning problem. This
solution has an essential inspiration for solving the JSSP.
Moreover, the initial results show that DEEPRM performs
comparably to state-of-the-art heuristics, adapts to different
conditions, converges quickly, and learns strategies that are
sensible in hindsight. Shahrabi et al. [30] proposed a re-
inforcement learning (RL) with a Q-factor algorithm to
enhance the performance of the scheduling method pro-
posed for dynamic JSSP which considered random job ar-
rivals and machine breakdowns. Nasiri et al. [31] used
discrete event simulation and multilayer perceptron artificial
neural network to solve the open-shop scheduling problem.
Mohammad et al. [9] proposed a data mining-based ap-
proach to generate an improved initial population for
population-based heuristics solving the JSSP. This method
applied a combination of “attribute-oriented induction” and
“association rule mining” techniques to extract the rules
behind the optimal or near-optimal schedules of JSSP. Fi-
nally, their experiments verify the significant amount of FEs
that can be saved using the proposed approach and the
superiority of the proposed method in comparison with the
method of Koonce and Tsai [32].

According to the retrospective literature, none of the
previous studies directly applied deep learning frameworks
to JSSP. This paper creates a convolution two-dimensional
transformation and designs network structure to solve
JSSP.

3. Mixed Integer Programming Model of JSSP

Job-shop scheduling problem (JSSP) can be described as a
mixed integer programming problem.

3
The mathematical description is [33]
min:  C, (1)
st: ) xp =1, Vie Mke({l,,n},
jel
(2)
n
Yxjp=1 VjelieM, (3)
k=1
hy+ Y piXip <hig, Vi€ Mke{l,-,n}, @)
jel

Z rijphi + Z rinPu <V - <1 - Z "ijlxijk>

ieM ieM ieM

+V-[{1- Z TijXije |+ Z rij,l+1hik' >
ieM ieM

Vje]ie Mkk ef{l,---,n},l€1,2,---,m—1,

(5)
h,, + ; PiiXijk <Crar Vi€ M, 6)
hg=0, VYieM,ke{l,---,n}, (7)
xijke{o,l}, VieM,je],kefl,---,n} (8)

The decision variables are defined as follows:

(i) x;j is equal to 1 if job j is scheduled at the k-th
position on machine i

(ii) h;y denotes the start time of the job at the k-th
position of machine i

The parameters are defined as follows:

(i) J is the set of the jobs, and M is the set of the
machines

(ii) n is the number of the jobs, and »n = card ()
(iii) m is the number of the machines, and m = card (M)

(iv) p;; is a non-negative integer which represents the
processing time of job j and machine i

(V) 1;jx = Lif the k-th position of job j requires machine i

The objective function is in (1). Constraint (2) ensures
that each position on each machine is assigned to exactly
one job. Constraint (3) ensures that each job only gets one
position on a machine. Constraint (4) states that the start
time of a job on a machine should be larger than the
completion time of the job scheduled at the previous
position. Constraint (5) is the precedence constraint. It
ensures that all operations of a job are executed in the
given order. In (5), V'is }; Y ep pi; since the completion
time of any operation cannot exceed the summation of the
processing times from all the operations. Constraint (6)



ensures that the MAKESPAN is at least the largest
completion time of the last job on all machines. Con-
straint (7) ensures that the start time of all jobs at all
positions is greater or equal to 0.

4. Hybrid Deep Neural Network Scheduler

4.1. Scheduler Structure. A hybrid deep neural network
scheduler (HDNNS) is designed based on convolution two-
dimensional transformation (CTDT) and hybrid deep
neural network.

The structure of the scheduler is shown in Figure 1.

HDNNS is divided into two sections: training section
and scheduling section.

The training section has six steps (Step 1.1-Step 1.6).
First, a large number of JSSPs are generated according to
the JSSP description in Step 1.1. The description includes
the number of machines m, the number of jobs #, and the
distribution function of processing time F(p). Next, the
generated problems are solved by state-of-the-art
methods (BBM or GA in this paper). Moreover, corre-
sponding scheduling results are generated in Step 1.2. In
Step 1.3, each JSSP is divided into several subproblems,
described as the features of a job processing and the
priority in the machine. Features of job processing gen-
erate the 1D and 2D input data with CTDT in Step 1.4.
Moreover, the priority in the machine generates onehot
target data in Step 1.5. Finally, the scheduler training is in
Step 1.6.

The training section has five steps (Step 2.1-Step 2.5).
First, Step 2.1 is started when a new JSSP requires to
schedule. Then, 1D input and 2D input can be produced by
generating subproblem operation (same as Step 1.3) and
convolution two-dimensional transformation operations
(same as Step 1.4). In Step 2.4, we use a trained neural
network to obtain the priority of each process in each job
corresponding to the input of two groups of the neural
network. In Step 2.5, a complete scheduling result is created
with all priority results taken into account.

4.2. Mathematical Representation of Standard Solver and
Division of Subproblems. Combined with the MIP de-
scription of JSSP in Section 3, all solvers are abstracted as
follows:

X,H =S(P,R). (9)

In (9), X is the set of 0-1 decision variables Xijko H is the
set of integer decision variables /., P is the set of processing
time data p;;, and R is the set of operation requiring data r;;.
And S(-) can be any scheduler for JSSP, such as genetic
algorithm (GA) [14], branch and bound method (BBM) [34],
and tabu search algorithm [13].

In order to improve the generalization performance of
the model, HDNNS classifies a complete JSSP into several
subproblems. Specifically, each subproblem determines
the priority category on machine of the job processing
process:
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A, =S(P,R, F,]) (10)

In (10), Fj; is the processing feature of job j’s k-th
position in machine i and the relationship between the
job’s position and the machine is given by R. S(-) is a
subproblem scheduler from the S() in (9), and
;&ij €{1,2,---,n} is the integer priority of job processing
on the machine (if in schedule result X, job j is processed
in the order k in machine i, then A;; = k). The genera-
tion of Fj; and A;; will be introduced in Sections 4.3 and
4.4.

The subproblem generation process is shown in Figure 2.

4.3. Convolution Two-Dimensional Transformation

4.3.1. Definition of One-Dimensional Features. This paper
designs a convolution two-dimensional transformation
(CTDT) to extract scheduling features. Convolution
operation is commonly used to extract features in the
field of artificial intelligence and image processing
[35, 36]. Many scholars believe that deep convolution
operation is an effective way to extract complex combined
features [37]. The CTDT is proposed to transform the
irregular data in scheduling process (which cannot be
convoluted directly) into regular data by the form of
Cartesian product.

First, we define the 1-dimensional matrix relative ma-
chine processing time p' from P as

!
p = [Tl,l’Tl,Z"">T1,j2""’Tl,n""’le,jz""’Tn,n]'
(11)
In(11),T; ;. ji> jo € ] is the ratio of processing time of
job j, to that of job j,, which are represented as follows:
o YiesPij,
el Y pij,
P! will provide the scheduler with relative information about
the processing time of jobs.

Then, we define the 1-dimensional matrix’s earliest start
time E! from P and R as

(12)

1
E =[elk,ezk,‘",ejk,"',enk]. (13)

In (13), €jk> jel,ke{l,2,---,n}, is the earliest start
time of job j’s k-th position shown as follows:
€jk = Z Tijier Pijicr - (14)
ieM,k*€{l,2,,k—1}
In (14), P! provides the urgency information of jobs.
Similarly, we define the 1-dimensional other features F! i
as

1 * * %
Fij :[fij,l’fij,Z""’fij,Nf:I' (15)

In (15), Ffj consists of a series of important features in
reference and application. N ; is the number of the features,
and in this paper, N =10. The features are given in
Table 1.
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FIGURE 1: Structure of HDNNS. The contributions of this paper are reflected in the yellow, red, and blue structures.
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FIGURE 2: Generation of the subproblem.
In Table 1, the variables in tables are defined as follows: TP _
7= P (18)

Ttotal _ Z pij ,

ieM,je]

;™ = Z Pij

ieM

(16)

(17)

Jel

In (16)-(18), T is the total processing time, T;™" is the
processing time of machine 7, and T?p is the processing time
of job j.
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TaBLE 1: Description and formula of hybrid deep neural network input.
Feature Description Formula
fin Position order [3] kin
f 1*12 Ratio of machine index i to machine number m [23] ilm
f:‘]3 Ratio of job index j to job number n [23] jin
f;j,4 Remaining processing time of job j [3] (T;jp - ejk)/T;jp
I Ratio of operation processing time pij to total JTtotal
ij.5 processing time [23] Pij
I Ratio of operation processing time p;; to processing /TP
ij,6 time of machine i [23] Pijlti
I Ratio of operation processing time p;; to processing TP
i17 time of job j [11] Pt
£ Ratio of processing time of machine i to total TP ptotal
ij8 processing time [11] i
£ Ratio of job j’s processing time to total job processing TP ptotl
ij,9 time J
£ Ratio of job j’s processing time to processing time of TP jpemp
ij,10 machine i jii
References indicate that this feature has been used in the corresponding literature.
4.3.2. Convolution Two-Dimensional Transformation and L. ifk=A4.
Definition of Two-Dimensional Matrix. Cartesian product 55,‘, -1 v (22)
operation can combine linear features and convert one- ! 0, if k+A;;.

dimensional feature data into two-dimensional feature data.
This paper designs convolution two-dimensional trans-
formation (CTDT) based on Cartesian product.

The transformation is described in

DX = T(mll,mlz,oc,ﬁ) = sigmoid(cx- (ml1 X mlz)ﬁ>,

m! ml,
(19)

mllxmlzz{x-ylxemll,/\yeml}. (20)

In (19), m} and m) are the two one-dimensional features
and X is the sign of Cartesian product; the mathematical
definition is shown in (20). & and § are the parameters of this
transformation. sigmoid(-) is a nonlinear activation func-
tion. This function will match the model parameters and
extract new features in different horizons. The sigmoid
function is shown in

1

. 21
1+e™ (2D)

sigmoid (x) =

In (21), x is a matrix.

An example of a T'(-) function is shown in Figure 3.

In Figure 3, m} and m) are the two one-dimensional data
like P, E', and F! ; in Section 4.3.1. The Cartesian product of m

and m), is m} x m}. Three sets of parameters are used to

normalize m) x m), in Figure 3. Different parameters mean that
the model pays attention to different data scales, which helps

the model to discover the characteristics of different scales.

4.4. Training Labels. HDNNS transforms the scheduling
problem into classification problems. So, this paper uses
onehot encoding [38] to define training labels.

Job i’s k-th position (one machine j) onehot priority label
55.‘]. is shown in (22). Three examples are given in Figure 4:

In (22), A;; is the number of positions in job i machine j,
defined in Section 4.2.

4.5. Structure of Hybrid Deep Neural Network Scheduler.
In this section, an innovative hybrid deep neural network
structure for JSSP is introduced.

As shown in Figure 1, the inputs of the hybrid deep neural
network scheduler are one-dimensional input Inputl, two-
dimensional input Input2, and target input Target.

The expression is shown in

Inputl = Fij,

2d 2d 2d 2d 2d 2d
Input2 = | Dpi pis Dpi gis Dpi gt s D gis Digy gt s Dyt |,
ij > ij i ij

Target = 0;;.
(23)

The general structure of the network is shown in
Figure 5.

In Figure 5, the left side of the structure diagram is the
input part of the network.

For Inputl, HDNNS uses L1 layers (fully connected
layer) [39] (FCL in the figure) to preliminarily extract one-
dimensional features. As shown in Figure 5, the output of the
g-th layer is defined as D; and the output of the final layer is

D4, The fully connected layer is a typical combination of
neurons in the deep convolution network [39].

For Input2, HDNNS uses L1 layers (convolutional layer)
[39] (CL in the figure) to preliminarily extract two-di-
mensional features. The size of the convolution kernel [39] is
set to 3 * 3. As shown in Figure 5, the output of the g-th layer
is defined as D? to DY in different features in (23) and the
weight of the g-th layer is defined as Wg to Wg.
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T(mll, mlz, a, f3) = sigmoid (e - (mll X mlz)ﬁ)

mh x mb = {(x, y)|x € mh, Ay € mh}

T(mh, mh, 1,1/4)

T(mh, mb, 1,1/2)

/I>

T(mll, mlz, 1, 3/4)

FIGure 3: Concise sketch map of linear structure.
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FiGURE 4: Concise sketch map of linear structure.

At the L1 + 1th layer of the network, one-dimensional
features and two-dimensional features are combined by
flattening operation in the flattened layer [40], described as

M A A B B G G
Diy= ZWLLq "Dy + ZWLLq Dyt ZWu,q -Dpy
(24)

In (24), Wfl’q, Wfl’q,---,andwg’q are the network
weights of layers FCLL1, CL1.L1,---,CL6.L1 and q is a
neural index.

After L2 fully connected layers, the feature passes
through a Softmax layer [39] containing only n neurons.

This layer converts the feature signal into a meaningful
probability description o;;. 0;; has the same shape with the
target 0;;. However, o;; is not a 0-1 variable, but a con-
tinuous quantity, which satisfies of} € [0-1], where
pef{l,2,---,n} 05 can be interpreted as the possibility of
selecting priority p.

After defining the structure of the neural network, we use
the error backpropagation (BP) method [39] to train the
network parameter.

A trained neural network can be described as a function
mapping in the scheduling section of Figure 1, which is
shown in the following formula:
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-~ FCL FCL
P.4 Ll+1 L1+12
el i D%, Flatten g Q
Inputl Ffj .= % lyer % >:4
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FIGURE 5: Schematic diagram of a hybrid deep neural network structure.
0;j = DNNS (Input1, Input2). (25) neural network scheduler, and the most reliable judgment is

In (25), DNNS(:) is the deep neural network
scheduler and the input function is Input1l and Input2 in
Figure 1 and (23). The o;; is the possibility that the current
subproblem belongs to each priority. There are n pri-
orities, so there are n elements in o;j, each of which is

described as
ofj = p(xijk ==1 |Input1,1nput2),
k € {1:2)"'>n}’
Inputl = Fﬁj,
Input2 = [fofl,pz, D;‘zi)Ez, Df}‘lj,FI_) DéﬁEl’Dé(li,Fl.) D;?.,F’..]'
ij if i ij

(26)

4.6. Scheduling Sequence Generation Method. In (10), the
whole problem is decomposed into several subproblems. In
this part, a scheduling sequence generation algorithm
combines the solutions of the subproblems into a complete
solution of JSSP.

The pseudocode description of the method is shown in
Algorithm 1.

In Algorithm 1, each cycle for i will determine the
scheduling order of one machine. Each cycle for j will
determine the scheduling sequence of one job in the ma-
chine i.

When determining the order of jobs, in Step 7, the al-
gorithm first chooses the most assured judgment of the

the output probability closest to 1. In Step 8 and Step 9, when
the job I; is selected as priority I, the other data of job I;
and priority I, are set to 0 according to constraints (2) and
(3) to avoid the conflict in the next loop. In Step 9, the
algorithm updates the value of the output matrix.

4.7. Generalization Performance of HDNNS. HDNNS al-
gorithm has a reliable generalization. Specifically, we can
easily extend the training results of smaller-scale JSSPs
(the number of machines is small) to solve larger-scale
JSSPs (the number of machines is significant). Such
characteristics give HDNNS a unique advantage. When
the solution of a large-scale problem is difficult to be
generated by the existing methods, HDNNS can use the
solution of a small-scale problem to train the network and
then use the trained model to schedule a large-scale
problem.

In (26), the input parameters of the trained scheduler are
composed of two sets of data, one of which is one-di-
mensional data and the other is two-dimensional data
generated by CTDT. For all inputs, as the number of ma-
chines increases, the input and output structures of the
neural network will not change.

Although the absolute value of the parameter changes,
the correlation between the parameters still exists. The
scheduler will use these features with relationship to com-
plete the scheduling. Of course, the more significant the gap
between the scale of training data and the scale of actual
scheduling data, the bigger the error of results. This paper
will discuss it in the experiment.
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Require:
(1) Priority matrix, O;
(2) Number of jobs, n;
(3) Number of machines, m;

(4) Fori=0;i<m;i++do

6) For j=0;i<mi++do

(12) End for
(13) Return X;

Ensure: Scheduling output matrix, X; init the scheduling output matrix X: X = zeros((m,n,n))

(5) Init the temp matrix Temp : Temp<—Oi.‘j,i €ke{l,2,---, n}

(7) Find the most accurate judgment of neural network in machine 7, and get the index I; and
I+ 1,1, — findMaxNumber (Temp)

8) Set the Temp’s IJ line to zero: TempI «—0,{1,2,---,n}

9) Set the Temp’s I column to zero: TempI «—0,je]

(10) X[i,1,1,)—1

1) End for

ALGorITHM 1: Scheduling sequence generation algorithm.

5. An Example of HDNNS

In this section, we illustrate HDNNS with an example
(m=6,n=28).

In the training section of Figure 1, we generate a series of
JSSP and solve them as the training data.

An example of algorithm generation of JSSP is described
as Tables 2 and 3.

Tables 2 and 3 describe a 6 %8 JSSP, and Figure 6
shows the Gantt chart of the optimal solution (with
BBM). In Table 2, the number in line j and column k is the
time required for job j’s k-th position. In Table 3, the
number in line j and column k is the machine required for
job j’s k-th position.

In Figure 6, the horizontal axis is the time axis and the
ordinate axis is the machines axis. Each block represents a
processing, and different colors represent different jobs. The
text j - k in the boxes means that the processing of job j’s k-th
position starts at the time of the left side of the block and
ends at the right side of the block.

Then, 48 subproblems are generated according to (10).
One-dimensional and two-dimensional features are
extracted for each subproblem, and training data such as
(23) are generated in Table 4.

Six groups of two-dimensional features are selected for
visual display, and the pictures are shown in Figure 7.

Six groups of matrices generated by CTDT are shown in
Figure 7. Among them, (a), (c), and (e) have a high priority
and the other three have a low priority.

In this extreme case of the highest priority and the lowest
priority, it is easy to find that images with the same priority
have a lot in common. In general, the hue of matrix D%}

D2d

PLE?
and D - in (a), (¢), and (d) is darker and that of

U ij
PIF,,D”F,,D ! . in (b), (d), and (e) is brighter.
i ij

The remaining three matrices describe the whole problem
rather than the subproblem. Therefore, the same graphics
are shown in different subproblems.

FI>

matrix D

Although identifying similar priority categories is more
difficult for human beings, our deep learning-based
scheduler can effectively extract the priority information.

After training the network with the data in Table 4, we
get a scheduler that can respond quickly. When a new
scheduling problem arrives, the scheduler processes the
problem according to (25) and gets the priority matrix O.
For this problem, the output example of matrix O is shown
in Table 5.

Finally, the scheduling sequence generation algorithm is
used to process the output matrix and the scheduling order X
and the time result in Figure 6 can be obtained.

6. Results and Discussion

6.1. Parameters and Effect Experiment. In this part, the
training process of HDNNS and the influence of different
parameters on HDNNS are discussed.

Dataset ZLP (7  7) [41] is used in this part to validate the
effectiveness of the method effectively. ZLP (7 % 7) dataset
contains 2000 7 « 7 (m = 7,n = 7) JSSPs, and it corresponds
to solutions.

This experiment trains the scheduler with the first 1500
questions and labels and then tests the scheduler with the last
500 questions. The learning rate of the network is 0.01. The
training process curve is plotted in Figures 8-10.

In Figures 8-10, the horizontal axis is the number of
training loops and the vertical axis is the classification
correctness, classification loss, and MAKESPAN [22]
(completion time of processing). The curves of different
colors represent the experimental results obtained by
choosing different model parameters L1 and L2. Among
them, the loss evaluation index calculation formula is

L(0,0) = —log P(o|Inputl; Input2)
Niw n (27)
Ve log (o,
Ntest c=1 ];1 k k)
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TaBLE 2: Processing time of the example 6 % 8 JSSP.
Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
Job 1 15 26 18 11 25 12
Job 2 24 12 23 12 28 13
Job 3 22 29 12 27 20 15
Job 4 27 26 13 21 15 29
Job 5 11 29 21 12 24 18
Job 6 26 17 19 16 27 28
Job 7 24 29 18 27 14 23
Job 8 14 12 18 24 17 22
TaBLE 3: Processing order of the example 6 * 8 JSSP.
Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
Job 1 6 5 4 2 1 3
Job 2 3 6 2 1 4 5
Job 3 2 1 4 3 6 5
Job 4 2 1 3 5 4 6
Job 5 5 4 2 3 6 1
Job 6 3 6 2 4 5 1
Job 7 5 1 3 2 4 6
Job 8 4 6 3 1 2 5
5 | |4.4||346| 6.5 | |8.6|
g 4] [81] 52 [13(33 25 |45]64
¢+ lEETE [ (o6 W
s 3 | 2.1 | 6.1 | 8.3 | |4.3| 3.4 |5.4 1.6
2 | 3.1 | 4.1 | 23 |1.4| 53 | 63 |
1] [ 32 [ a2 |2.4- 15 | 84 [s6] 66 |
0 50 100 150 200
Time
FiGURE 6: Gantt chart of current JSSP.
TaBLE 4: Data example of training deep scheduling neural network scheduler.
i j k  Inputl Input2 Target
] 2d 2d 2d 2d 2d 2d
6 1 1 B, D¥y D¥y Dy Dify D, DX, 1 0 0 0 0 0 0 0
1 2d 2d 2d 2d 2d 2d
5 1 2 F, DY, DY, DY, D{, Df, Di, 0o 1 0 0 0 0 0 0
1 2d 2d 2d 2d 2d 2d
4 1 3 Fiy  Diy Dy Dy, Dy D, D, 0o 0o 1 0 0o 0 0 0
1 2d 2d 2d 2d 2d 2d
3. 1 4 B, D¥y D¥y Dy Diy D, DX, 0 0 0 1 0 0 0 0
5 8 6 Fyo  Dyly Dyly Dy, Dy Dif, DY, 0 0 0o 0 0 o0 0 1
In (27), 0 is the target output, o is the probabilistic The three figures show that the performance of the model

description of current features belonging to various classi-
fications, and L(-) is the loss function. y is the bool value,
and this value indicates whether the target class of input
features Input1, Input2 instance is k. o, is the probability of
input features Input1, Input2 belonging to class k predicted
by the model. There is a one-to-one mathematical re-
lationship between o and offj in (26).

improves gradually with the increase of the number of training
cycles. This improvement can be achieved until the classifi-
cation accuracy reaches more than 90% and the model loss
reaches less than 1. Moreover, the disparity between the
scheduling result and the optimal solution reaches less than 5%.
The above experiments show that the HDNNS can effectively
train the scheduler to complete the JSSP scheduling task.
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Difp Dif'y,

Dy
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FIGURE 7: Feasibility analysis of CTDT. (a) Subproblem of i =3, j =1,k = 6. (b) Subproblem of i =6,j =1,k = 1. (c) Subproblem of
i=5,j=2,k=6.(d) Subproblem of i =2, j =4,k = 1. (¢) Subproblem of i = 6, j =7,k = 6. (f) Subproblem of i =4, j=5,k=1.

Seven groups of different model parameters were se-
lected and tested. The experimental results show that among
all the parameters, L1 = 3 and L2 = 12 have better results.
When L1 = 3 and L2 = 12, the classification accuracy of the
centralized test is more than 93%, the loss is less than 85%,
and the gap of MAKESPAN is less than 4%.

6.2. Confusion Matrix of the Result. In order to measure the
effectiveness of HDNNS, this paper compares it with the
classical ANN [3] method.

Dataset ZLP (7 = 7) [41] is used in this part to train two
kinds of neural networks. This experiment trains the

scheduler with the first 1500 questions and labels. Then, this
experiment tests the scheduler with the last 500 questions.
For HDNNS, the size of the convolution kernel is 3 * 3, and
L1 =3, L2 =12, and learning rate is 0.01. For the ANN
method, the ANN structure is 11-12-10-7 and learning rate
is 0.01.

The classification confusion matrix of ANN and HDNNS
(the output of Step 2.4 in Figure 1) is shown in Tables 6 and 7.

In Tables 6 and 7, the line i and column j is the number of
times that the job with the ith position of the machine has
been assigned to the jth position of the machine. The priority
of job 2 in machine 1 is 2, meaning that this job is in the
second position of machine 1’s processing. If a scheduler
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TaBLE 5: Output example of training deep scheduling neural network scheduler.

Job info Output
i J k pxj=1)  plxp=1 plxsz=1 plxu=1) plxs=1 plge=1  plx;=1  plxg=1)

6 1 1 0.860 0.140 0.000 0.000 0.000 0.000 0.000 0.000
5 1 2 0.162 0.573 0.236 0.029 0.000 0.000 0.000 0.000
4 1 3 0.004 0.143 0.142 0.544 0.305 0.005 0.000 0.000
3 1 4 0.028 0.200 0.724 0.020 0.028 0.000 0.000 0.000
5 8 6 0.000 0.000 0.000 0.000 0.020 0.000 0.265 0.735
1 l——————""
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F1Gure 8: Classification accuracy change diagram during training
under different parameters.
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FIGURE 9: Loss change diagram during training under different
parameters.
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Figure 10: MAKESPAN change diagram during training under
different parameters.

classifies the location of job 2 in the machine 1 as 2, one will
be added to the second row and the second column of the
confusion matrix. If a scheduler classifies the location of job
2 in the machine 1 as 3, one will be added to the second row
and the third column of the confusion matrix. Therefore, the
larger the number on the diagonal line, the higher the ac-
curacy of the model.

The bar figure of the confusion matrix is shown in
Figures 11 and 12.

Tables 6 and 7 and Figures 11 and 12 show that the
classification performance of HDNNS is better than ANN.
On the stability of classification, two methods can classify the
highest and lowest priority jobs more accurately because the
boundary of classification will introduce less noise in-
terference. However, the classification accuracy of each
priority of the HDNNS method is more stable. The accuracy
of classification results of the HDNNS method fluctuates
between 88% and 98%. In terms of classification accuracy,
HDNNS can achieve 90% classification accuracy. It is better
than 60% of the ANN method.

The essence of the learning-based method is to estimate
the probability from input to output by finding the implicit
relationship between them. Because the ANN method does
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TaBLE 6: Confusion matrix table of the ANN.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5 Priority 6 Priority 7
Priority 1 621 66 11 0 0 0 2
Priority 2 35 543 85 12 5 1 19
Priority 3 30 70 436 96 17 21 30
Priority 4 5 14 153 357 74 24 73
Priority 5 2 6 11 198 363 62 58
Priority 6 7 1 4 34 176 457 21
Priority 7 0 0 0 3 65 135 497
Classification accuracy 0.89 0.78 0.62 0.51 0.52 0.65 0.71
Total accuracy 0.67

TasLE 7: Confusion matrix table of the HDNNS.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5 Priority 6 Priority 7
Priority 1 683 14 1 0 0 0 2
Priority 2 15 639 26 3 5 1 11
Priority 3 2 32 641 17 0 3 5
Priority 4 0 8 24 615 21 0 32
Priority 5 0 7 4 48 621 12 8
Priority 6 0 0 4 14 26 634 22
Priority 7 0 0 0 3 27 50 620
Classification accuracy 0.98 0.91 0.92 0.88 0.89 0.91 0.89
Total accuracy 0.91

621

496.8

372.6

Times

248.4

Times

os1o™

FIGURE 12: Confusion matrix bar graph of HDNNS.
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not consider the depth of local features combination, its
effect is not ideal. For example, the p;; has no noticeable
effect on its priority. However, the combination of p;;, the
pij/T;™ , and the T;"*/T*" has a more significant impact
on the final output.

The traditional neural network does not have strong
ability to deal with combined features. Thus, ANN is dif-
ficult to achieve effective training because of the disap-
pearance of the gradient [36]. In this paper, deep
convolutional network is introduced into the scheduling
problem to solve the problem of learning and training
combined features, which improves the accuracy of net-
work classification.

6.3. MAKESPAN and Time Consumption Comparisons in ZLP
Dataset. JSSP scheduling methods are divided into two
categories: population-based (gene-based) method and
learning-based method. The population-based (gene-
based) method obtains the near-optimal solution by
updating the solutions set. The effect of this method is
often better than the other two algorithms. Because iter-
ation will produce a lot of time cost, this kind of method
can often get excellent scheduling results. Therefore, this
subsection does not compare population-based (gene-
based) methods.

This subsection will discuss the performance of HDNNS
algorithm from the above two aspects. This part tests the
performance of deep reinforcement learning (DEEPRL)
[29, 42], deep Q learning (DQN) [43], artificial neural
network (ANN) [3], Hopfield neural network (HNN) [44],
stochastic processing time (SHPT) [45] method, and
shortest processing time (SPT) [46] method.
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The dataset is ZLP dataset [41], which contains 2000 8 * 8
JSSPs (m = 8, n = 8) and 13 % 13 JSSPs (m = 13, n = 13). The
solution of JSSPs above is generated with the BBM method
[47]. The processing time matrix p of each JSSP satisfies the
uniform distribution U (a,b). For HDNNS, ANN and the
first 1500 JSSPs are used in the training section. The last 500
JSSPs are used in scheduling section to test the performance
of the model. The DEEPRM method is trained by interacting
with the JSSP model. The size of the convolution kernel is
3% 3,and L1 = 3 and L2 = 12. The learning rate of HDNNS,
ANN, and DEEPRL is 0.01. The number of learning epochs is
100. For HNN, SHPT, and SPT, the performance of the
method is tested directly with the last 500 data. The ex-
perimental environment is Lenovo k4450, Ubuntu 16, CPU
4700 2.1 MHZ, Python, and Tensorflow.

The results of the experiment are shown in Table 8. Four
indexes are discussed in the table: average MAKESPAN,
scheduling score, scheduling time, and training time. The
scheduling score is calculated according to

M(Optimal’ D)

__\pimab T/ (28)
M (Current’ D)

S(A,D) =

In (28), the scheduling capacity S(A, D) of current al-
gorithm A in database D is defined as the ratio of the average
optimal MAKESPAN M (Opipm,» D) to the current algo-
rithm’s MAKESPAN M (C,,,en0 D).

Eight groups of JSSPs are tested in Table 8. The first four
groups are 8 * 8 JSSPs, and the last four groups are 13 %13
JSSPs. Each problem is generated by random-based function,
and its processing time satisfies the uniform distribution
p~U(a,b).

For the learning-based method (HDNNS, DQN,
DEEPRL, and HNN), the time consumption is divided into
training time and scheduling time. The training time is the
total time needed for 100 epochs of model training. The
scheduling time recorded the total time of testing 500
JSSPs.

The ANN method is tested in two cases, one (ANN (1D)
in proposed in [3]) using only one-dimensional feature as
the input feature and the other (ANN (ALL)) using flattened
one-dimensional features and two-dimensional features as
input features. ANN (1D) has a smaller network structure, so
it has faster training efficiency and scheduling efficiency.
Although the scheduling results of ANN (ALL) are better
than that of ANN (1D), its training time is significantly
improved with the JSSP scale. It is because the network
structure of ANN has no advantage in dealing with complex
scheduling information. Moreover, it cannot adequately deal
with the relationship between the combination features and
the output. In general, the scheduling effect of ANN network
is better than the SPT method and STPT method.

Hopfield neural network (HNN) can also effectively
obtain the scheduling results. But, unlike ANN, HNN seeks
stability point through evolution and achieves the purpose of
scheduling. HNN has a good effect on small-scale problems
but suffers from the resolution of large-scale problems.

DEEPRM and DQN are scheduling methods based on
reinforcement learning (DEEPRM’s network structure is the

Computational Intelligence and Neuroscience

same as that of HDNNS, and DQN use a standard deep
network). These methods do not need labeled training data
in the training section, but they need much interaction with
the scheduling environment. In most cases, interaction
learning is much slower than learning through training data.
For JSSP which has easy access to label data, DEEPRM and
DQN have disadvantages in training efficiency.

HDNNS is stable in different processing time distribu-
tions p~N(a,b) and different problem scales m and n.
Moreover, the scheduling ability is maintained at 90% of the
optimal solution, which is superior to the same ANN and
HNN. Although the training time of HDNNS is longer than
that of ANN (1D), it does not affect the real-time scheduling
of the scheduler in applications because the training phase
can be completed beforehand. Considering the scheduling
performance of all the algorithms, HDNNS has significant
advantages.

6.4. MAKESPAN and Time Consumption Comparisons in
Traditional Dataset. This subsection uses the same methods
as in Section 6.3 to solve the classical JSSPs, which include
ft10 [48], {t20 [48], la24 [49], la36 [49], abz7 [50], and ynl
[51].

The experimental procedure is as follows. First, 2000
JSSPs of the same scale as the under test JSSP are generated.
Then, the state-of-the-art method is used to find the optimal
solution (near-optimal solution) as the training data. In this
experiment, the solution of smaller JSSP (ft10, ft20, la24) is
generated by the BBM method [47]. Moreover, the solution
of larger JSSP (la36, abz7, ynl) is generated by the GA
method. The first 1500 JSSPs are used in the training section.
The last 500 JSSPs are used in scheduling section to test the
performance of the mode.

The DEEPRM method is trained by interacting with the
JSSP model. The learning rate of HDNNS, ANN, and
DEEPRM is 0.01. The number of learning epochs is 100. The
experimental environment is Lenovo k4450, Ubuntu 16, and
CPU 4700 2.1 MHZ.

The test results are shown in Table 9.

The structure of Table 9 is the same as that of Table 8. The
first column shows the optimal solution. Six popular JSSPs
are tested in Table 9. The brackets below the JSSP name
indicate the size of the problem.

Testing with separate test questions introduces ran-
domness, so we recommend using the average of a large
number of test results to measure the effectiveness of the
algorithm (like ZLP datasets).

6.5. MAKESPAN Comparisons with Traditional Classification
Algorithms. In this subsection, several traditional classifi-
cation methods are used to compare with HDNNS.
HDNNS is essentially a classification-based method, so it is
necessary to compare it with some traditional classification
methods. We replace the deep neural network scheduler in
Figure 1 with other classification methods and measure its
effect.

In this experiment, we test k-nearest neighbor (KNN)
[52], support vector machine (SVM) [26], decision tree (DT)
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TaBLE 9: Comparison of HDNNS with other methods on traditional datasets.

Optimal ~ HDNNS (our) DQN DEEPRM  ANN (ID)  ANN (all) STPT SPT
MAKESPAN 930 1023 1023 1025 1154 1054 1152 1169
ft10 Scheduling score — 90.91 90.9 90.7 80.5 88.2 80.7 79.5
(10 = 10) Training time — 1804.5 13321.7 12212.2 426.1 3245.6 — —
Scheduling time — 3.6 3.9 3.8 1.2 4.7 1.0 1.0
MAKESPAN 1165 1391 1342 1317 1524 1504 1434 1544
ft20 Scheduling score — 83.7 86.8 88.4 76.4 77.4 81.2 75.4
(20 +10) Training time — 3954.1 16532.1 17548.3 436.5 4689.5 — —
Scheduling time — 7.6 7.4 7.2 2.4 9.2 1.9 1.9
MAKESPAN 935 1056 1088 1071 1564 1564 1580 1569
la24 Scheduling score — 88.5 85.9 87.30 59.7 59.7 59.1 59.5
(20 * 10) Training time — 3976.5 16844.3 16254.5 487.6 4684.4 — —
Scheduling time — 7.6 8.2 7.3 2.5 2.5 1.9 1.9
MAKESPAN 1268 1318 1465 1465 1721 1721 1729 1729
la36 Scheduling score — 96.2 86.55 86.5 73.6 73.6 73.3 73.3
(15 % 15) Training time — 15318.1 63172.0 62251.4 578.5 21688.1 — —
Scheduling time — 38.4 39.3 39.2 3.3 42.5 8.3 7.2
MAKESPAN 665 726 739 720 940 940 980 1026
abz7 Scheduling score — 91.6 89.9 92.3 70.7 70.7 67.8 64.8
(20 * 15) Training time — 22124.2 90584.4 92584.4 683.4 29258.3 — —
Scheduling time — 51.3 48.3 50.24 4.8 89.5 13.3 12.3
MAKESPAN 886 995 1183 1067 1183 1183 1208 1207
ynl Scheduling score — 89.0 74.8 83.04 74.8 74.8 73.3 73.4
(20 % 20) Training time — 30688.8 126689.2 125845.4 536.0 35648.2 — —
Scheduling time — 177.2 188.0 184.5 65.4 194.5 78.4 73.5
MAKESPAN 974.83 1084.83 1140.0 1110.8 1347.6 1327.6 1347.1 1374.0
Average Scheduling score — 90.01 85.5 88.0 72.6 74.1 72.6 71.0
Training time — 12977.7 54523.9 54449 .4 524.7 16535.7 — —
Scheduling time — 47.6 49.1 48.7 13.3 57.1 17.5 16.3
MAKESPAN rank 1 2 5 4 6 7
Training time 2 3 1 5 — —
Scheduling time RANK 4 5 1 7 3 2

[53], extremely randomized trees (ERT) [54], and Gaussian
model (GOSS) [55].

The test dataset is ZLP dataset [41], which contains 2000
15%12 JSSPs (m =15, n=12) and 2000 1518 JSSPs
(m =15, n = 18). The solution of JSSPs above is generated
with the GA method. The first 1500 JSSPs are used as the
training section. Then, the performance of the method is tested
with the last 500 data. The parameters of the above classifi-
cation methods are the default parameters of Python 3’s
sklearn tool kit. The result of the solution is shown in Table 10.

The experimental results show that HDNNS has a
significant advantage over traditional classification algo-
rithms. Although the traditional method has an advantage
in efficiency, it can only achieve the 80% of near-optimal
solution. Therefore, HDNNS has a big advantage in the
framework of this paper.

6.6. Analysis of Generalization Performance. HDNNS has a
good scalability, and a trained scheduler can be used to solve
problems of different machine numbers m. In other words,
models trained with less complex problems can be used to
solve more complex problems. Based on this premise, it is
necessary to measure the generalization of models at dif-
ferent levels of complexity.

This subsection discusses the performance of models
trained with small-scale data in solving large-scale prob-
lems. In the experiment, 1500 JSSPs (labels are generated
with GA) are used as the training section. Then, groups of
larger problems (larger machine number m) are applied to
test the scheduling capability of HDNNS. In order to get a
credible conclusion, the experiment generates 500 different
JSSPs and corresponding near-optimal solution for each
group.

The box diagram of the experiment is shown in
Figure 13.

In Figure 13, each box in the diagram represents a test
result of a group. The top and bottom multiplication symbols
represent the maximum and minimum values in the test.
Moreover, the top and bottom triangles between the mul-
tiplication symbol is the 1% point and the 99% point of the
200 data. The lower and upper bounds of the boxes are 25%
and 75% of the 200 data. The horizontal longer line in the
middle of the box is the median number, and the horizontal
shorter line is the average number.

Figure 13 shows that the closer the scale of test problems
and training problems is, the better their performance wil
be. The average ratio of MAKESPAN obtained by HDNNS
to GA is 0.97, and the MAKESPAN of the scheduling result
is also stable.
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TaBLE 10: Comparison tables with traditional classification methods on ZLP datasets.
Near optimal HDNNS (our) ANN (1ID) KNN SVM DT ERT GOSS
ZLP (15%12) Average MAKESPAN 320.14 334.88 369.68 424.03  426.29 40320  398.69  400.18
p~U (10, 40) Scheduling score — 95.6 86.6 75.5 75.1 79.4 80.3 80
ZLP (15%12) Average MAKESPAN 375.04 398.55 434.57 498.72 51234  482.67  464.73  472.34
p~U (10, 50) Scheduling score — 94.1 86.3 75.2 73.2 77.7 80.7 79.4
ZLP (15%12) Average MAKESPAN 443.97 450.27 513.85 584.94 59996  581.11 547.44  550.15
p~U (10, 60) Scheduling score — 98.6 86.4 75.9 74 76.4 81.1 80.7
ZLP (15%12) Average MAKESPAN 513.13 551.16 591.16 676.95  686.00 64545 636.64 635.85
p~U (10, 70) Scheduling score — 93.1 86.8 75.8 74.8 79.5 80.6 80.7
ZLP (15%12) Average MAKESPAN 560.94 618.46 653.78 751.93 74494 70559 70293  704.70
p~U (10, 80) Scheduling score — 90.7 85.8 74.6 75.3 79.5 79.8 79.6
ZLP (15 18) Average MAKESPAN 476.40 508.43 550.75 617.90  649.05 606.88  597.74  599.25
p~U (10, 40) Scheduling score — 93.7 86.5 77.1 73.4 78.5 79.7 79.5
ZLP (15 18) Average MAKESPAN 571.62 617.97 660.83 737.57 77455 72541  711.86  732.85
p~U (10, 50) Scheduling score — 92.5 86.5 77.5 73.8 78.8 80.3 78
ZLP (15 18) Average MAKESPAN 681.60 745.73 789.80 898.02  926.09 87497  846.71  858.44
p~U (10, 60) Scheduling score — 91.4 86.3 75.9 73.6 77.9 80.5 79.4
ZLP (15%18) Average MAKESPAN 794.26 849.48 920.35 103419 1074.78 1024.85 990.35 1019.59
p~U (10, 70) Scheduling score — 93.5 86.3 76.8 73.9 77.5 80.2 77.9
ZLP (15 %18) Average MAKESPAN 900.40 971.31 1043.34 1176.99 1210.22 1151.41 113831 1151.41
p~U (10, 80) Scheduling score — 92.7 86.3 76.5 74.4 78.2 79.1 78.2
Average Average MAKESPAN 563.75 604.62 652.81 74013  760.42  720.15 703.54  712.47
Scheduling score — 93.59 86.38 76.08 74.15 78.34 80.23 79.34
Average MAKESPAN rank 1 2 6 7 5 3 4

1.2 1

0.8

0.6

Ratio of MAKESPAN to GA and HDNNS

Scale of test problems

Im=15 [] m=18
[Im=16 [ |1m=19 [ |1m=22 [_] m=30
[ Im=17 [ 1m=20 [ 1m=24 [ ] m=35
FIGUure 13: Box diagram of testing the model trained by 1515
dataset with a larger scale problem.

[Im=21 [ ]m=26

With the increase in the number of machines, the
model’s efficiency gradually decreases, which is embodied
in the decline of the excellent degree of the solution and
the stability of the solution. However, the decline in
solving ability is not rapid and unacceptable.

We are happy to see that our scheduler can extract
scheduling knowledge from a simple JSSP and use it
successfully in a more complex scheduling problem.

Specifically, the excellent degree of solutions of all test
problems is greater than 0.86 (average).

7. Conclusion

A hybrid deep neural network scheduler with the char-
acteristics of offline training and online real-time sched-
uling is created in this paper. In this scheduler, we present
two innovations based on the machine learning framework.
One is the convolution two-dimensional transformation
(CTDT), which converts the irregular data in the sched-
uling process into regular data; this enables deep con-
volutional operation to be used to solve JSSP. Another is
hybrid deep neural network structure including convolu-
tion layer, fully connected layer, and flattening layer. And,
this structure can effectively complete the extraction of
scheduling knowledge.

The results show that the MAKESPAN index of
HDNNS is 9% better than that of HNN and is 4% better
than that of ANN in ZLP dataset. The training time of the
HDNNS method is obviously faster than that of the
DEEPRM method with the same neural network structure.
Besides, the scheduler has brilliant generalization ability,
which can solve large-scale scheduling issues with small-
scale training data.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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