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Abstract: Drowsiness detection has been studied in the context of evaluating products, assessing
driver alertness, and managing office environments. Drowsiness level can be readily detected
through measurement of human brain activity. The electroencephalogram (EEG), a device whose
application relies on adhering electrodes to the scalp, is the primary method used to monitor
brain activity. The many electrodes and wires required to perform an EEG place considerable
constraints on the movement of users, and the cost of the device limits its availability. For these
reasons, conventional EEG devices are not used in practical studies and businesses. Many potential
practical applications could benefit from the development of a wire-free, low-priced device; however,
it remains to be elucidated whether portable EEG devices can be used to estimate human drowsiness
levels and applied within practical research settings and businesses. In this study, we outline
the development of a drowsiness detection system that makes use of a low-priced, prefrontal
single-channel EEG device and evaluate its performance in an offline analysis and a practical
experiment. Firstly, for the development of the system, we compared three feature extraction
methods: power spectral density (PSD), autoregressive (AR) modeling, and multiscale entropy (MSE)
for detecting characteristics of an EEG. In order to efficiently select a meaningful PSD, we utilized
step-wise linear discriminant analysis (SWLDA). Time-averaging and robust-scaling were used to fit
the data for pattern recognition. Pattern recognition was performed by a support vector machine
(SVM) with a radial basis function (RBF) kernel. The optimal hyperparameters for the SVM were
selected by the grind search method so as to increase drowsiness detection accuracy. To evaluate
the performance of the detections, we calculated classification accuracy using the SVM through
10-fold cross-validation. Our model achieved a classification accuracy of 72.7% using the PSD with
SWLDA and the SVM. Secondly, we conducted a practical study using the system and evaluated
its performance in a practical situation. There was a significant difference (* p < 0.05) between the
drowsiness-evoked task and concentration-needed task. Our results demonstrate the efficacy of our
low-priced portable drowsiness detection system in quantifying drowsy states. We anticipate that our
system will be useful to practical studies with aims as diverse as measurement of classroom mental
engagement, evaluation of movies, and office environment evaluation.

Keywords: electroencephalogram; single-channel; drowsiness; Karolinska sleepiness scale; portable
system; support vector machine; power spectral density

1. Introduction

Recently, researchers have tried to identify human mental states, such as drowsiness, stress,
and concentration, by electroencephalogram (EEG) [1,2]. EEG is a method of measuring the electrical
activity of the brain by adhering electrodes to the scalp. For drowsiness, the EEG alert/sleep detection
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system has been studied in areas as diverse as driver safety, classroom rating in schools, and evaluation
of workplace environments [3,4].

Previous studies have demonstrated that EEG can detect drowsiness with over 80% accuracy [5–7].
Machine learning and pattern recognition approaches make it possible to detect human drowsiness
in real time [5,8]. By using multichannel EEG devices, information-rich high-quality data can be
obtained and a high accuracy of drowsiness detection can be attained. However, such devices are
difficult to attach to the scalp of users, and application of the gel required for usage of the electrodes is
time-consuming. Moreover, the cost of conventional devices is high. Therefore, for use in practical
situations, such as neuro-marketing and educational fields, a low-priced and portable device is needed
for efficient and cost-effective data collection. In this study, we aim to develop a drowsiness detection
system that can be used with a low-priced and portable device. We used Mindwave Mobile, which
makes use of two dry electrodes and Bluetooth to release subjects from the constraints of conductor
cables. The cost is much cheaper than conventional EEG devices because the number of electrodes
and their required locations are limited (Fp1–A1). Moreover, the EEG signal detected from the
limited locations can be further used for the detection of prefrontal brain activity related to human
experiences such as emotion [9–11]. Despite these advantages, the restrictions imposed by our method
make drowsiness detection more difficult in comparison with other studies that use single-channel
EEG [12–14]. Over the course of this study, we demonstrate that human drowsiness can be accurately
detected using this constrained but useful device. Although conventional multichannel EEG devices
are more accurate in the case of drowsiness detection, usage of the low-cost device investigated in this
paper may be more realistic in particular situations.

Most recent studies on drowsiness detection have focused on human states while driving [7,11].
Detecting driver vigilance has direct repercussions for safety-related businesses. However, an approach
to recording human drowsiness levels using EEG outside of driving situations is necessary for
application of the system to practical situations, such as classroom or workplace environments.
The Karolinska Sleepiness Scale (KSS) is a well-established measure for assessing daytime drowsiness
using subjective scales [15–17]. Similar to visual analogue scales and Likert scales [18], in the KSS,
subjects select a score from 1 to 9 that best reflects their level of sleepiness: (1 = very alert, 9 = very
sleepy). Kaida et al. collected EEG data and KSS scores while subjects either stared at a small postcard
on the wall with open eyes or sat in the same position with closed eyes. They found that the KSS is
correlated with alpha and theta EEG activity when the eyes are open [19]. Other studies have reported
similar results using the KSS and EEG [20–22]. The KSS has also been used for scoring work and
study performance in the fields of clinical and research psychology [23,24]. Hence, we used the KSS
for scoring the human drowsiness state. Combining EEG and KSS to develop a drowsiness detection
system, Muhammad et al. demonstrated that the states of alertness and drowsiness in driving can be
discriminated using EEG and electrooculogram (EOG) [25]. These states can be related to KSS scores
and classified by a support vector machine (SVM) with 76.36% accuracy using only EEG. Zhang et al.
also made use of an SVM for classifying two vigilance states, alertness and drowsiness, in drivers.
In this experiment, they used an SVM with power spectral density (PSD) and obtained an accuracy
of over 90% [11]. According to this research, the support vector-related methods are, even in recent
years, still proving to be powerful tools. Therefore, we used the SVM as the classification method in
this study.

For PSD, alpha and theta bands are known to correlate with drowsiness [1,26,27]. However,
we presume that other frequency ranges have the possibility of contributing to the accuracy of
drowsiness detection. Therefore, we divided and regrouped frequencies more finely in this study.
As the number of frequency features increases, so does the difficulty in selecting meaningful features
from that data. In order to select relevant features, either the round-robin method or an optimization
method, like the genetic algorithm (GA), can be applied. However, these methods require evaluation
functions related to the accuracy of the classification methods, such as SVM. To compensate for the
high calculation cost of these methods, we used step-wise linear discriminant analysis (SWLDA),
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which selects features by using feature distributions rather than classifiers. The method has been
widely used for brain–computer interfaces (BCI) [28,29]. Using SWLDA greatly reduces calculation
cost while still allowing for feature selection prior to the outcome of the SVM. This allowed us to
allocate more time to hyperparameter selection, of which the SVM requires two: C and γ. We used the
SVM at the level of drowsiness classification and selected the appropriate hyperparameters using the
grind search [30,31].

Although PSD is a well-known feature used for drowsiness detection, the autoregressive (AR)
model and entropy-based methods have also been used for fatigue detection or sleep stage classification
in recent studies [32–34]. Therefore, we compared these features with PSD to determine the best
features for usage in the development of a single-channel drowsiness detection system. Each of the
aforementioned features extracts characteristics from time-series data differently. The AR model has
the advantage of extracting better spectral resolution for short data segments compared with PSD.
Entropy is a nonlinear parametric method which quantifies the complexity of a time-series signal.
Entropy can evaluate nonlinear, unstable, and dynamic EEG signals [32]. Single-channel EEG yields
less information than multichannel EEG, hence, we computed multiscale entropy (MSE) as a feature in
this study.

To assess whether the drowsiness detection system can be applied within practical studies and
businesses, a method of evaluation needs to be established through determination of standard criteria.
There are two criteria appropriate for our evaluation: classification accuracy in the case of offline
analysis and significance of the difference between conditions in practical experiments. Classification
accuracy has previously been used for assessing the performance of pattern recognition classifiers,
such as the SVM. In our study, we made use of 10-fold cross-validation to calculate classification
accuracy, with consideration given to the overfitting characteristic of pattern recognition methods.
A classification accuracy of 70% is the cutoff often explicitly or implicitly chosen as the threshold value
for binary classification problems in BCI [35,36]. Using these criteria, we divided our EEG data set into
two classes (alert/drowsy) and calculated classification accuracy. Although there is an established
criterion for classification accuracy, it is unclear whether a system attaining this goal can be used
practically in business and marketing. Therefore, we additionally calculated the significance of the
difference between our conditions, a method that has been widely applied in the evaluation of practical
experiments, such as sleep studies and neuro-marketing [19,37,38]. By considering the significance of
the difference between conditions in a practical experiment, we ensured that our model maintains a
suitable level of classification accuracy outside of model development conditions.

This paper is organized as follows. Section 2 describes the model used to estimate the drowsiness
level from EEG data. This section also includes a comparison of PSD, AR modeling, and MSE, along
with the classification performance results. The section goes on to demonstrate that our chosen method
used for our drowsiness detection system has the best performance of the methods compared. Section 3
presents an application of the developed model in the form of a practical experiment. The results of the
experiment, in which participants took part in either a drowsiness-evoking task or a concentration-needed
task, are presented. The significant difference in the drowsiness estimates of our model between the two
conditions serves to demonstrate that our model can correctly classify level of drowsiness. Section 4
discusses the results of these evaluations and Section 5 presents our conclusions.

2. Model Development

2.1. Materials and Methods

2.1.1. EEG Recordings

We used a single-channel EEG device (MindWave mobile BMD version, Neurosky Inc., San Jose,
CA, USA) shown in Figure 1a. The device transfers the EEG measurements to a smart device via
Bluetooth. We used an iPad Air2 (iOS 11.4.1, CPU:Apple A8X, RAM:2GB) as a recording device.
The sample rate of the EEG device used was 512 Hz. The data were saved by an iOS application we
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developed. A 50 Hz notch filter was applied by the EEG device. The dry electrodes of the device
were placed on the fixed locations Fp1 and A1 in accordance with the international 10–20 system
depicted in Figure 1b [39]. The active electrodes used were composed of sintered Ag/Ag-Cl material.
We selected our EEG device on the basis of its price, which is around 100 USD, making it cheaper
than other devices on the market. Although Fp1 is known as a suboptimal location for detecting
human drowsiness, EEG measurements taken at Fp1 have been demonstrated to be correlated with
drowsiness [40]. Furthermore, it is well-established that frontal area activity correlates with human
emotion and stress [41,42]. When drowsiness can be estimated using the measurements from Fp1,
the EEG can be used to infer other mental states of the user. Finally, the signal quality from the frontal
area is better than that of other locations because the electrodes can be attached to the scalp directly
without hair disturbance.

(a)

Fp1 Fp2

A1 A2

O1 O2

Cz

Fz

Pz

C3T3 T4C4

F7 F8

T5 T6

F3 F4

P3 P4

(b)

Figure 1. (a) The portable electroencephalogram (EEG) device makes use of two electrodes, one of
which is positioned on the left prefrontal region (Fp1) and the other of which is positioned on the left
earlobe (A1). EEG data are transferred to a smartphone via Bluetooth. The portable device uses a
lithium-ion rechargeable battery; (b) the international 10–20 system and the measurement points used
by our device (Fp1–A1).

2.1.2. Experimental Procedure

The experiment was approved by the Ethical Review Committee of Dentsu ScienceJam Inc.
(approval number 005). Twenty-nine healthy subjects took part in our experiment (13 females and
16 males, mean age = 30.9 years, SD = 11.6). Subjects did not have any mental diseases or psychological
disorders. All subjects were non-smokers and were asked to abstain entirely from intake of caffeine,
nicotine, and alcohol for the duration of the experiment. We asked them to provide recordings from the
EEG three times a day for 7 days. On the first day, we instructed them on how to use the EEG device
and the iPad application. We explained the details of the experiment so that the subjects had a full
understanding of the procedure. Before recording commenced, subjects completed an informed consent
form. We made it clear that they had the right to withdraw from the experiment at any time if it caused
them any discomfort.

The EEG recordings were conducted following the procedure outlined in Figure 2. We requested
that participants obtain EEG recordings three times a day: once in the morning (when they first wake
up), once during the daytime (12:00–14:00), and once at night (before going to sleep). This allowed us to
obtain data from both drowsy and wakeful states. Specifically, we instructed our participants to take an
EEG recording within 5 min of waking up in the morning and 5 min before closing their eyes at night.
At the beginning of the measurement, they attached the EEG device and prepared the iPad application.
In order to equalize the effect of posture, they were instructed to sit on a chair. After preparation
was complete, the application would automatically present a fixed cross image. Participants had
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been instructed to gaze at it during the recording while having their eyes open. EEG recording
continued for 60 s. To aid in tagging the EEG data with labels, we prepared a Japanese version of
the KSS, which comprised a 9-point Likert scale asking participants to rank their drowsiness [15,17].
Participants responded to the KSS after each EEG recording. In order to obtain a data set representing
a range of drowsiness levels, we requested that participants conduct measurements at least once while
feeling drowsy during the day.

EEG device and 
iPad preparation

Fixed cross 
presentation

Responded 
to KSS

60 seconds

Morning Daytime Night

First day

Morning Daytime Night

Seventh day

Figure 2. The experimental procedure, which participants repeated for 7 days. EEG recordings were
obtained three times a day. A fixed cross was presented during measurement.

2.1.3. Denoising and Artifact Removal

The EEG signal can be corrupted by noise in the range of 50 Hz or 60 Hz. Eye blinking and
muscular artifacts can also disrupt the interpretation of the EEG signal. Cutting out the signal with
these noise ranges is not difficult, but it results in the removal of necessary information. To retain
characteristics of the EEG signal while decreasing noise and artifacts that may complicate interpretation,
in recent years, wavelet-based denoising and removal methods have been used [43,44]. In our
study, we decreased the noise from the 50–60 Hz range through wavelet-based denoising with soft
thresholding [45]. A wavelet transformation was applied to produce wavelet coefficients and the noise
was reduced following application of the soft threshold algorithm. After the denoising step, muscular
and eye blink artifacts were eliminated. These artifacts are present on the frequencies of 8 Hz and
40 Hz [44]. After applying wavelet transformation to the EEG signal, a threshold-based method was
used to eliminate the frames of the second and fourth coefficient level. After the removal, the signal
was backward reconstructed by use of an inverse wavelet transformation.

2.1.4. Feature Extractions

In this study, we compared three feature extraction methods: (i) power spectral density (PSD);
(ii) autoregressive (AR) modeling; (iii) multiscale entropy (MSE). It is well established that EEG activity
can be analyzed by frequency-domain features. The PSD is the most common feature calculated using
fast Fourier transform (FFT). Previous studies have shown that PSD is strongly related to drowsiness
and KSS scores [19,40]. To obtain the PSD, a windows function was used to reduce the effects of leakage
that occur during FFT. We used a Blackman window to obtain an effective resolution [46]. Use of
this window function results in a lower frequency resolution but a wider dynamic range. We initially
grouped the frequencies as 1–4 Hz, 4–8 Hz, 8–10 Hz, 10–12 Hz, 12–14 Hz, 14–26 Hz, 26–40 Hz, 40–49 Hz,
51–65 Hz, 65–80 Hz, and 80–100 Hz. The upper range of the beta band is considered to be 26 Hz.
The range beyond 26 Hz is generally defined as the gamma band; however, the definition of the gamma
band varies [47,48]. To account for this, we extended our range to 100 Hz and divided the resulting
upper range into five segments.
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Although it is well established that the PSD is strongly related to the KSS score, other feature
extraction methods related to sleep or fatigue should be compared. In recent studies, an autoregressive
(AR) model has been applied for EEG analysis as a spectrum transformer instead of the FFT [32,33,49].
We used AR model parameters as a feature. The parameters can be calculated by using the Yule–Walker
equation. The advantage of using an AR model is that it performs better for short-wave data; however,
the difficulty in selecting this method is in deciding the number of order to be used in the model.
In this study, we selected five as the number of order to be used, in accordance with a previous study
about fatigue classification [33].

Entropy-based feature extraction has also been used for EEG analysis of sleep- and fatigue-related
studies [32,50–52]. Entropy is used to quantify the complexity of time-series data such as that of the
EEG signal. Approximate entropy (ApEn) and sample entropy (SampEn) are representative methods
of entropy and have been widely used in previous studies. For single-channel EEG, usage of MSE as a
feature has been proposed [53,54]. The MSE computes SampEn with different scales and measures the
complexity of the time-series data with respect to multiple temporal scales. In this study, we selected
the parameters m = 2 and r = 0.15× SD, in line with previous results indicating that m = 1 or 2 and
r = 0.1× SD− 0.25× SD provide good statistical validity for SampEn [55,56].

Frequency feature selection is an important problem in the detection of drowsiness.
The round-robin method and optimization methods, such as genetic algorithms (GA), can be applied.
Because we selected the hyperparameters of the SVM in this study, a selection method that is not
affected by the SVM is required. Therefore, we used step-wise linear discriminant analysis (SWLDA),
which has been widely used in BCI studies [28,57] for feature selection. The SWLDA extracts features
using both forward and backward steps. Initially, p-values are calculated from an F-statistic for each
feature. New features are added when the p-value of a given feature falls below the input threshold
(p-value < 0.1). Each time a new feature is added, p-values are recalculated and the features that are no
longer significant are removed (p-value > 0.15). This powerful linear method can reduce time costs and
prevent the overfitting of feature selection. In this study, we compared the PSD selected by the SWLDA
and the PSD of the theta and alpha band that was selected following previous studies [1,26,27].

EEG readouts change by the second regardless of any fluctuations in drowsiness. Time-averaging
is an effective means of reducing changes in the EEG signal that are not related to drowsiness.
Through the use of time-averaging, we translated our EEG data into a more stable form. We used
a 10 s time window with a 10 s shift. The 60 s EEG recordings were compressed into six samples.
To prevent overfitting, a scaling method can also be useful. In this study, we used the robust scaler
methodology. Scaling methods transform data into a common scale by adjusting the lower limit of the
data. The robust scaler methodology calculates the median and the normalized interquartile range
(NIQR) of the data set using the following equations:

NIQR ≈ IQR× 0.7413 (1)

zi =
(xi − xm)

NIQR
, (2)

where zi is the scaled vector and xm is the median of the original data set, xi. NIQR is the normalized
interquartile range of the original data set. The interquartile range (IQR) is generally calculated from
the 25th quantile to the 75th quantile, however, in this study we used the 35th and 65th quantiles.
The median was chosen for use because it ignores the shape of the distribution. Because the NIQR is
not affected by outliers, robust scaling can be applied to the EEG signal measured by dry electrodes,
the distribution of which is unpredictable.

2.1.5. Pattern Recognition

Scores obtained from the KSS took the form of integers ranging from 1 to 9. We developed
the drowsiness detection model using the support vector machine (SVM), which has been used for
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estimation of drowsiness from EEG data with high accuracy [7,25]. Through the use of a kernel
function, the SVM can classify data nonlinearly. In this study, it was used for classifying two classes:
the KSS scores falling below a threshold and those falling above that threshold. We used two classes in
our analysis because classification of more than two classes with EEG data obtained only from Fp1–A1
is much more complicated, and our aim was to compare performance using the binary classification
criteria mentioned in Section 1. The SVM classifies two classes by minimizing the evaluation function
using the following equation,

min
w

1
2
||w||2 + C

N

∑
i=1

ξi (3)

s.t.

 yi(wTxi + b) ≥ 1− ξi

ξi ≥ 0
(4)

where xi is the feature vector of the learning data, yi is the label of the training data, and C is the
regularization constant.

For solving the above equations, kernel functions are used to map features into a high-dimensional
space. In previous studies, the radial basis function (RBF) kernel has been used due to its high accuracy
in EEG studies [57,58]. The kernel is defined by the following equation:

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0. (5)

We used the RBF kernel for the SVM in this study. C and γ are tuning hyperparameters and were
determined using a grid search. To conduct a grid search, an evaluation function first needs to be
defined. We used the classification accuracy for the SVM.

To prevent overfitting of our model during learning, we used 10-fold cross-validation in this study.
To carry out this method of validation, the data set was randomly split into 10 subgroups of equal
size, 9 of which were used for pattern learning and the remaining of which were used for testing and
calculating output scores from the evaluation function. This process was repeated 10 times until all
subsamples were suitable for use during testing. C was changed from 2−2 to 211 and γ was changed
from 2−10 to 23 in accordance with previous studies [59,60]. To tune hyperparameters and evaluate
accuracy without overfitting our model, we used 10-fold cross-validation as nested cross-validation.
The training data formed by 10-fold cross-validation was split by further 10-fold cross-validation and
used for optimization of our hyperparameters. Incorporating these hyperparameters, our exterior
test data were used for the prediction and calculation of indicators, including classification accuracy.
In this study, true positive (TP) refers to how accurately drowsy data is classified as drowsy data.
True negative (TN) refers to how accurately alert data is classified as alert data. False positive (FP)
indicates the percentage of data incorrectly identified as drowsy, and false negative (FN) indicates
the percentage of data incorrectly identified as alert. Precision, sensitivity, specificity, classification
accuracy (Acc), and F-measure are calculated using the following equations:

Precision =
TP

TP + FP
(6)

Sensitivity(Recall) =
TP

TP + FN
(7)

Speci f icity =
TN

TN + FP
(8)

Acc =
TP + TN

TP + FP + FN + TN
(9)

F−measure = 2× precision× recall
precision + recall

(10)
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2.2. Results

A total of 435 data sets (three times a day over 5 days with 29 subjects) were analyzed for
the development of our model. The 60 s data were divided by a moving averaging, and a total of
2610 samples were used for training the SVM. To compensate for EEG data lacking a corresponding
KSS score or containing errors and equalize the number of data sets across subjects, we excluded
2 days of data from each subject. The distribution of the recorded KSS scores are shown in Figure 3.
To assess performance of the features and classification methods we used without overfitting, we used
10-fold cross-validation. Determining a well-defined threshold is an important factor for developing an
effective drowsiness detection system. In this study, we used two kinds of thresholds: (i) one threshold,
A, to define two classes (class1 < A, A < class2), (ii) two thresholds, A and B, to form the two classes
(class1 < A, B < class2).

To assess the developed model, we compared feature extraction methods with one threshold
by using the receiver operating characteristic (ROC) curve shown in Figure 4. The ROC curve
uses the true positive rate (sensitivity) and false positive rate (1-specificity) calculated using 10-fold
cross-validation with several thresholds. The area under the curve (AUC) was calculated by an average
of the approximations under the ROC curves. Figure 4 shows which of the plots of the PSD features
had the greatest upper-left curve when compared with AR and MSE. PSD (SWLDA) resulted in an
AUC of 0.679. PSD (Theta, Alpha) resulted in an AUC of 0.643. They were greater than those produced
by AR, which resulted in an AUC of 0.593, as well as MSE, which had an AUC of 0.600. Table 1 shows
the number of samples labeled as drowsy and alert with several different thresholds. A total of 1354
samples of drowsy-state data and 1037 samples of alert-state data were used for classification when
the threshold was set to five, which is the centermost point of the KSS. Table 2 shows the precision,
sensitivity, specificity, binary-classification accuracy (Acc), and F-measure for the classification. The two
features of PSD resulted in a greater Acc and F-measure compared with AR and MSE. There was little
difference between PSD (SWLDA) and PSD (Theta, Alpha). PSD (SWLDA) resulted in an Acc of 64.3%
and an F-measure of 72.8%. PSD (Theta, Alpha) resulted in an Acc of 65.0% and an F-measure of 73.7%.
The sensitivity of PSD (SWLDA), with a value of 83.9%, was lower than that of PSD (Theta, Alpha),
which had a value of 86.6%. The specificity of PSD (SWLDA), with 38.8%, was greater than that of PSD
(Theta, Alpha), with 36.6%.

We assumed that the labeled data close to middle of the KSS did not indicate strong alertness
or drowsiness. To account for this, we used two threshold methods to divide the data into two
classes (alert vs. drowsy). Firstly, KSS scores of 4 and 6 were used as thresholds (alert < 4 and
6 < drowsy). A total of 1038 samples of drowsy-state data and 875 samples of alert-state data were
used for classification, as shown in Table 1. In this condition, PSD with SWLDA had the greatest Acc,
with a value of 67.2% in three features, as shown in Table 3. The F-measure was 71.3%. The sensitivity
of PSD (SWLDA), with 74.3%, was lower than that of PSD (Theta, Alpha) with 85.4%. Contrary to
this result, the specificity of PSD (SWLDA), with 58.7%, was greater than that of PSD (Theta, Alpha),
which had a value of only 41.7%. A total of 538 samples of drowsy-state data and 314 samples of
alert-state data were used for classification when the KSS thresholds were set to 3 and 7, as shown in
Table 1. Table 4 shows the results. The highest accuracy was attained by PSD with SWLDA, with an
Acc value of 72.7% and an F-measure of 80.1%. The PSD (SWLDA) also resulted in the best precision,
with a score of 73.5% and a specificity of 45.2%. Only the sensitivity of PSD (SWLDA), with a value
of 45.2%, was lower than PSD (Theta, Alpha), but the difference between the two sensitivities was
small when compared with the results when the threshold was set to 4 and 6. In addition to 10-fold
cross-validation, leave-one-subject-out cross-validation (LOSOCV) is important to assess classification
performance. In the condition where the thresholds were set to 3 and 7 and classification performance
was assessed by LOSOCV, the accuracy of PSD using the LOSOCV was higher than the accuracy using
other features. The PSD (SWLDA) resulted in a sensitivity of 88.3%, a specificity of 32.2%, and an Acc
of 66.1%. The PSD (Theta, Alpha) resulted in a sensitivity of 84.2%, a specificity of 38.2%, and an Acc
of 66.0%.
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Figure 3. A histogram of Karolinska Sleepiness Scale (KSS) scores and number of answers.
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Figure 4. Receiver operating characteristic (ROC) curves for the autoregressive (AR) model support
vector machine (SVM) and step-wise linear discriminant analysis (SWLDA) SVM.

Table 1. The number of KSS samples labeled as drowsy and alert using three different thresholds.

Criteria
Thresholds

5 4 & 6 3 & 7

KSS Sample (Drowsy) 1354 1038 538

KSS Sample (Alert) 1037 875 314
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Table 2. Performance summary of alert vs. drowsy classifications when the threshold for the two
classes was set to 5.

Criteria PSD (SWLDA) PSD (Theta, Alpha) AR MSE

TP 1136 1172 1077 1120

FP 635 657 690 725

FN 218 182 277 234

TN 402 380 347 312

Precision (%) 64.1 64.1 61.0 60.7

Sensitivity (%) 83.9 86.6 79.5 82.7

Specificity (%) 38.8 36.6 33.5 30.1

Acc (%) 64.3 64.9 59.6 59.9

F-measure (%) 72.7 73.6 69.0 70.0

Table 3. Performance summary of alert vs. drowsy classifications when the thresholds for the two
classes were set to 4 and 6.

Criteria PSD (SWLDA) PSD (Theta, Alpha) AR MSE

TP 771 886 780 689

FP 361 510 579 507

FN 267 152 258 349

TN 514 365 296 368

Precision (%) 68.1 63.5 57.4 57.6

Sensitivity (%) 74.3 85.4 75.1 66.4

Specificity (%) 58.7 41.7 33.8 42.1

Acc (%) 67.2 65.4 56.2 55.3

F-measure (%) 71.1 72.8 65.1 61.7

Table 4. Performance summary of alert vs. drowsy classifications when the thresholds for the two
classes were set to 3 and 7.

Criteria PSD (SWLDA) PSD (Theta, Alpha) AR MSE

TP 477 492 503 461

FP 172 209 245 210

FN 61 46 35 77

TN 142 105 69 104

Precision (%) 73.5 70.2 67.2 68.7

Sensitivity (%) 88.7 91.4 93.5 85.7

Specificity (%) 45.2 33.4 22.0 33.1

Acc (%) 72.7 70.1 67.1 66.3

F-measure (%) 80.4 79.4 78.2 76.3
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3. Practical Experiment

3.1. Experimental Procedure

The practical experiment was approved by the Ethical Review Committee of Dentsu ScienceJam
Inc. (approval number 005). Twenty healthy subjects took part in our experiment (8 females and
12 males, mean age = 34.2, SD = 10.2). They did not have any mental diseases or psychological
disorders. All subjects were non-smokers and were asked to abstain entirely from intake of caffeine,
nicotine, and alcohol after 21:00 on the day before the experiment. We explained the details of the
experiment so that the subjects had a full understanding of the procedure. Before taking part in the
experiment, subjects completed an informed consent form. We made it clear that they had a right to
withdraw from the experiment at any time if it caused them any discomfort.

The experimental procedure we followed is depicted in Figure 5. The experiment consisted of two
tasks, both of which were completed by all participants. The first task consisted of counting from 1 to
300 (simple counting task) with open eyes and was intended to evoke drowsiness in the participants.
The second task was the Wisconsin Card Sorting Test (WCST) [61,62]. In the WCST, participants
are presented with a number of cards on a display and must match the cards based on either shape,
color, or number, though they are not told which feature to use. The feature that participants must
use to sort the cards changes after a random number of trials, promoting attentiveness by forcing
participants to shift sorting rules. After each selection, they are given feedback as to whether or not
their selection was correct, though they are not informed why their selection was or was not correct.
Although the duration of time taken for each round varies depending on the participant, we stopped
the task after 300 s had elapsed because the purpose of the task was to keep participants wakeful rather
than obtain completed WCST responses. The WCST task was conducted on a PC. The order of the two
conditions was randomized, with half of participants beginning with the counting task and the other
half beginning with the WCST.

EEG recording was conducted using the iPad application shown in Figure 6. The model developed
in Section 2 was used in the application. As shown in the results of Table 4, PSD with SWLDA was
used as a feature. The thresholds 3 and 7 were used to divide data into two classes. The frequency
ranges of PSD were selected as 1–4 Hz 4–8 Hz, 10–12 Hz, and 12–14 Hz using the EEG data recorded
in Section 2. The hyperparameters of the SVM were determined using a grid search. Again, both
the range and shift of time-averaging was 10 s. The robust scaling thresholds were reused for this
experiment. As indicated by the results of Section 2, classification accuracy was higher when using
PSD, but the optimal frequency features were not clearly indicated. Therefore, both frequency features
were applied to the recorded EEG data. We conducted SWLDA for the application online throughout
the experiment. The theta–alpha features were applied to the recorded data offline after the experiment
was completed.

Rest Period
WCST task

or 
Counting task

Rest Period

300 seconds 300 seconds 300 seconds

Counting task 
or

WCST task
300 seconds

aEEG device and 
iPad preparation

Figure 5. The practical experiment procedure, during which EEG recordings of participants were
obtained throughout the simple counting task and Wisconsin Card Sorting Test (WCST) task.
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FFT (Blackman Window)

Time Averaging (10 seconds)

Portable EEG Device

SWLDA

Robust scaler

SVM

iPad Application

PC FFT (Blackman Window)

Time Averaging (10 seconds)

Robust scaler

SVM

Feature selection

Drowsiness Level

Load 
Parameters

EEG

EEG

Figure 6. Flow diagram of the drowsiness detection system. Parameter learning was performed on a
PC. The selected parameters were loaded onto the iPad and show the predicted drowsiness level.

3.2. Results

The results of the grid searches are displayed as a heatmap in Figure 7. Colors denote classification
accuracies in Figure 7; the colors change progressively as hyperparameters are shifted. The accuracy of
PSD (SWLDA) was larger overall than PSD (Theta, Alpha) in the grid search progress. PSD (SWLDA)
had a stronger dependence on hyperparameters than PSD (Theta, Alpha) due to the fact that the
red-colored area was biased by a lower γ parameter. In this practical experiment, the EEG recordings
were transformed into drowsiness level through the use of the SVM. The SVM produces binary output
data made up of zeroes and ones. Each data package of 300 s was averaged using 10 s windows with
a 10 s shift, resulting in 30 drowsiness level samples for each data recording. In order to score each
package of recorded data, we averaged the 30 drowsiness level samples and transformed them into a
drowsiness probability, which was 1.00 when all outputs of the four samples were one and 0.00 when
all outputs were zero. The average of the drowsiness probabilities calculated by the PSD (SWLDA)
with SVM for the simple counting task was higher than the average of the scores generated for the
WCST (0.85 vs. 0.65, * p < 0.05), as shown in Figure 8a. The average of the estimated drowsiness
probabilities generated by the PSD (Theta, Alpha) with SVM for the counting task was higher than
the generated scores for the WCST (0.83 vs. 0.78), as shown in Figure 8b. Both results produced an
average estimate of drowsiness level for the counting task that was higher than that of the WCST.
Significant differences are indicated by starred p-values calculated by a t-test. The results produced
by the PSD (SWLDA) with SVM indicated a greater and more significant difference between the two
conditions than the results produced by the PSD (Theta, Alpha).
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Figure 7. (a) Grid search result of the SVM. Classification accuracies are denoted by color. The optimal
hyperparameters were C = 26 and γ = 2−9; (b) grid search result of the SVM. Classification accuracies
are denoted by color. The optimal hyperparameters were C = 29 and γ = 2−3.
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Figure 8. (a) The average drowsiness probability of the 20 subjects, as generated by the PSD (SWLDA)
and SVM. Scores were significantly higher during the counting task (0.85 vs. 0.65, * p < 0.05); (b) the
average drowsiness probability of the 20 subjects, as generated by the PSD (Theta, Alpha) and SVM.
The average score was higher during the counting task (0.83 vs. 0.78).

4. Discussion

4.1. Accuracy of Drowsiness Detection

In this study, we obtained prefrontal single-channel EEG recordings and KSS scores from
29 participants and developed a system to detect drowsiness using EEG. Two criteria were used
in evaluating the accuracy of our system: classification accuracy in the development of our model
and the significance of the difference between conditions in the case of our practical experiment.
For classification accuracy, binary classification accuracy (alert/drowsy) resulted in a value of 72.7%,
as determined by 10-fold cross-validation using PSD (SWLDA) with SVM. In the comparison of
extraction methods, the PSD (SWLDA) resulted in an AUC of 0.679. PSD (Theta, Alpha) resulted in
an AUC of 0.643. They were greater than those produced by AR, which resulted in an AUC of 0.593,
as well as MSE, which had an AUC of 0.600. We presume that the result indicating PSD had a higher
AUC depends on the EEG recording situation and the number of EEG channels. We collected EEG
measurements not while driving, but during resting states. Kaida et al. evaluated the relationship
between PSD and the KSS when subjects were in a state of rest [19]. Moreover, all fatigue detection
studies using an AR model have utilized multichannel EEG. Due to this fact, they could obtain much
more detailed information than was available using our device.
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As mentioned in Section 1, our aim was to attain an accuracy of 70% or higher for binary
classification. We recognize that this criterion is lower than that used in previous studies, which
generally detect drowsiness with over 90% accuracy for binary classification [11]. However,
a classification accuracy of over 70% is acceptable given the constraints imposed by our device.
There is a clear trade-off between usability and accuracy in developing portable, cost-effective devices
such as ours. We only made use of the measurement position Fp1–A1, which only weakly reflects
human drowsiness and sleepiness [40]. In contrast to previous studies that have used multichannel
devices, we had to detect the drowsiness level within a single channel. As demonstrated in our practical
experiment, our system is capable of significantly discriminating between wakeful and drowsy states
in a task-based setting given an adequate amount of sample data.

4.2. Selected Features and Parameters

Previous studies have reported that the theta and alpha bands of EEG are correlated with human
drowsiness [4,19–22]. In this study, we used both SWLDA-based frequency feature selections and
theta–alpha bands. As indicated by the results presented in Table 2, PSD (Theta, Alpha) resulted in
a higher performance than PSD (SWLDA). This stands in stark contrast to the results presented in
Figure 4, Tables 3 and 4. However, the specificity of PSD (SWLDA) in all conditions was greater than
that of PSD (Theta, Alpha). Moreover, the ROC curve of PSD (SWLDA) was located in the upper-left
in lower sensitivity and 1-specificity compared with that of PSD (Theta, Alpha). These results
demonstrate that PSD with SWLDA is more robust when using biased sample data in which the
number of drowsy samples is greater than the number of alert samples.

Using SWLDA, we selected the frequency ranges 1–4 Hz 4–8 Hz, 10–12 Hz, and 12–14 Hz for
use in the practical study. The 1–4 Hz range falls in the delta band, 4–8 Hz falls in the theta band,
and 10–12 Hz and 12–14 Hz are part of alpha band. Although the alpha and theta bands are known
to be correlated with the KSS, a previous study reported that the delta band is strongly correlated
with fatigue [63]. Because the KSS is also used to measure fatigue [64], the selection of the delta
band is appropriate from the viewpoint of estimating the KSS. In fact, the features including that
frequency range showed a higher level of performance. However, this result may also indicate that
the model is predicting fatigue level. In this study, both the counting task and WCST may induce
fatigue in participants. Taking this into account, our model may reflect drowsiness rather than fatigue.
Further support of the interpretation that our model produces stronger estimates for drowsiness than
fatigue is provided by comparison with a recent study of fatigue classification [33]. The authors of this
study demonstrated that the AR model achieved better classification results when compared with the
results produced using PSD features in contrast to the results of our study.

In Figure 7 shows the distribution of classification accuracies when changing the hyperparameters
of the SVM. Although overfitting occurs at extreme peaks in the heatmap, distributions are not
sharp around the best hyperparameters. This indicates that our portable system continues to detect
drowsiness with similar performance when the learning data is updated and the best hyperparameters
are changed. For the windows function of the FFT, we used the Blackman window, though the
Hamming window is more common. We used the Hamming window as well, but the calculated
performances were lower than those produced by the Blackman window, so those results are not
reported in this study. However, the difference between the two was slight, suggesting that the type
of window function used does not have a large effect on performance during drowsiness detection.
For the robust scaler, we used the 35th and 65th quantile instead of the 25th and 75th quantile.
We tried applying these common quantiles as well; however, they did not show higher accuracies
when compared with the quantiles used in our system. The signal quality of the data obtained from
the low-priced, dry EEG we used is low. Because of this, the NIQR should be calculated using the 35th
and 65th quantile to reduce the effects of outliers.
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4.3. Limitations

In this study, the PSD resulted in the best performance as a feature for drowsiness detection.
In contrast to our results, recent studies focusing on sleep stage and driver fatigue have obtained
higher performance with the use of entropy features or AR modeling in their evaluations [32,33,50].
There are three reasons for this difference: (i) measurement point, (ii) drowsiness rating method and
(iii) EEG recording situation. Our study used only the Fp1–A1 measurement point. That area only
weakly reflects sleepiness. We used KSS scores as ratings of drowsiness level. Power spectral density
has been demonstrated in previous studies to be strongly related to KSS scores and measured human
drowsiness [19,40]. Most recent studies have recorded EEGs while subjects were driving. We recorded
the EEG when the subjects were in a resting state. When we apply our model to driving states,
the results may differ. Therefore, we recommend this comparison be conducted in future studies.

Studies using multichannel EEG devices have shown higher accuracy for drowsiness detection
when compared with the performance of our portable system [65,66]. When applying drowsiness
detection techniques using EEG for safety-related situations, such as driving, multichannel EEG
devices should be applied because our method’s accuracy of around 70% is not high enough to be
suitable for safety purposes. Nevertheless, the accuracy achieved by our technique may be suitable
for non-safety-related situations. Previous studies have used EEG for TV commercial evaluation
and real-time inference of engagement in the classroom [67,68]. After collecting enough data for
analysis, our portable system can yield significant results, as evaluated in Section 3. The technique we
developed can be applied to rating movies, concerts, and other activities that have the potential to
evoke drowsiness. Since our portable systems are user-friendly and inexpensive, they can readily be
used within practical situations.

For the classification method, we used the SVM, which uses a support vector, as classifier.
A support vector regression (SVR) also makes use of a support vector and can be trained for estimating
drowsiness scores as a continuous value. We also used the SVR for KSS estimation; however,
the estimation accuracy was not high. The EEG data recorded from our low-priced device has
not yet been able to accurately estimate KSS scores using regression methods. In addition to the
support vector-based classification, neural network-based classifiers have also been proposed as a
method of classification [33,69]. We used the SVM in this study because the difference in accuracy
between the SVM and neural networks is not significantly different, and drowsiness detection with
KSS scores has been performed by SVM in recent studies [11,25]. We recommend that future studies
explicitly compare neural network-based methods with the methods used in this study.

5. Conclusions

In this paper, we developed a portable system capable of detecting human drowsiness through
use of a single-channel, low-priced EEG device. We collected EEG recordings while subjects were in a
resting state. To improve drowsiness detection, results obtained using PSD, AR modeling, and MSE
were compared. The SVM was used to classify EEG data as representing alert or drowsy states, and its
hyperparameters were subsequently optimized. These techniques allowed our low-priced device to
detect drowsiness levels with a classification accuracy of 72.7% (sensitivity 88.7% and specificity of
45.2%) for binary classification (alert/drowsy). To assure the performance of our system in practical
settings using methods of statistical interpretation, our developed system was applied while users
took part in both a simple counting task and the WCST. The results of this experiment indicated a
significant difference between the two tasks in participant level of drowsiness.

There is a trade-off between usability and accuracy in the development of measurement techniques
such as ours. Though our technique has the potential to be more practical and accessible than
conventional EEG drowsiness measurement systems, this practicality came at the cost of reduced
accuracy. Previous studies that have demonstrated higher accuracy in drowsiness detection using
multichannel EEG should be favored as a basis for purposes requiring a high degree of safety, while our
technique is more suited to budget-limited, non-safety-related purposes. For example, our technique
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could be applied to use students’ drowsiness levels to assess classroom engagement in schools. It could
be applied in a similar way to assess movies and products. By evaluating and improving our system
by applying it to a wider range of situations, the reliability of our system will continue to improve.
This, in turn, will increase the range of practical situations that our system can be applied to.
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