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Cirrhosis is the end stage of chronic liver diseases like chronic hepatitis B. In China,
hepatitis B accounts for around 60% of cases of cirrhosis. So far, clinical and laboratory
indexes for the early diagnosis of cirrhosis are far from satisfactory. Nevertheless, there
haven’t been specific drugs for cirrhosis. Thus, it is quite necessary to uncover more
specific factors which play their roles in cirrhosis and figure out the possible therapeutic
targets. Among emerging factors taking part in the initiation and progression of cirrhosis,
gut microbiota might be a pivot of systemic factors like metabolism and immune and
different organs like gut and liver. Discovery of detailed molecular mechanism in gut
microbiota and gut liver axis leads to a more promising prospect of developing new drugs
intervening in these pathways. Time-based medication regimen has been proofed to be
helpful in hormonotherapy, especially in the use of glucocorticoid. Thus, circadian
rhythms, though haven’t been strongly linked to hepatitis B and its complications, are
still pivotal to various pathophysiological progresses. Gut microbiota as a potential
effective factor of circadian rhythms has also received increasing attentions. Here, our
work, restricting cirrhosis to the post-hepatitis B one, is aimed to summarize how
circadian rhythms and hepatitis B-related cirrhosis can intersect via gut microbiota, and
to throw new insights on the development of new and time-based therapies for hepatitis
B-related cirrhosis and other cirrhosis.

Keywords: circadian rhythms, cirrhosis, hepatitis B, gut microbiota, bile acids, immunomodulatory metabolites,
metabolism, immune
INTRODUCTION

Cirrhosis is a kind of diffuse liver disease that progresses chronically. It is basically characterized
with the degeneration and necrosis of hepatocytes, global fibrosis in liver, and the formation of
regenerative nodules of hepatocytes. Thus, the hepatic lobules and blood vessels can be
reconstructed, which consequently leads to hepatic insufficiency and severe clinical outcomes.
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Around 60% of cases of cirrhosis in China are related to HBV
infection (Wang et al., 2014). A considerable proportion of
hepatocellular carcinoma (HCC) cases develop on the basis of
cirrhosis, which is consistent with the fact that about 80%
of patients with HCC in China tested positive for HBsAg
(Wang et al., 2014). Hepatic encephalopathy (HE) can also
result from cirrhosis induced by hepatitis B and other non-
viral hepatitis. Thus, more comprehensive and specific studies
are still required for early diagnosis and more effective treatment.
However, the huge difference in the outcome of hepatitis B
carriers is still unclear. In this complex disease with long-term
persistent infection, the integration of internal and external
factors may be the root cause of the diversity of outcomes.

Among these potential causes, the regulation of biological
rhythm may be a good mechanism to reconcile the different
outcomes caused by internal and external factors. Light/dark
cycles on the earth shaped the circadian clock in animals and
plants. The circadian clock helps coordinate the vital activities
with the existence of sunlight, which is the source of all energy on
the earth. It is obvious that all cells in human body have a clock
system (Rijo-Ferreira and Takahashi, 2019) or are regulated by
suprachiasmatic nucleus (SCN), which is believed to transduce
the photic cues to rhythmic physiological signals and thus to
synchronize the physiological activity with the diurnal variations
(Maury et al., 2010; Peek et al., 2015). In addition to the direct
regulation of light through the central circadian clock and the
intrinsic circadian clock system, behaviors demonstrating a
rhythmic variation like diet (Chaix et al., 2019) and sleep
(Huang et al., 2011) also play important roles in maintaining
the homeostasis.

In particular, microbiota is an important factor that interacts
with the biological rhythm of the body, and mediates internal
and external factors. Gut microbiota has been shown to take part
in the regulation and development of various functional systems
and has exhibited complicated effects in the past decades. Gut
microbiota consists of organisms from viruses and prokaryotes
like archaebacteria and bacteria to eukaryotes like protists and
fungi. These organisms together make up an acquired symbiotic
part of human body and serve as one of the organs through their
own structural components and metabolites, interacting with
multiple systems (Donaldson et al., 2016). Since the gut
microbiota is mainly located in gastrointestinal tract and has
no access to the photic cues, diet cues play important roles in
modulating the abundance and composition of the gut
microbiota throughout one day. The interaction between gut
microbiota and the host’s metabolic and immune system has
been reported to be closely related to metabolic syndromes,
autoimmune diseases, psychological illnesses, infectious
diseases, and tumors (Cryan and Dinan, 2012; Guinane and
Cotter, 2013). Hence, the gut microbiota probably mediates the
impact of circadian rhythm on the immune and metabolic
system and furtherly contributes to the development of
various diseases.

A large gap still exists between circadian rhythms and liver
cirrhosis with the basis of hepatitis B. Different outcomes of
chronic hepatitis B and its complications are also bothering
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researchers and clinical physicians. Besides, the optimization of
treatments for hepatitis B-related cirrhosis and corresponding
theoretical basis need further exploration. As relatively
individualized factors, gut microbiota may coordinate with
circadian rhythms to influence the progression of hepatitis B-
related cirrhosis and to provide new therapeutical targets. Here
this review is aimed to conclude how gut microbiota take part in
the initiation and progression of hepatitis-B related cirrhosis in
metabolic and immune ways as well as the potential manner
in which circadian rhythms may play a role in shaping the
systematic and liver local microecology (Figure 1). This work
can help us understand the potential mechanism of chronic
hepatitis B causing different disease outcomes and provide
potential help for specific interventions.
ALTERATIONS IN GUT MICROBIOTA IS
ASSOCIATED WITH HEPATITIS B-
RELATED CIRRHOSIS IN BOTH
METABOLIC AND IMMUNE WAYS

Alterations of Gut Microbiota in Hepatitis
B-Related Cirrhosis
With the development of multi-omics analysis, an increasing
number of studies turned to uncovering the potential role of gut
microbiota in human diseases and the underlying mechanisms.
As a chronic liver disease, hepatitis B-related cirrhosis has also
been linked to altered gut microbiota. By testing the gut
microbiota of healthy people, HBV carriers, patients with
chronic hepatitis B and patients with hepatitis B-related
cirrhosis, Lu et al. found that the abundance of two
opportunist ic pathogens, Enterococcus faecal is and
Enterobacteriaceae increased significantly, while the number of
intestinal commensal bacteria, such as Bifidobacterium,
Faecalibacterium prausnitzii and lactic acid bacteria
(Lactobacillus, Pediococcus, Leuconostoc, and Weissella)
decreased significantly in cirrhotic patients compared to the
first three groups (Lu et al., 2011). F. prausnitzii is an anti-
inflammatory bacterium that stimulates the secretion of
interleukin (IL)-10 and inhibits the expression of IL-12 and
interferon-gamma (IFN-g) (Sokol et al., 2008), and butyrate has
been identified as the medium (Lenoir et al., 2020). Wei et al.
(Wei et al., 2013) applied a metabolomic approach to further
analyze the structural and functional metabolic changes of gut
microbiota in patients with liver cirrhosis and found that, in
terms of the composition, the gut microbiota of patients with
liver cirrhosis contained lower levels of Bacillariophyceae and
higher levels of Enterobacteriaceae, Veronococcaceae and
Streptococcaceae compared to the healthy group. In terms of
functional metabolism, genes and proteins associated with the
transport of executive substances (mainly amino acids and
carbohydrates) were enriched in the gut microbiota of patients
with cirrhosis, indicating that the metabolic activity of the gut
microbiota increased in cirrhosis, which is consistent with the
results of Chen et al. (Chen et al., 2014). This is due to the altered
July 2022 | Volume 12 | Article 936815
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intestinal microenvironment in cirrhosis, which inhibits the
growth of bacteria in the gut. These unfavorable conditions
lead to an enhancement in the transport and metabolism of
substances of some bacteria, creating more extensive metabolic
pathways. In addition, Wei et al. found a significant impairment
of bile acid metabolism in patients with hepatitis B-related
cirrhosis compared to the healthy group (Wei et al., 2013). It is
well known that there are mutual influences between bile acid
metabolism and the gut microbiota. The primary bile acids
delivered to the intestine can only be reabsorbed by the liver
after being transformed into secondary bile acids by the
dissociation and dehydroxylation of bile salt hydrolases
produced by Lactobacillus and Bifidobacterium, etc. (Liang
et al., 2018), while secondary bile acids (mainly deoxycholic
acid) produced by dehydroxylation can also maintain the
stability of the intrinsic gut microbiota by enhancing the
barrier function of the intestinal mucosa and inhibiting
the adhesion and colonization of harmful bacteria. In hepatitis
B-related cirrhosis, disturbances in the gut microbiota lead to
impaired bile acid dissociation and dehydroxylation, and
consequently to disorders in bile acid metabolism. In return,
the impaired transformation of BAs was also linked to altered gut
microenvironment and microbiota. Oral commensal bacteria
like Streptococcus salivarius (Zhang et al., 2013) and certain
species belonging to Veillonella (Chen et al., 2016) were
increased in gut microbiota in patients with liver cirrhosis, and
some of them were able to produce ammonia, which may lead to
hyperammonemia and even hepatic encephalopathy (Qin et al.,
2014). The alterations in the quantity, structure and function of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the gut microbiota in patients with hepatitis B-related cirrhosis
also suggest that interventions on the gut microbiota might help
improve the primary disease. Several randomized controlled
trials evaluating the efficacy of probiotic treatment in patients
with mild hepatic encephalopathy found that probiotic treatment
significantly reduced serum endotoxin and ammonia levels and
improved mild cognitive impairment compared to the placebo
group (Dai et al., 2014; Dhiman et al., 2014; Xia et al., 2018). It
has also been suggested that intestinal dysbiosis is involved in the
development of spontaneous bacterial peritonitis (Oikonomou
et al., 2018). Thus, it is clear that dysbiosis of gut microbiota is
not only involved in the initiation and development of hepatitis
B-related cirrhosis, but also promotes the development of
related complications.

Gut-Liver Axis and the Innate Immune
Response of Liver Play Direct Roles in
Local and Systemic Pro-Inflammatory
Status
In hepatitis B-related cirrhosis, damage to hepatocytes arises not
only from the cellular immune response caused by HBV
infection, but also from the intrinsic immune response caused
by pathogen-associated molecular patterns (PAMPs) produced
by intestinal microorganisms. Pijls et al. showed that increased
intestinal permeability in patients with compensated cirrhosis
and the presence of a variety of large numbers of bacteria in the
intestine may increase the risk of bacterial translocation (Pijls
et al., 2014). During bacterial translocation, bacteria and their
components like endotoxins, peptidoglycan and bacterial DNA
FIGURE 1 | Schematic figure for interactions among hepatitis B-related cirrhosis, gut microbiota, and circadian rhythms. Circadian rhythms cause the oscillations and
alterations of gut microbiota through diet, sleep, and light/dark cycles. Metabolism and local and systemic immune also oscillate with gut microbiota and both photic and
nonphotic Zeitgebers. Gut microbiota impact the signaling pathways related to cell-intrinsic circadian clock via bacterial components and/or metabolites. Cell-intrinsic
circadian clock synchronizes with the central circadian rhythm generated by suprachiasmatic nucleus. Hepatitis B-related cirrhosis leads to gut leakage mainly through
portal hypertension. With the permeability of gut increasing, gut bacteria translocate to mesenteric lymph nodes and other parts of body, called bacterial translocation. At
the same time, gut bacteria and bacterial components like lipopolysaccharides, peptidoglycan and bacterial DNAs translocate to liver via portal veins. These components
activate pattern recognition receptors in liver and trigger inflammatory responses, followed by repairment. Hepatic stellate cells are consequently activated and the
generation of hepatocytes starts. Finally, cirrhosis is aggravated. Gut microbiota-derivate metabolites with immunomodulatory/pro-/anti-cirrhosis properties may also affect
the progression of cirrhosis. Relationships between cirrhosis and circadian rhythms and the underlying mechanisms remain elusive.
July 2022 | Volume 12 | Article 936815
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translocate from the enteric cavity to mesenteric lymph nodes
and other organs (Fukui, 2015). TLRs and NOD-like receptors
(NLRs) are essential pattern recognition receptors (PRRs). They
are expressed on the surface of Kupffer cells, hepatocytes, and
plasmacytoid dendritic cells (pDCs) in the liver and peripheral
blood mononuclear cells (PBMCs) in the circulation, playing a
critical role in innate immunity. Gut microbiota dysbiosis causes
Toll-like (TLR) and NOD-like (NLR) receptors activation in the
liver. TLR/NLR further induced the host-wide inflammatory
response by inducing the nuclear factor kappa B (NF-kB)
transcriptional pathways, and accelerating the secretion of
cytokines, such as tumor necrosis factor-alpha (TNF-a)
(Chassaing et al., 2014). Due to the gut-liver axis, the liver is
the first organ exposed to LPS from the gut. Though adaptive
immunity is thought to be more important than innate
immunity, chronic inflammation caused by LPS resulting from
gut leakage is associated with the activation of liver injury. For
instance, the main component of Gram-negative bacterial outer
membrane, lipopolysaccharide (LPS), is transferred by CD14 to
TLR4 (Kitchens and Thompson, 2005). Then TLR4/LPS
complex activates NF-kB, and induces inflammatory cytokine
production (Miyake, 2006), further causing injury and liver
inflammation (Ben-Ari et al., 2012). Interestingly, TLR5, which
recognizes flagellin, has been reported to mediate the crosstalk
between innate immune and metabolic disorders like decreased
sensitivity to insulin (Li et al., 2017). The negative effect of the gut
microbiota dysbiosis on liver injury and inflammation
influences the course of HBV disease (Lu et al., 2011). This
prolonged and sustained inflammatory stimulus causes repeated
damage to hepatocytes followed by regenerative repair, and the
hepatic stellate cells (HSCs) are activated and trans-differentiated
to mediate the initiation and development of fibrosis. These
together exacerbate the histopathological damage of cirrhosis,
and lead to various complications (Arab et al., 2018).

Metabolism Regulated by Gut Microbiota
Has Both Direct and Indirect Effects on
Cirrhosis and Other Chronic Liver
Diseases Related to Hepatitis B
The relationship between the dysbiosis of gut microbiota and
hepatitis B has received increasing attention, and serum
metabolites derived from or influenced by gut microbiota have
been revealed to link the dysbiosis of microbiota and the progress
or prognosis of hepatitis B. In a study, researchers enlisted 85
patients with chronic hepatitis B and 22 healthy volunteers
matched in age, gender and body mass index, and compared
their blood and fecal samples. It was founded that the gut
microbiota in patients with chronic hepatitis B has already
changed before the severe liver lesions and the shift in gut
microbiota may be pathogenic in liver diseases (Niu et al.,
2015). Gut microbiota was involved in the abnormal
accumulation of serum metabolites, which was closely
associated with liver disease (Schnabl and Brenner, 2014).

As mentioned above, bile acids (BAs) and their metabolism
can be essential and characteristic in their impact on hepatitis B-
related cirrhosis since BAs mainly circulates between the gut and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
liver. In addition to assisting in the absorption of lipids, fat-
soluble drugs, and vitamins in the small intestine, BAs also act as
important signaling molecules involved in energy and substance
metabolism processes. Hepatocytes use cholesterol as a raw
material for the synthesis of primary bile acids such as bile
acid (CA) and goose deoxycholic acid (CDCA) via the classical
and bypass pathways. After combining with glycine or taurine,
primary bile acids enter the intestine via the bile ducts, most of
which are reabsorbed in the ileum into the portal vein to the liver,
forming the enterohepatic circulation, while a small proportion is
converted into secondary bile acids such as lithocholic acid
(LCA) and deoxycholic acid (DCA) by the action of gut
microbiota (Jia et al., 2018). Colonic 7a-dehydroxylating
bacteria (e.g. Lachnospiraceae, Ruminococcaceae, and Blautia)
play a key role in this transformation process. On the other hand,
BAs have antimicrobial properties and can affect the composition
and structure of the gut microbiota, either directly or indirectly
through the synthesis of antimicrobial peptides (Ridlon et al.,
2015). The interaction between bile acids and gut microbiota is
therefore important for the maintenance of homeostasis in the
body. Once the homeostasis is imbalanced, an inflammatory
response is induced, which can lead to chronic inflammation of
the liver and liver fibrosis, and even finally to cirrhosis and liver
cancer. The results of Kakiyama et al. (Kakiyama et al., 2013)
showed that patients with cirrhosis had a higher abundance
of Enterobacteriaceae bacteria and a lower abundance of
Lachnospiraceae, Ruminococcaceae, and Blautia compared
to controls ; CDCA was posit ive ly corre lated with
Enterobacteriaceae, while DCA was positively correlated with
Ruminococcaceae. These results suggest that reduced conversion
of primary to secondary BAs is associated with the gut
microbiota of patients with decompensated cirrhosis. Their
results are consistent with those of Wang et al. (Wang et al.,
2020), which demonstrated that patients with chronic hepatitis B
have lower levels of secondary BAs and higher levels of primary
BAs. Dysbiosis of the gut microbiota can indirectly lead to
inflammation by affecting the production of secondary BAs, so
theoretically, regulating the intestinal flora could delay the
development of cirrhosis and its complications. BAs bind to
the farnesoid X receptor (FXR) in hepatocytes and intestinal
epithelial cells and to the G protein-coupled bile acid receptor
(GP-BAR1, also named TGR5) in hepatic nonparenchymal cells
to activate various signaling pathways that regulate multiple
metabolic processes such as the metabolism of triglyceride,
cholesterol, glucose and inflammatory responses (Ridlon et al.,
2015). FXR has been shown to have the capacity for alleviating
liver inflammation via various signaling pathways. Inducing
PPARg (Fiorucci et al., 2005), IL-6-induced C-reactive protein
(CRP) (Zhang et al., 2009), c-Jun-promoted osteopontin
expression and secretion in NKT cells (Mencarelli et al., 2009),
monocyte chemoattractant protein-1 (MCP-1) (Li et al., 2015),
and acetylation or small ubiquitin-like modifier (SUMO)-ylation
of FXR (Kim et al., 2015) are all targets or manners through
which activated FXR reduced the level of liver inflammation.
(Verbeke et al. 2014) found that the FXR agonist obeticholic acid
reduced portal pressure in a rat model of cirrhosis by decreasing
July 2022 | Volume 12 | Article 936815
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intrahepatic vascular resistance through increased endothelial
nitric oxide synthase (eNOS) activity in the liver. Besides FXR,
the activation of TGR5 highly expressed on the surface of liver
sinusoidal endothelial cells (LSECs) also leads to the upregulation
of eNOS in LSECs, which is able to attenuate portal hypertension
caused by cirrhosis (Keitel et al., 2007). In the gut, the activation
of FXR induces the expression of antimicrobial peptides, which
can prevent the overgrowth of gut bacteria (Sun et al., 2021a).
FXR agonists also prevented intestinal barrier dysfunction,
intestinal inflammation and bacterial translocation in
cholestatic rats. However, under certain situations, the binding
of bile acids and FXR might serve as a pro-cirrhosis factor. The
results of Saga et al. (Saga et al., 2018) pointed out that secondary
unconjugated BAs could lead to the higher expression of genes
related to NF-kB pathway, with the level of secreted IL-6
increasing. At the same time, the expression of a-Smooth actin
(a-SMA), a marker of the activated HSCs, was significantly
upregulated in HSCs treated with secondary unconjugated BAs.
Interestingly, senescence-associated secretory phenotypes were
also observed after secondary unconjugated BAs treatment.
Garrido et al. (Garrido et al., 2022) showed that the
accumulation of bile acids in liver sinusoids, which was
resulted from the histone acetylation of the gene encoding
Na+-taurocholate co-transporting polypeptide (NTCP), led to
the activation of HSCs through FXR and progression of cirrhosis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
A study conducted by Michel et al. (Fausther and Dranoff, 2011)
showed that FXR loss selectively reduced the biliary cirrhosis and
exerted no effects on non-cholestatic cirrhosis like CCl4-
intoxication- and Schistosoma mansoni-induced cirrhosis. All
these results suggested that FXR is a multi-functional receptor of
bile acids with different signaling pathways and effects under
different disease states, with different modifications, or when
expressed in different types of cells. For hepatitis B, the impacts of
FXR signaling appear to be stage-specific. FXRa activated by bile
acids, a subtype of FXR, might lead to the enhanced transcription
of HBV, while FXRa activated by synthetic agonists reversely
reduced the level of HBV-related nucleic acids and proteins.
Complete or partial silencing of FXRa gene led to the reduction
of different HBV components, indicating that there were
multiple underlying mechanisms (Radreau et al., 2016;
Mouzannar et al., 2019). A dual agonist of FXR and TGR5
demonstrated the ability to perturb the infection of HBV, making
it a promising candidate for new anti-HBV drugs (Ito et al., 2021)
(Figure 2). The role of FXR in the progression of hepatitis B-
related cirrhosis still require further research to achieve a more
comprehensive understanding of the function of FXR in cirrhosis
and provide new therapeutic targets in the treatment of hepatitis
B-related cirrhosis.

In addition to impacting the progress of chronic hepatitis B-
related cirrhosis directly, metabolites derived from or regulated by
FIGURE 2 | Schematic figure for the molecular mechanisms of bile acids and farnesoid X receptors (FXR) among gut microbiota, hepatitis B-related cirrhosis and
circadian rhythms. As the speed-limiting enzyme in the classic pathway of bile acid synthesis, CYP7A1 can be downregulated by FXR activated by bile acids and
fibroblast growth factor (FGF) receptor (FGFR) 4 activated by FGF15. FGF15 is expressed and secreted by intestinal endothelial cells (IECs). FXR activated by bile
acids in IECs contributes to the expression of FGF15. Kruppel-like factor 15 (KLF15) give diurnal rhythms to the generation of FGF15. Partial primary bile acids are
transformed into secondary bile acids mainly through the 7alpha-dehydroxylation of certain members of gut microbiota. FXR binding with bile acids can upregulate
antimicrobial peptides, which can suppress the overgrowth of gut microbiota. Primary and secondary bile acids return to liver via portal system. In liver sinusoidal
endothelial cells (LSECs), bile acids can activate the FXR and leading to the upregulation of endothelial nitric oxide synthase (eNOS), increasing the level of NO and
decrease the pressure in portal system. Secondary bile acids can activate NF-kB signaling and senescence-associated secretary phenotype (SASP) in hepatic
stellate cells (HSCs), thus promoting cirrhosis, while under some circumstances, bile acids can prevent the activation of HSCs by upregulating peroxisome
proliferation-associated receptor gamma (PPARg). FXR binding with bile acids can inhibit the expression of osteopontin in natural killer T (NKT) cells, the interleukin
(IL)-6 induced expression of C reactive protein (CRP) in hepatocytes, and the expression of monocyte chemoattractant protein-1 (MCP1) in macrophages.
Acetylation of FXR leads to a series of pro-inflammatory issues and impaired substance metabolism, while small ubiquitin-like modifier (SUMO)-ylation of FXR can
inhibit the expression of NF-kB pathway-related molecules. FXR can also downregulate the expression of Na+-taurocholate co-transporting polypeptide (NTCP) and
perturb the infection of hepatitis B virus (HBV). The transcription of HBV is also regulated differently when FXR is activated by different ligands. Period (Per) and REV-
ERBa, as central circadian clock transcription factors, upregulates NTCP and CYP7A1, respectively.
July 2022 | Volume 12 | Article 936815
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gut microbiota also serve as cues of innate and adaptive immunity.
Short-chain fatty acids (SCFAs) have been identified to have a
positive immunomodulatory effect. Intestine IL-22 produced by
innate lymphoid cells (ILCs) and CD4+ T cells is important for local
immunity in the intestine. SCFAs have been shown to be essential
for gut microbiota to stimulate the secretion of IL-22 through an
epigenetic way (Yang et al., 2020). As for the anti-tumor immunity,
cancer patients with higher serum butyrate showed a higher
sensitivity to the treatment of oxaliplatin. In vitro and in vivo
experiments both indicated that butyrate enhanced the function of
CD8+ cytotoxic T cells in an IL-12-ID2-dependent way (He et al.,
2021). Furthermore, SCFAs treatment was demonstrated to be able
to delay the onset of hepatocyte cancer (HCC) from chronic liver
diseases (CLDs) in HBx transgenic mice (McBrearty et al., 2021).
This result indicated that SCFAs treatment may have the potential
to improve the prognosis and lead to better clinical outcomes
through its anti-neoplastic properties. Butyrate, which has been
reported to promote the extrathymic generation of regulatory T cells
and thus to exhibit an anti-inflammatory property (Arpaia et al.,
2013), was demonstrated to induce B10 cells to produce IL-10, an
anti-inflammatory cytokine, through its regulation of retinoic acids
receptor (RAR)-related orphan receptor alpha (RORa)-NR1D1
pathway. Mice experiments supported that this bioactivity of
butyrate could be applied to the treatment of Sjogren’s syndrome,
an autoimmune disease damaging exocrine glands like salivary
glands (Kim et al., 2021). Besides immunomodulatory properties,
the SCFAs also have an essential capacity of regulating metabolism.
SCFAs have been reported to reduce fat-storage (Adolph et al., 2018;
Stephens et al., 2018) in liver and to improve the homeostasis of
lipidmetabolism atmultiple levels, varying from the production and
secretion of insulin (Boursier et al., 2016) and other endocrine
hormones (Tolhurst et al., 2012) to the balance between lipogenesis
and lipolysis (den Besten et al., 2015).
INTERACTIONS BETWEEN CIRCADIAN
RHYTHMS AND GUT MICROBIOTA
EXERT CONSIDERABLE INFLUENCE
ON HOMEOSTASIS: THE
POTENTIAL MECHANISM

In view of the important role of gut microbiota in chronic hepatitis
B and the close relationship between microbiota and host rhythm,
we further discussed the interaction and molecular mechanism of
the latter two. This part could offer valuable clues and candidates
involved in the interactions between circadian rhythms and gut
microbiota to imply their potential mechanism for chronic
hepatitis B.

Circadian Clock Affects Gut Microbiota
Mainly Through Diet, Sleep, and Light/
Dark Cycles
The circadian rhythm system of humans is a hierarchical system.
The central circadian oscillator locates in the suprachiasmatic
nucleus of the anterior hypothalamus, which in turn
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
synchronizes peripheral circadian, thus dictating the expression
of a set of core clock genes in every cell mainly including clock,
bmal1, per1/2/3, and cry1/2 (Froy, 2011; Chen and Yang, 2014).
Light/dark cycles are the most potent but not the only cue that
controls the circadian rhythm. Diet and sleep also participate in
the regulation of circadian rhythm (Parkar et al., 2019) while
being modulated by light/dark cycles.

Many physiological processes, including digestion,
metabolism, and the function of the immune system, are under
the regulation of the symbiont gut microbiota, which serves as an
acquired organ (Sommer and Backhed, 2013). Current studies
demonstrated that gut microbial dysbiosis may result from
circadian misalignment, indicating the trans-kingdom
influence of human circadian clock (Thaiss et al., 2014). Diet
and sleep that may disturb the host circadian system also influent
the gut microbiota (Parkar et al., 2019).

Diet has a crucial impact on gut microbiota as it directly
supplies energy to intestinal bacteria. A study published in
Nature in 2014 demonstrated that the abundance of the gut
microbiome could rapidly respond to an altered diet (David
et al., 2014). And long-term changes in diet have also been
demonstrated to alter the population of bacterial species in the
gut (Wu et al., 2011). Feeding time influences the daily structural
fluctuations and the quantitative oscillations of the gut
microbiota (Zarrinpar et al., 2016). Ablation of clock genes
reduces the eating rhythmicity of host. Christoph A. Thaiss’
group observed that Per1/2-/- mice almost completely lost the
diurnal variations of gut microbiota (Thaiss et al., 2014).

Sleep disorders cause a significant effect on circadian rhythm
disruption, which are associated with metabolic changes and
contribute to health issues (Archer and Oster, 2015). The
relevance between gut microbiota and sleep disturbance has
been discussed in recent years. A randomized crossover study
demonstrated that short-term sleep deprivation can induce
subtle effects on human gut microbiota (Benedict et al., 2016).
In a study published in 2016, mice were exposed to sleep
fragmentation for 4 weeks and then allowed to recover for 2
weeks. Then tissues inflammation, representing an imbalanced
immunity, and disturbance of metabolic homeostasis mediated
by alterations in gut microbiota were reported. They
demonstrated that chronic sleep disruption led to selective
alterations in gut microbiota that elicited concurrent systemic
inflammatory changes (Dobnik et al., 2016). Additionally,
hypertension induced by Obstructive Sleep Apnoea (OSA)
influences the high-fat diet-induced gut dysbiosis (Durgan
et al., 2016). Poor sleep quality altered gut microbiota
composition resulting in lower cognitive flexibility (Anderson
et al., 2017).

Mice living in normal light/dark cycles eat mainly in the
nocturnal phase, resulting in an increase of microbial pathways
related to energy metabolism, DNA repair, and cell growth
within the same phase with or without a delay. Contrarily,
resting in the light phase led to an increase in microbial
pathways related to chemotaxis and motility required for the
mucus-adherent bacteria to reach closer to the intestinal wall
(Liang et al., 2015; Thaiss et al., 2016). Feeding restricted to the
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active dark phase resulted in fluctuations of microbial abundance
of the mouse gut microbiota, with Firmicutes peaking during
feeding and decreasing during daytime fasting with a peak-to-
trough ratio of 3:1. Bacteroidetes and Verrucomicrobia peaked
during the daytime fasting period (Zarrinpar et al., 2014).
Different studies on mice indicated that the peaks in Firmicutes
during the dark phase are diet-driven, while light blooms in
Bacteroidetes and Verrucomicrobia during the light phase were
due to the cessation of feeding (Parkar et al., 2019). Thus,
circadian clock could help understand the potential
mechanism of gut microbiota involved in the diverse outcome
of chronic hepatitis B.

Bile Acids Metabolism Might Serve as a
Potential Link Between Circadian Rhythms
and Gut Microbiota
Bile acids are important for the ingestion of lipids and its
discharge from gallbladder is closely associated with diet, so it
has early been observed that there is a rhythmic oscillation in bile
acids concentrations in the digestive tract and systemic
circulation and the peak comes after the food intake (Setchell
et al., 1982). Since mice have a nocturnal feeding habit, the
highest concentrations of bile acids in serum and intestinal
lumen appear at night (Han et al., 2015). The rhythmic
expression of speed-limiting enzymes in both classic and
bypass pathways of bile acids biosynthesis is the central part of
the diurnal rhythms in bile acids metabolism. Studies on mice
which have more regular and controllable feeding habits have
provided solid evidences. Cyp7a1, encoding the speed-limiting
enzyme CYP7A1 in the classic pathway of bile acids synthesis,
has an increasing expression starting from daytime and peak
after eating in a dark time. In humans, 1 p.m. and 9 p.m. are the
two-timing when bile acids synthesis is most active (Axelson
et al., 1988; Galman et al., 2005). Genes in the bypass pathway
share a similar pattern of rhythm with Cyp7a1 (Wu et al., 2015).
Besides nonphotic Zeitgeber like feeding, circadian clock genes
also play a role in regulating the rhythm of bile acids metabolism.
REV-ERBa (also known as NR1D1, nuclear receptor
superfamily 1 group D number1), a central molecular in the
cell-intrinsic circadian clock, downregulates SHP (small
heterodimer partner) and E4BP4 to promote the expression of
Cyp7a1 (Duez et al., 2008; Le Martelot et al., 2009). On the other
side of enterohepatic circulation of bile acids, FXR in intestinal
epithelial cells (IECs) binding to and activated by bile acids
induce the expression of fibroblast growth factor 15 (Fgf15)
which is able to downregulate CYP7A1 in hepatocytes through
FGF15-FGR4 signaling axis (Inagaki et al., 2005; Song et al.,
2009). FGF15 expression in IECs is also negatively regulated by a
transcription factor with diurnally rhythmic expression called
Kruppel-like factor 15 (KLF15) (Han et al., 2015). Transporters
in the enterohepatic circulation of bile acids are also targets for
regulations. Per (period) has been showed to be essential for the
rhythmic expression of NTCP on the surface of hepatocytes (Ma
et al., 2009)(Figure 2). Given that bile acids also demonstrate the
capacity for modulating gut microbiota, there are also growing
studies focusing on how bile acids metabolism links circadian
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rhythms to gut microbiota. A recent study conducted by Cui
et al. (Cui et al., 2022) reported that apple polyphenol extract
(APE) could induce the daily rhythm of circadian genes
expression in SCN and ileum in mice fed with high-fat diet
(HFD). Gut microbiota, rhythms of FXR expression in liver and
ileum, and bile acids profile were also significantly altered by the
administration of APE. Emerging pieces of evidence are
suggesting that the triangle network of circadian rhythms, bile
acids metabolism, and gut microbiota might provide new
perspectives for research, especially on metabolic and
systemic diseases.

Gut Microbiota Regulates the Expression
of Circadian Clock-Related Genes and
Affects Metabolism and Immunity
Sequentially
The circadian clock intrinsic to every cell is actually a group of
transcription-translation loops. Among these feedback loops,
two loops are in the leading position. One consists of CLOCK
(circadian locomotor output cycles kaput), BMAL1(also known
as ARNTL, aryl hydrocarbon receptor nuclear translocator-like
protein 1), PER, and CRY (cryptochrome), among which the
former two are promotive ones and the latter two can suppress
the former two, and thus form a negative feedback loop and
generate a diurnal rhythm. The other one includes REV-ERBa
and retinoic acids receptor (RAR)-related orphan receptor
family like RORa and RORgt. DBP (D site binding protein)
and PPARGC1A (peroxisome proliferator-activated receptor
gamma (PPARg) co-activator 1a) are among the genes
regulated by the second circadian clock loop. Many of these
genes related to cell-intrinsic circadian clock and genes
governed by them are essential in energy balance and
immunity (Woldt et al., 2013; Wang et al., 2017; Brooks
et al., 2021). The signaling relay consists of gut microbiota,
TLR-MyD88-IL-23 pathway in DCs, IL-22 secretion of innate
lymphoid cells group 3(ILC3) after being stimulated by IL-23,
and IL-22-IL-22R-STAT3 phosphorylation pathway in
intestine epithelial cells(IECs) has been shown to regulate the
transport of lipids (Wang et al., 2017) and the secretion of
antimicrobial peptides (Brooks et al., 2021). These results
suggested both immunomodulatory and metabolic roles of
circadian rhythms in gut microbiota-host interaction. Besides
affecting the local diurnal rhythm, gut microbiota has been
reported to affect the cell-intrinsic circadian clock in distant
organs like the liver. A high-fat diet induces the changes in
gut microbiota and the alterations in gut microbiota activate
the PPARg-mediated transcriptional reprogramming in
hepatocytes, including the metabolic phenotype. The
observation of increased long-chain fatty acids in signaling
pathways and liver lipid accumulation was consistent with the
conclusion (Murakami et al., 2016). Therefore, due to the linage
of circadian rhythms between the gut microbiota and the host
metabolism and immune status, circadian clock-related genes
could be targeted as the candidates for understanding the
mechanism of and intervention for chronic hepatitis B,
including hepatitis B-related cirrhosis.
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CONCLUSIONS AND PERSPECTIVES

As discussed above, the changes in living habits influence the
abundance and rhythmicity of gut microbiota, leading to gut
microbiota dysbiosis. Besides light/dark cycles, diet, and sleep,
other living habits about circadian rhythms are also relevant to
gut microbiota, such as jet lag (Cui et al., 2016; Parkar et al., 2019),
the results of which will help explain the diverse effects of circadian
rhythms on gut microbiota further. The development of
microbiomics and multi-omics analysis has thrown new insights
into the mechanisms and potential targets for treatment of hepatitis
B-related cirrhosis. Circadian rhythm is among these variables and
has been revealed to have a strong interaction with gut microbiota.
Recently, inhibiting CutC, a bacterial gene encoding choline TMA
(trimethylamine)-lyase, was shown to alter the host circadian
regulation of phosphatidylcholine and energy metabolism, which
consequently improved obesity induced by high fat diet or lack of
leptin (Schugar et al., 2022). As the gut microbiota may change in
HBV patients before the severe liver lesions and may be correlated
to certain indexes like the hepatitis B viral load (Joo et al., 2021), the
predicted value of gut microbiota dysbiosis to early diagnosis of
hepatitis B-related cirrhosis is worthy of research. Interestingly, it
was reported that a circadian gene dbp (encoding d site binding
protein, DBP) was upregulated in HBsAg transgenic mice. The
baseline abundance and amplitude of upregulation of dbp is larger
in female mice, compared with those in male mice (Li et al., 2008).
Though there were few studies on the clinical significance of dbp
and its change in HBV infection, the results still provided evidence
that HBV infection might modulate the peripheral circadian clock
in infected hepatocytes and circadian clock-related genes might also
be a target for developing more effective therapy. An integrated
study based on patients with liver fibrosis of different severity
showed that probiotics like Lactobacillus decreased in all fibrosis
groups while pathogens increased. As the fibrosis progresses,
unconjugated BAs in feces increased and conjugated BAs in
serum went the opposite. In fibrosis groups, the FXR-SHP
signaling pathway was downregulated in liver and ileum (Xiang
et al., 2022).

In this review, we concluded that gut microbiota dysbiosis may
be involved in abnormal accumulation of serum metabolites (Sun
et al., 2021b), disruption of intestinal barrier and induction of TLR/
NLR-pathway inflammatory reaction, which can influence the
outcome of chronic hepatitis B, including the progression of
cirrhosis. And at the same time, circadian rhythms have the
potential ability to regulate the alterations of gut microbiota to
participate in the diagnosis, progress, and prognosis of HBV-related
disease. Developing a time-based medication regimen would be a
promising direction in which studies on circadian rhythms can
focus. What should be improved and furtherly investigated is the
directive evidence of the influence of gut microbiota-circadian
rhythms interactions on chronic hepatitis B and cirrhosis.
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As for the further understanding of diverse outcomes of hepatitis
B-related cirrhosis and the development of individualized and time-
based therapies, we proposed a few suggestions as followings:

1. Approaches of systems biology would help to integrate
circadian rhythms, gut microbiota, and cirrhosis into a
whole and to observe the alterations when one part is
changed.

2. Gut microbiota-derived metabolites and their organ-specific
or tissue-specific signaling pathways would be powerful
candidates for etiological treatment of liver cirrhosis, and a
both phenotype- and transcriptome-oriented screening
method may be more sensitive in discovering therapeutical
chemicals.

3. Due to the lack of satisfying and convenient indexes for
fibrosis and cirrhosis screening, integrated serum
metabonomics, fecal metabonomics, and gut mirobiomics
analysis is necessary to develop biomarkers or combinations
of several biomarkers with both high sensitivity and high
specificity.

4. Adjusting the time pattern of drug ministration may serve as a
promising improvement, especially for drugs derived from
endogenous substances and drugs targeting signaling
pathways with natural circadian oscillations. More related
pre-clinical animal experiments and clinical trials are needed.
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