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Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome
and is one of themost prevalent comorbidities in HIV andHBV infected patients. HIV plays an
early and direct role in the development of metabolic syndrome by disrupting the mechanism
of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid
metabolism, also contribute to the progression of NAFLD either directly or via hepatic
organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver
inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the
pathogenesis of NAFLD is controversial. HBV has been previously associated with a
decreased level of triglycerides and with a protective role against the development of
steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic
and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated
by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected
mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to
these viral agents and by the variable toxicity of the antiretroviral therapy. The current article
discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in
the development of NAFLD as well as the implications of HIV and HBV infection in the
breakdown of the hepatokine/adipokine axis and NAFLD progression.

Keywords: non-alcoholic fatty liver disease, hepatitis B virus, HIV, hepatokines, adipokines, oxidative stress,
metabolic syndrome, antiretroviral treatment
1 INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathological changes
induced by the accumulation of fat in the liver parenchyma, in the absence of alcohol
consumption. According to the literature, NAFLD is encountered in 25% of the general
population and represents the most common liver-related disease, especially in developed
n.org March 2022 | Volume 13 | Article 8142091
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countries (1, 2). From a histopathological perspective NAFLD
progresses from the simple accumulation of fat (fatty liver or
steatosis) to liver inflammation (non-alcoholic steatohepatitis,
NASH) and to liver fibrosis, potentially leading to hepatocellular
carcinoma (HCC) (3). The deposition of fat in the liver is a
reversible process, while NASH is an aggressive form of NAFLD
leading to cirrhotic transformation and carcinogenesis.

As much as 27-44% of patients with NAFLD display NASH on
liver biopsy and 30-42% of these have been shown to progress to
liver fibrosis depending on various factors such as age, gender,
geographical location or other comorbidities (4–7). However, the
high prevalence of NAFLD and its close relation with the
metabolic syndrome (MetS) (8) increase the risk of mortality
and morbidity during NAFLD (8). The outcome of NAFLD is
further aggravated by HIV and HBV infections, as a result of the
intrahepatic inflammatory response and metabolic imbalances
triggered by both viruses (9, 10). The pathological changes
behind these events consist in the ability of viruses to
simultaneously control key enzymes needed for viral replication
and transcription factors involved in metabolic processes.

The HIV/HBV viral replication, as well as the inflammatory
response and fatty deposition within the liver contribute to
hepatic mitochondrial toxicity, one of the main mechanisms
responsible for the development of NAFLD. Additionally, the
antiretroviral (ARV) drugs induces a spectrum of metabolic
abnormalities strongly associated with NAFLD known as HIV/
ART–associated lipodystrophy syndrome (HALS). The limited
ability of the liver to coordinate all these events through the
hepatokine/adipokine network enables the progression of liver
lesions and aggravates the ensuing metabolic imbalance.

Data related to the evolution of the hepatokine/adipokine axis
in HIV and HBV infected patients with NAFLD are scarce.
Currently no review has previously approached the mechanisms
through which the hepatokine/adipokine axis controls the liver
impairment induced by HIV/HBV. The article sums up available
data on the immune and metabolic implications of the
hepatokine/adipokine axis in HIV/HBV-infected patients with
NAFLD. On the long term, the modulation of hepatokine/
adipokine axis represents an important direction for research
and could play a significant therapeutic benefit towards the
attenuation or prevention of NAFLD

The article is structured in two parts. The first part discusses
the cellular mechanisms and the contribution of the hepatokine/
adipokine axis in the development of NAFLD, whereas the
second part presents the implications of HIV/HBV infections
on these mechanisms.
2 CELLULAR MECHANISMS INVOLVED IN
THE DEVELOPMENT OF NAFLD AND THE
ROLE OF THE OXIDATIVE STRESS

The liver holds a central role in metabolic homeostasis given its
key function in the fat and glucose metabolism, namely in fat
absorption and fatty acid (FA) metabolism, in the conversion of
glucose to glycogen and vice versa and in the regulation of insulin
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signals from liver receptors. Hence, the resulting liver-related
lesions during NAFLD are closely linked with additional
metabolic changes and particularly with the progression of the
MetS. NAFLD could favor the development of type 2 diabetes
(T2D), insulin resistance (IR), atherogenic dyslipidemia and
obesity, all inducing MetS (11) while at the same time, these
conditions are risk factors for the evolution of NAFLD (12, 13).
In this respect, both hyperinsulinemia and the excessive
accumulation of triglycerides (TGs) in the adipose tissue
interfere with liver lipogenesis and de novo lipogenesis (DNL)
and contribute to the onset of steatosis, the first stage of NAFLD
(14). Fatty deposition within the liver cells gradually induces
mitochondrial oxidative damage and generates oxidative stress
(OxS), a fundamental cellular process in the development of
NAFLD (15).

OxS represents a cellular imbalance between free radicals
(reactive oxygen species, ROS) and antioxidants accompanied by
the reduction of the oxidative capacity and antioxidant response
in the mitochondria, and subsequently in the endoplasmic
reticulum. The OxS response involves the activation of
numerous transcription factors which upregulate the
inflammatory response and modulate the glycolipid
metabolism, further favoring the occurrence of NASH (16). In
moderate amounts, ROS play a key role as signalling molecules
that control the immune response and protect against invasive
pathogens (17). However, the overproduction of ROS in the
liver parenchyma generates an inflammatory response that
triggers cell necrosis and subsequently favors liver fibrosis (18).
ROS also initiate a process of oxidative damage of the
polyunsaturated FA belonging to the cell membranes through
lipid peroxidation and further release toxic intermediate
products, namely the lipid hydroperoxides. The accumulation
and continuous conversion of lipid hydroperoxides to alkoxyl
and peroxyl radicals aggravates all the more the oxidative
damage of cells and membranes and facilitates the release of
ROS and mitochondrial toxicity in a vicious circle (19). The
ensuing mitochondrial toxicity further contributes to liver
inflammation and fibrosis (20, 21). In addition, hydroperoxides
diffuse across cell membranes and serve as pancreatic signalling
molecules to influence glucose-stimulated insulin secretion and
to suspend the pancreatic glycemic control (22). All these aspects
highlight the close link between OxS, liver inflammation and
glycolipid metabolism.
3 HEPATOKINE/ADIPOKINE AXIS IN
NAFLD PATHOGENESIS

3.1 Overview
Currently, there is ample evidence that NAFLD is a
multifactorial disorder dependent on metabolic, genetic,
environmental, toxic and infectious factors in different
combinations (“multiple-hits” theory) (23). NAFLD develops
as a stress response to these factors. Recently, the pathogenesis
of NAFLD has been associated with the release of “organokines”,
peptides that are synthesized within the liver or in various
March 2022 | Volume 13 | Article 814209
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tissues. Notably, these organokines play an active role in the
regulation of metabolic and inflammatory processes and connect
numerous tissues/organs, particularly the liver and the
adipose tissue.

Organkines are secreted in various physiological or
pathological conditions predominantly in the l iver
(“hepatokines”), adipose tissue (“adipokines”) or muscles
(“myokines”).Various authors have described the functions and
features of these structures, their connections and their
involvement in NAFLD (24–27). Some of these bioactive
peptides are currently studied as therapeutic targets or
biomarkers of NAFLD severity (28). However, the number and
specific functions of these regulatory peptides have not been
elucidated and their role in the pathogenesis of NAFLD remains
unclear. Currently, the adipose tissue is considered the largest
endocrine organ, producing over 700 adipokines of which only a
few have been characterized. Two of these adipokines, namely
adiponectin and leptin have been validated by clinical and
histological studies in NAFLD (26, 29). Additionally,
hepatocytes secrete more than 500 proteins of which only a
small number have been studied and very few proteins such as
fetuins A or FGF21 have been clearly correlated with distinct
manifestations of MetS or NAFLD (30).

3.2 Cellular Mechanisms Activated by
Hepatokines and Adipokines
Hepatokines and adipokines carry multiple cellular functions,
regulating various transcriptional factors, receptors or key
enzymes connected to metabolic, immune, antiviral, or
antitumor processes. Hence, these organokines control the
transcription factors that interfere in the regulation of insulin
or lipid signalling (31–33) (e.g. carbohydrate response element
binding protein- ChREBP or sterol regulatory element-binding
transcription factor 1-SREBP-1c), as well as in hepatic
inflammatory response, fibrogenesis or carcinogenesis (34–37)
(e.g., nuclear factor kappa-light-chain-enhancer of activated B
cells-NF-kB or members of the signal transducer and activator of
transcription-STAT family). Adipokines and hepatokines can
also activate specific receptors (e.g AdipoR1/R2, ChemR, LepRb)
(38–41) or metabolic receptors (e.g. the peroxisome proliferator-
activated receptors-PPAR family) (33, 42–47). Additionally,
certain organokines (adiponectin, resisitin, fetuin A) could
display a competitive binding to the cellular receptors TLR4/
CD14, which transduce the bacterial lipopolysaccharide (LPS)
signal into inflammatory signals (48–51). Some organokines
such as adiponectin and fibroblast growth factor 21 (FGF21)
impair the metabolic activity of c-Jun N-terminal kinases (JNK).
Also leptin, ghrelin, adiponectin or FGF21 dysregulate the
signalling pathways of mammalian target of rapamycin
(mTOR1), a protein kinase that coordinates lipid homeostasis
and cellular growth but also, liver inflammation and
carcinogenesis (52). Furthermore, the contribution of
organokines in liver pathology is highly intricate as a result of
the numerous synergistic or antagonistic interactions that are
established between them. The main hepatokines and adipokines
which contribute to NAFLD and their mechanism of action is
Frontiers in Endocrinology | www.frontiersin.org 3
presented in the Table 1. The interactions of these organokines
are presented in the Table 2.

3.3 NAFLD Pathogenic Pathways
Regulated by Hepatokines and Adipokines
Hepatokines and adipokines act as intercellular signals which
modulate the liver lipogenic, inflammatory and fibrogenic
pathways (25, 89). Lipogenic pathways are modulated by
hepatokines and adipokines through their specific control over
the FA flux, DNL and insulin signals. These carbohydrate-
dependent processes are regulated through the activation of
PPAR-a/g receptors (64) as well as by transcription factors and
enzymes involved in the lipid homeostasis (e.g. mTOR/SREBP1c
and ChREBP) (25, 90). A predominant lipogenic effect can be
observed in the case of resistin, ghrelin, fetuin A, chemerin and
selenoprotein P (SeP). Inflammatory and fibrogenic pathways
are modulated mainly through activation/inhibition of
proinflammatory transcription factors (e.g NF-kB expression or
STAT-3), thus modifying the profile of the released cytokines
(53, 57, 75). Leptin and resistin are significantly associated with
liver inflammation and leptin, resistin, chemerin, fetuin A and SeP
with a profibrotic effect. The main adipokines and hepatokines
presented in this article along with their metabolic, inflammatory
and fibrogenic pathways are depicted in Table 3 and their
potential effect in NAFLD are represented in Table 4 and
Figure 1. As shown in Figure 1, visfatin chemerin, resisitin and
SeP aggravate NAFLD through multiple pathways including
the activation of receptors (TLR4/CD14), the regulation of
transcription factors ((NF-kB) and the release of inflammatory
or profibrotic cytokines (TNF-a/IL-6, respectively TGF-b) (98, 99,
104, 123, 124, 126, 132, 150, 154–156). These pathways involved
in the control of liver inflammation are mediated by Kupffer cells
(KCs) and hepatic stellate cells, (HSCs) and are associated with the
exacerbation of inflammation, adipogenesis and finally, with the
development of MetS (24, 99, 150, 157–161). By comparison,
adiponectin and FGF21 display a hepatoprotective activity (34, 76,
111, 162–164) and attenuate the MetS (24). Various organokines
play dual roles. For example, leptin reverses steatosis through
SREBP/mTOR inhibition, while also promoting liver
inflammation and fibrosis in non-parenchymal cells (79, 96,
165). Additionally, leptin promotes adipogenesis and the
immune response and favors MetS (95) Other examples include
ghrelin (39, 108) and fetuin A (51, 118, 166) which concurrently
aggravate hepatic steatosis and prevent liver fibrosis. Similarly,
most adipokines and hepatokines display contradictory roles
regarding the progression of NAFLD (27, 167) (Tables 3 and
4). In this regard, resistin, a pro-inflammatory adipokine acting
via NF-kB/TLR4 mediated pathway and overexpressed in NASH
(98) can still promote an anti-inflammatory response in the
presence of LPS (100, 137, 168). Fetuin A, a hepatokine which
induces MetS has been associated with a controversial role in liver
fibrosis (119, 120) similar to chemerin in liver inflammation (86,
124). The level of visfatin, a proinflammatory and anti-steatosis
adipokine (148) has been correlated with exacerbation as well as
protection of liver inflammation (150) while it lacked a correlation
with NAFLD in certain studies (146, 151). SeP, a hepatokine
March 2022 | Volume 13 | Article 814209
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shown to display a protective antioxidant role in all stages of
NAFLD, with a therapeutic benefit (132), has nevertheless been
incriminated in liver fibrosis and IR (129). All of these conflicting
aspects underline the need to clarify the roles of hepatokines and
adipokines in the evolution of NAFLD and in particular, the need
for studies with comparable designs and entry criteria regarding
the patient’s metabolic status, age and NAFLD staging (29).
4 HIV AND HBV ROLE IN NAFLD
PATHOGENESIS AND IN THE
BREAKDOWN OF HEPATOKINE/
ADIPOKINE AXIS

HIV/HBVco-infection promotes hepatic injuries during NAFLD
through several mechanisms triggered by their persistent
replication, enhanced inflammatory response and metabolic
Frontiers in Endocrinology | www.frontiersin.org 4
interference. The toxicity of antiretroviral therapy (ART) can
also contribute to NAFLD. Hence, the prevalence of NAFLD can
amount to 50-65% of HIV infected patients, depending
cumulative risk exposure to metabolic factors, drug toxicities,
age, disease duration or ARV regimen (169, 170). By
comparison, the prevalence of NAFLD in HBV-infected
patients is estimated at 31.4% (171) while HIV/HBV co-
infected patients also display a lower prevalence of only 30%
(172). On the other hand HIV/HBV co-infected patients show a
higher risk of liver fibrosis of 37-40% (173) and exhibit a more
rapid progression to liver cirrhosis and HCC compared with
HIV mono-infected patients (173, 174). The pathogenic
differences between the two viruses explain their different
influence on the progression of NAFLD (174). We present
below the pathogenic mechanisms associated with the
progression to NAFLD in HIV and HBV infection along with
the role of antiretroviral treatment (ART) and the ensuing
disruption of the hepatokine/adipokine axis.
TABLE 1 | Cellular targets regulated by adipokines and hepatokines with relevance in the pathogenesis of non-alcoholic fatty liver disease and metabolic syndrome.

Cellular targets con-
trolled by hepatokines
and adipokines

Action mechanisms involved in the pathogenesis of NAFLD Hepatokines and
adipokines that

control the cellular
targets

1 .TRANSCRIPTION FACTORS
a) Nuclear factor
kappa-light-chain-
enhancer of activated B
cells (NF-kB)

The excessive release of NF-kB promotes NAFLD through multiple mechanisms (53): a) the activation of liver fibrosis
in HSCs; b) the initiation of the inflammatory response in KCs; c) the releasing of inflammatory key cytokines (TNF-a,
IL6); d) anti-apoptotic functions and the involvement in hepatocarcinogenesis; e) the inflammatory response during
LPS stimulation; f) the promotion of IR (54)

FGF21, ghrelin,
resistin, fetuin A
ghrelin (34–37)

b) Signal transducer
and activator of
transcription (STAT)

Members of the STAT protein family modulate liver inflammation and fibrosis (55, 56) and also play a defining role in
the antiviral and antitumoral immune response (57)

Leptin, adiponectin
and FGF21 (38, 58–
60)

c) Carbohydrate
response element
binding protein
(ChREBP) Sterol
regulatory element
binding protein
(SREBP-1c).

ChREBP and SREBP-1c play a synergic role and regulate the genes expression of glycolytic and lipogenic pathways
(61); ChREBP is stimulated by glucose; SREBP-1c is activated by insulin. Both factors regulate FA.synthesis. The
upregulation of these factors favors hepatic steatosis, IR and the progression of MetS (62, 63)

FGF21, adiponectin
and leptin (31–33)

2. RECEPTORS
A) Receptors activated by various ligands,
including organokines
a) Peroxisome
proliferator activated
receptors (PPARs).

The activation of PPARs attenuates the development of NAFLD through its regulation of the lipid metabolism and
reducing IR (PPAR-a, PPAR-g) or through the attenuation of liver inflammation (PPAR-b/d) (64)

FGF21, leptin,
adiponectin and
ghrelin) (33, 42–47)

b) The complex of toll
like receptor 4 (TLR4)
and CD14 receptor

TLR4 is a key receptor of KCs and adipose tissue involved in the activation of the inflammatory response.TLR4
signalling is amplified by OxS and coupled with lipid metabolism (50); CD14 is a co-receptor of TLR4 which facilitates
the binding of LPS and the release of cytokines that are dependent of NF-kB (65). TLR4/CD14 signalling favors the
progression of NAFLD through NF-kB activation, the release of proinflammatory cytokines (TNF-a,IL6) (65, 66), IR (67,
68) and triglycerides accumulation (69)

Resistin, fetuin A
adiponectin. Fetuin
A is a ligand for
TLR4, also binding
to FA (48–51)

B) Specific receptors Leptin, chemerin, adiponectin and ghrelin receptors Leptin, chemerin,
adiponectin and
ghrelin (38–41)

3. KEY ENZYMES
a) Mammalian target
of rapamycin complex 1
(mTORC1)

mTORC1 promotes SREBP-dependent lipogenesis (70) and modulates the immune response under cellular stress.
The dysregulation of mTORC1 favors liver steatosis (71) through the activation of SREBP-dependent lipogenesis and
also hepatic carcinogenesis due to the worsening of OxS and inflammatory response (71)

Ghrelin, FGF21,
adiponectin and
leptin (39, 72–74)

b) c-Jun N-terminal
kinases (JNKs)

JNK promotes the development of NAFLD through favorable effect towards hepatic steatosis, inflammation, fibrosis,
IR and obesity (75)

Adiponectin leptin and
FGF21 (38, 74, 76, 77)
March 2022 | Volum
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4.1 HIV-Associated NAFLD Mechanisms
HIV promotes NAFLD through multiple mechanisms, as
follows: a) the generation of an inflammatory response
within the liver; b) the metabolic changes induced in the
adipose tissue; c) the disruption of the hepatokine/adipokine
axis which maintains the immune and metabolic balance.
These mechanisms will be presented below.
Frontiers in Endocrinology | www.frontiersin.org 5
4.1.1 HIV- Associated Liver Inflammation
HIV promotes liver inflammation through direct mechanisms or
indirectly, following the breakdown of the intestinal immune
response during HIV enteropathy.

4.1.1.1 HIV and liver inflammation
HIV was detected in the mitochondria of non-parenchymal cells
(175), while the infection of hepatocytes was observed only
TABLE 2 | Correlations between various hepatokines and adipokines with a possible role in the pathogenesis of non-alcoholic fatty liver disease.

Fetuin A/adiponectin axis
-antagonistic relationships

Fetuin A represses adiponectin and the vice versa, adiponectin inhibits hepatic fetuin A expression via the AMPK-NFkB pathway (78)

Adiponectin/leptin axis
-antagonistic relationships

Adiponectin inhibits the synthesis of leptin in liver carcinoma (79)

Adiponetin/FGF21 axis -
reciprocal stimulation

Adiponectin stimulates FGF21 while FGF21 increases the expression of adiponectin; some of the FGF21 effects are thought to be
mediated by adiponectin (80, 81). However, in the adipose tissue, FGF21 suppresses adiponectin and promotes leptin (82).

Leptin/FGF21 axis -reciprocal
stimulation

Leptin increases FGF21 secretion (83) while FGF21 mediates the effects of leptin; both organokines are modulated by the same
transcriptional factors namely PPARa and PPARg (45, 46). Also various roles of leptin actions are probably due to the FGF21 and
leptin resistance could actually be mediated by the resistance to FGF21 (83).

Selenoprotein P/adiponectin
axis -antagonistic relationships

Negative correlations of selenoprotein P with adiponectin in type 2 diabetes patients (84)

Resistin/adiponectin axis–
antagonistic relationships

Resistin inhibits adiponectin; possible role in the pathogenesis of NAFLD (85)

Chemerin- reciprocal stimulation
with FGF21 (86) and adiponectin
(87) and leptin (88)

Chemerin might be the link between obesity and NAFLD (88)
TABLE 3 | The main hepatokines and adipokines and their mechanisms in the development of non-alcoholic fatty liver disease.

Organokine (main source and target
tissue)

Liver lipogenesis and metabolic syndrome
(effect, mechanism)

Liver inflammation
(effect, mechanism)

Liver fibrosis
(effects, mechanism)

Adiponectin (adipose tissue, liver) (41,
76, 91–94)

Liver lipogenesis; DNL; FA b-oxidation; PPAR-a
expression; Gluconeogenesis; Insulin resistance;
Oxidative stress; SIRT-1 activity; SREBP-1 expression;

Liver inflammation; TNF-a/IL6
expression; NF-kB expression; IL-10
expression; AMPK activity;

Liver fibrosis; HSCs activity;
TGF-b expression; JNK
inhibition

Leptin (adipose tissue, distributed and
active in various tissues including liver)
(41, 93, 95–97)

Liver lipogenesis; FA b-oxidation; PPAR-a activation;
Insulin resistance; mTOR activity; SREBP-1/ChREB
expression; Adipogenesis;

Liver inflammation; CD14 expression
on KCs; STAT-3 activation;

Liver fibrosis; HSCs activity;
TGF-b expression; JAK-
STAT pathway; HCC risk;

Resistin (adipose tissue, inflammatory
cells including KCs, HSCs;
hepatocytes) (92, 98–107)

Liver lipogenesis; Adipogenesis; Insulin resistance;
SREPB-1/ChREBP expression; MetS risk

Liver inflammation; TNF-a/IL6
expression; TLR4/NF-kB-mediated
pathway

Liver fibrosis; HSCs activity;
TGF-b synthesis; NF-kB
signalling;

Ghrelin (entero-endocrine cells,
stomach, pancreas) (39, 92, 108–110)

Liver lipogenesis; TG serum level; Adipogenesis; T2D
risk; Insulin resistance;

Liver inflammation; NF-kB activation;
TLR4 expression; IL-10 synthesis;
mTOR/PPARg signalling;

Liver fibrosis; TGF-b
synthesis; NF-kB signalling;

FGF 21 (liver/effect on adipose tissue,
less other tissues) (111–113, 114–117)

Liver lipogenesis; FA b-oxidation; mTOR activity; PPAR-
a/g.> Insulin resistance; Adipolysis< Dyslipidemia;

Liver inflammation; NF-kB activation; Liver fibrosis; TGF-b
synthesis;

Fetuin A (hepatocytes) (51, 118–122) Liver lipogenesis; Adipogenesis; SREBP1c; Insulin
resistance; T2D risk; Dyslipidemia;

Liver inflammation*; Endogenous
ligand between FA and TLR4 TLR4
signaling; NF-kB activation;

Liver fibrosis*; TGF-b
activity;

Chemerin (adipose tissue, liver;
receptors in various tissues) (102,
123–125)

Liver lipogenesis; Adipogenesis; Insulin resistance; Liver inflammation*; IL-6 expression; Liver fibrosis; TGFb1
synthesis;

Visfatin (adipocytes, hepatocytes,
muscle cells, leukocytes) (92, 126–128)

Liver lipogenesis*; Adipogenesis; Insulin resistance; * Liver inflammation*; TNF-a/IL-6
synthesis; STAT3/NF-kB pathways;

Liver fibrosis*;

Selenoprotein P (cellular enzymes
with antioxidant properties) (129–132)

Liver lipogenesis; Adipogenesis; Insulin resistance;
Obesity;, T2D risk

Liver inflammation*; Liver fibrosis*;
March 2022 |
DNL, de novo lypogenesis; T2D, Type 2 diabetes; FA, fatty acids; HC, hepatocarcinoma; KCs, Kupffer cells; HSCs, hepatic stellate cells; MetS, metabolic syndrome; *controversial role,
conflicting data.
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experimentally (176). HIV replication in HSCs and KCs induces
mitochondrial toxicity accompanied by inflammation and
fibrosis (177). At the same time, HIV releases numerous
profibrogenic, proinflammatory and proapoptotic signals in the
liver parenchyma (178) which contribute to ROS generation
(179), metabolic activation of CD4+T cells and immune
stimulation (180). Consequently, HIV induces the cellular
death by apoptosis or pyroptosis along with hepatocytes
necrosis (181). Additionally, the activation of hepatic T and B
lymphocytes during HIV infection and their ensuing apoptosis
aggravates the inflammatory response and accelerates the
fibrogenesis induced by HSCs (182) (Figure 2).

4.1.1.2 HIV enteropathy and inflammatory consequences
In the early stages of HIV infection the viral invasion of the
gastrointestinal system weakens the intestinal mucosa through
the depletion of CD4+T lymphocytes, thereby promoting liver
injury through the microbial translocation of intestinal germs or
immunogenic molecules such as LPS, a proinflammatory Gram
negative endotoxin. The latter activate KCs through TLR4/CD14
signalling and induce proinflammatory cytokines (TNF-a, IL-1b
and IL-6) and profibrogenic mediators (TGF-b) (183). These
mechanisms further contribute to neutrophil recruitment and
HSCs activation, aggravating liver fibrosis (184). Notably, the
inflammatory enteropathy persists and worsens during HIV
infection despite ART.

4.1.2 Metabolic Changes Induced by HIV and ART
4.1.2.1 HIV metabolic alterations
HIV promotes NAFLD mostly through its impact on the adipose
tissue, an HIV reservoir and a promoter of metabolic alterations
in this infection. HIV infects the resident immune cells of the
adipose tissue and induces an extensive inflammatory response
which leads to the activation of macrophages and pre-adipocytes
with macrophage-like properties (185). The release of
proinflammatory and profibrotic cytokines change over time
the morphology and distribution of the adipose tissue and
contributes to the development of HALS, a specific form of
lipodystrophy. HALS is characterized by central fat gain along
with the loss of adipose tissue in the periphery and weight loss.
Frontiers in Endocrinology | www.frontiersin.org 6
The metabolic disturbance leads to MetS and to a high
cardiovascular risk (186) but is initially independent of ART
(187). Later, HALS becomes a complication of ART.

4.1.2.2 ART-metabolic alterations
ART has been a major step towards improving the lifespan of
HIV patients. It is undeniable that ART has saved millions of
patients who have been given a chance at a normal life. ARV
drug classes target various steps of the HIV replication cycle,
namely preventing HIV cell entry (Entry inhibitors-EIs),
blocking HIV reverse transcriptase (Nucleoside Reverse
Transcriptase Inhibitors-NRTIs and Non-Nucleoside Reverse
Transcriptase Inhibitors-NNRTIs), impeding protein synthesis
(Protease Inhibitors-PIs) and inhibiting the integration of HIV
DNA into host DNA (Integrase Strand Transfer Inhibitors-
INSTIs). Unfortunately, ART is not completely effective against
proviral HIV DNA (188–190) so that it does not provide the
eradication of HIV and consequently ART lifelong
administration is required. The sustained administration of
ART is accompanied by multiple side effects including
metabolic changes and HALS (191). The risk of HALS is
associated with the duration and type of ART regimen and
persists even after ART interruption (192).The exposure to
NRTIs is particularly associated with peripheral lipoatrophy
whi le PIs are f requent ly corre la ted wi th v i scera l
lipohypertrophy (193, 194).

The metabolic changes occurring during ART are commonly
associated with the cellular toxicity. Hence most ARVs have been
shown to induce cumulative cellular toxicity irrespective of the
ARV class and independent of HIV stimulation (195, 196). Of
these, the most studied and the most aggressive type of cellular
toxicity is represented by the mitochondrial toxicity (197)
induced by NRTIs, NNRTIs, PIs and by some INSTI
representatives (198, 199). This may occur shortly after ART
starting and may be perpetuated depending on various risk
factors (197, 199–201).

ART induces mitochondrial dysfunction by disrupting the
oxidative phosphorylation and ATP synthesis as well as through
the excessive release of ROS (196). The OxS generated by ART
induces apoptosis, inflammation and fibrosis of the adipose
TABLE 4 | Potential effects of the main hepatokines and adipokines on non-alcoholic fatty liver disease pathogenesis (29, 30, 92, 102).

Organokine Serum level in NAFLD Effect on
steatosis

Effect on inflammation
(NASH)

Effect on
fibrosis

HCC
risk

Insulin
resistance

Adiponectin (91–93, 133) Low Reduces Reduces Reduces No No
Leptin (79, 93, 97, 134–136) High Reduces Aggravates Aggravates Yes No
Resistin (98, 100, 102, 103, 137) High/decreased in NASH* Aggravates Aggravates* Aggravates Yes Yes
Ghrelin (39, 92, 108–110, 138–139,
140)

Low Aggravates Reduces Reduces * Unclear

FGF21 (112, 114, 115, 141) High (decreased in severe forms) Reduces Reduces Reduces No No
Fetuin A (118–121) High (very high in NASH) Aggravates Aggravates Reduces* Yes Yes
Chemerin* (86, 124, 125, 142,
143)

High (reduced in advanced stages of
NAFLD)

Aggravates Aggravates* Aggravates Yes Yes

Visfatin * (127, 144–152) High* Reduces* Aggravates* Aggravates* Yes Yes
Selenoprotein P (129, 131, 132,
153)

High (low in NASH and HCC) Aggravates* Aggravates* Aggravates* No Yes
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FIGURE 1 | A concise representation of the hepatokines and adipokines presented in the article and their implications in the pathogenesis of non-alcoholic fatty liver
disease according to the current studies.The diagram indicates the effect of hepatokines (FGF21, selenoprotein P, fetuin A, chemerin) and of the adipokines (visfatin,
resistin, adiponectin, ghrelin), against the mechanisms that drive the pathogenesis of NAFLD, namely steatosis, inflammation, fibrosis and insulin resistance and also
against the development of the metabolic syndrome, namely adipogenesis, inflammation and insulin resistance. The diagram depicts the following processes: a. The
effects of organokines on liver inflammation: visfatin, chemerin, leptin, resistin, fetuin A activate the NF-kB and TNF-a/IL6 pathway and induce a proinflammatory
effect mediated by Kuppfer cells (KCs). The previous organokines exhibit high concentrations in NAFLD. By comparison, adiponectin, FGF21 and ghrelin exert an
anti-inflammatory effect. b. The effects of organokines on liver fibrosis: visfatin, chemerin, leptin, selenoprotein P mediate the release of TGF-b in hepatic stelatte cells
(HSCs), while adiponectin and FGF21 exert an antifibrotic effect. c. The additive effect of organokines against the evolution of the metabolic syndrome: visfatin,
chemerin and leptin promote the metabolic syndrome through their proinflammatory and proadipogenic effect, as well as through their role in the aggravation of
insulin resistance. On the other hand, adiponectin and FGF21 play a protective role against the metabolic syndrome. Organokines can stimulate each other (e.g:
adiponectin and leptin with FGF21) or inhibit each other (e.g: fetuin A, leptin, selenoprotein P, resistin with adiponectin). Organokines synthesized predominantly in
the liver are presented in brown and those synthesized predominantly in the adipose tissue are presented in yellow. The correlations between these different
organokines are shown in blue. The serum concentrations of these organokines in NAFLD (high or low) are represented by arrows. Vi, visfatin; Re, resistin; Fe, fetuin
A; Le, leptin; Ch, chemerin; Ad, adiponectin; Gh, ghrelin; SeP, selenoprotein; Re, resistin; Mf, macrophage; HC, hepatic cell; receptor.
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FIGURE 2 | A brief representation of metabolic and inflammatory mechanisms generated by HIV and HBV infections and their interference with the hepatokine/
adipokine axis during the progression of non-alcoholic fatty liver disease. The figure shows: a. The effects of HIV on parenchymal liver cells: activation of CCR5
receptors of hepatocytes; the release of reactive oxygen species (ROS) and their subsequent effect on metabolic alterations inducing hepatic steatosis and non-
alcoholic steatohepatitis (NASH). ROS excess also promotes lipid peroxidation and hepatocyte necrosis, which in turn aggravate liver inflammation and fibrosis either
directly, through proinflammatory cytokines (TNF-a, IL6) and profibrogenic cytokines (TGF-b) or indirectly, through the ensuing proinflammatory and profibrotic
response. b. The effects of HIV on non-parenchymal liver cells: both Kuppfer cells (KCs) and hepatic stellate cells (HSCs) can be regulated by HIV directly and
indirectly via endotoxins (LPS), leading to the progression of the inflammatory response and fibrosis. c. The effects of HIV on adipose tissue cells: HIV ensures the
transformation of these cells in cells with pro-inflammatory properties (adipocyte and preadipocyte cells, Th1/Th17-CD4ly lymphocytes and macrophages-MF1); HIV
also promotes a disproportionate release of hepatokines and adipokines which in turn lead to liver inflammation, adipogenesis, insulin resistance and ultimately to
HALS. d. The actions of HBV on hepatocytes: the induction of ROS with metabolic consequences; the changes in the concentrations belonging to hepatokines that
promote fibrogenesis and hepatocellular carcinoma (HCC); the decreasing concentration of the protective hepatokine FGF21; the activation of mTOR, a metabolic
receptor, stimulated by HBV protein x (HBx) e. The effect of antiretrovirals (ARVs) on the adipose tissue: ARVs favor the release of adipokines with lipogenetic role
(e.g. resistin) and the reduction of anti-adipogenic adipokines (e.g. adiponectin, and leptin) f. The impact of HIV and ARVs on the occurrence of a specific metabolic
syndrome, namely HIV/ARV associated lypodistrophy syndrome (HALS). HALS arises as a result of HIV-associated inflammatory changes and ARV-related impact on
adipogenesis and is mediated by multiple mechanisms (adipocytes hypertrophy or atrophy, the evolution of the metabolic syndrome and the imbalance of hepatokine
adipokine axis). Organokines synthesized predominantly in the liver are presented in brown and those synthesized predominantly in the adipose tissue are presented
in yellow. The aggravating actions for the liver and adipose tissue are shown in pink. HC, hepatic cells; KC, Kupfer cells; HSC, hepatic stellate cells; ARV,
antiretrovirals; Mf, macrophage; ROS, reactive oxygen species; HBx, hepatitis B virus X protein; Vis, visfatin; Re, resistin; Fe, fetuin; Le, leptin; Ch, chemerin; Ad,

adiponectin; Gh, ghrelin; SeP, selenoprotein; Re, resistin; Th, T helper lymphocyte; LPS, endotoxin; receptor; apoptotic cells; TLR4, Toll-like receptor 4.
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tissue and of liver parenchymal cells. Both mitochondrial
dysfunction and the metabolic changes play a decisive role in
the development of HALS (194, 202) and favor liver steatosis and
NAFLD development (194) as can be seen in the Figure 2. The
degree of liver toxicity becomes apparent after 6-8 months of
NRTI treatment (203) and differs depending on the type of NRTI
and its persistence within the cell (200, 201). MetS also develops
as a consequence of ART-mitochondrial toxicity (202, 204) and
of visceral adipose tissue imbalance induced by hepatokines/
adipokines disequilibrium (205). In turn, MetS favors
lypodistrophy, increases the cardiovascular risk and contributes
to liver steatosis (186, 191, 206) regardless of virological
parameters (169).

In conclusion, the metabolic abnormalities arising during HIV
and ART promote HALS, MetS and liver steatosis (205) and
further lead to the development of NAFLD (207). It is estimated
that each year of NRTI treatment may add an 11% risk to
NAFLD (206). However the progression of NAFLD to liver
fibrosis is a rare and lengthy process (208). The metabolic and
inflammatory mechanisms generated by HIV and ART are
depicted in the Figure 2.

4.1.3 Hepatokine/Adipokine Axis Breakdown in
HIV-Specific NAFLD
In its attempt to restore the metabolic balance, and to reduce the
HIV-lipodystrophy and IR, the liver regulates the metabolism of
the adipose tissue by activating the hepatokines and adipokines
circuit. Unfortunately, there is limited data regarding the
hepatokines/adipokines roles in HIV patients. Currently, the
most documented organokines involved in body fat distribution
are leptin and adiponectin, two adipokines mainly secreted by
adipocytes. Available data on adiponectin indicate that ART and
in particular the treatment with IPs (ritonavir), lowers the levels of
adiponectin and leptin especially at the beginning of therapy and
favors the progression of lipodystrophy, steatosis and IR (195, 209,
210). In turn, the development of lipodystrophy lowers the
concentration of these two adipokines independent of the ARV
agent (211–214). Hence, an effective treatment against
lipodystrophy could normalize the level of these two adipokines
and could additionally lower the risk of steatosis. Recent studies
indicate that the reduction of the serum adiponectin and leptin
levels could be a consequence of SIRT1-depleted adipocytes found
during lipodistrophy (215, 216). SIRT1, a member of the enzyme
family of sirtuins, modulates the cellular metabolism, as well as
HIV transcription (217). SIRT1 downregulates DNL and
gluconeogenesis improving the lipid and carbohydrate
metabolism, and protecting the liver from steatosis (218). The
inhibition of SIRT1 along with the decrease of adiponectin and
leptin expression during HIV infection as well as during PIs
treatment could represent one of the steps required for the
development of HIV-associated NAFLD (219). On the other
hand, experimental data suggest that HIV could promote the
release of adiponectin (211). Therefore HIV suppression during
ART may lower the levels of adiponectin which would partly
explain the metabolic changes associated within HALS (211). In
this regard, HIV-infected patients starting ART may still develop
Frontiers in Endocrinology | www.frontiersin.org 9
MetS and NAFLD and may progress to HCC eventually (91, 220).
Leptin is a liporegulatory adipokine which can display a protective
role on pancreatic beta cells and liver steatosis but also increase the
risk of inflammation in non-HIV infected patients (221, 222). As a
result hipoleptinemia is linked to a lower risk of inflammation,
fibrogenesis and carcinogenesis (96, 134, 223). On the other hand,
in HIV-infected patients, the leptin secretion is closely related to
the body fat mass, so that leptin deficiency prevails in cases with
lipoatrophy, while hyperleptinemia accompanies patients with
lipohypertrophy (212, 224). The treatment of obesity with
rosiglitazone, an inhibitor of the leptin release could potentially
reduce the hyperleptinemia in HIV infected patients improving
metabolic parametric and the cardiovascular risk (225). The
administration of leptin in hipoleptinemia could also contribute
towards a metabolic balance but this type of therapy is not yet
available in HIV patients. Human recombinant leptin (metrelin) is
the only organokine that has been approved in the treatment of
non-HIV associated lipodystrophy. Certain studies have suggested
that two months of metreleptin treatment can also improve
lipodistrophy and the metabolic syndrome including in patients
undergoing ART (226, 227). However, in HIV patients the
proinflammatory and profibrotic effect of leptin remains
unknown. Therefore leptin treatment seems to be hazardous
especially that serum leptin levels may be associated with leptin
resistance, severe forms of NAFLD and HCC risk (135).
Recombinant leptin has also been studied in NASH non-HIV
patients as part of a clinical trial (ClinicalTrials.gov Identifier:
NCT00596934), but it has not been studied in HIV/NAFLD
patients. Nevertheless, there are still insufficient data to
recommend this therapy in NAFLD patients.

Adiponectin has also been studied in both cell cultures andmice.
Hence, the supplementation with adiponectin alleviates the
metabolic syndrome, IR and steatosis and could antagonize the
oncogenic effects of leptin against the liver (220, 228, 229).
Additionally, adiponectin agonists have been used as an
experimental antifibrotic therapy in liver diseases (230). It is
considered that hypolipidemic therapies such as statins and
antidiabetic medications thiazolidinediones or metformin could
upregulate the level of adiponectin and induce a hepatoprotective
effect without side effects (231, 232). However, there are conflicting
data on the use of these drugs in HIV (212, 233–235) and the
development of resistance to leptin and adiponectin limits their
activity even in the presence of high serum levels (212, 236).

Data on other hepatokines and adipokines in HIV infected
patients is summarized below.

SeP, a hepatokine with antioxidant properties during HIV
activation and ROS release (237, 238) has been shown to display
low levels in HIV patients. On the other hand, non-HIV patients
with NAFLD display high serum concentrations of SeP, which are
associated with the metabolic disturbances and NAFLD progression
(129). FGF21, a hepatokine with a key metabolic role in glucose and
lipid homeostasis is also expressed in HIV patients. The detection of
a high FGF21 serum level in these patients was associated with
MetS, lipodistrophy, and severe steatosis (239–241). Given the
strong correlations between FGF21 and metabolic parameters,
FGF21 has been suggested as a possible prognostic marker to
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monitor HALS and its therapy as well as the ART-associated
cardiovascular risk (242). HIV infected patients also show high
serum levels of resistin, an adipokine correlated with IR, lipoatrophy
and NAFLD (243). In addition, it has been observed that genetic
variants of resistin could play a role in the progression of HALS
(244). HIV lipodistrophy also appears to be promoted by another
r egu l a to r o f ad ipogene s i s , name ly chemer in , an
immunomodulatory adipokine, also with proinflamatory activity
in NAFLD (88). Experimental data suggested that CMKLR1/
ChemR23, a specific chemerin receptor could be used by HIV as
a minor coreceptor but this remains to be confirmed (245). Visfatin,
an adipokine released by various cells within the adipose and liver
tissue interacts with a C-C chemokine receptor type 5 (CCR5),
which is an HIV coreceptor but the result of this interaction is
presently unknown (246, 247). Another organokine, namely
ghrelin, has shown discordant results in HIV lipodystrophic
patients (248, 249) The serum level of ghrelin has been
concordant with the serum level of TGs on a small group of
patients. Nevertheless, the administration of ghrelin was
associated with the attenuation of liver inflammation in mouse
models (250).

Overall, data on the direct impact of hepatokines and
adipokines during HIV infection on ART is scarce and their
role in the progression towards NAFLD remains unclear. The
disruption of the hepatokine/adipokine axis during HIV
infection and the ensuing implications for NAFLD progression
are shown in the Figure 2 and Table 5.
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4.2 HBV-Associated NAFLD
HBV is a hepatotropic DNA virus and a major cause of cirrhosis
and HCC in NAFLD patients. It is transmitted through the same
pathways as HIV and infects about 10% of these patients (268).
The HBV co-infection with an immunosuppressive virus such as
HIV further reduces the ability of the immune response to
recognize and eliminate HBV-infected cells. Thus HIV
infection promotes HBV replication along with the synthesis of
proinflammatory and profibrotic cytokines. In turn, HBV
facilitates the ongoing HIV viral replication and impacts the
recovery of CD4+T cells during ART (268–274). Furthermore,
the use of NRTIs as a treatment in HIV/HBV patients could
aggravate the mitochondrial dysfunction, inflammatory response
(275) and favor additional metabolic complications. As a result,
HIV-HBV co-infected patients display a more rapid progression
towards liver cirrhosis and HCC (268, 272). Nevertheless, HBV
appears to attenuate various metabolic effects induced by HIV
and ART, so that the prevalence of NAFLD in HIV/HBV
patients is lower than in HIV or HBV monoinfected patients
(169, 170, 172). The mechanisms by which HBV influences the
pathogenesis of NAFLD are depicted below.

4.2.1 HBV-Induced Hepatic Inflammatory Response
HBV is not a cytopathic virus; it generates 3 types of antigens
that interfere with the immune response, preventing the
recognition and elimination of virally infected hepatocytes. Of
these, HBsAg is a modulator of the innate immune response
TABLE 5 | The main hepatokines and adipokines discussed in the article and their implications in HIV and HBV infection.

Organokine NAFLD
(serum
levels)

HIV infection (serum levels) HBV infection (serum levels)

Adiponectin Low Low serum level is associated with lypodistrophy, insulin resistance and
dyslipidemia (248). ART reduces the level of adiponectin and its effect is
more significant in patients with hypertriglyceridemia (247, 251).
Adiponectin supplementation may improve ART-induced metabolic
changes (210, 212)

High serum adiponectin levels in cirrhosis, correlated with
liver dysfunction. High serum levels in HBV obese patients
with positive HBV viral load Liver adiponectin level is high in
areas of HBV necro-inflammation, and low in fibrosis
(252, 253)

Leptin High Low serum level is associated with liver steatosis, lipoatrophy and insulin
resistance (248, 254); high level was observed in lipohypertrophic patients
(leptin resistance)?. Treatment with leptin improves some metabolic
components of lypodistrophy induced by ART (255)

High level in chronic HBV (256) Low level in HCC and
cirrhosis with malnutrition; negative correlation with TNF-a
(256, 257)

Resistin High High level. Certain genetic polymorphisms of resistance are associated with
HALS (244); HIV patients with lipoatrophy and insulin resistance may
respond to treatment with PPAR-g agonists (243)

High level in chronic HBV (index of disease severity) (258)

Ghrelin Unknown Low level in HIV patients * High level in ART-related hypertriglyceridemia
(251)

High level in HCC and cirrhosis with malnutrition; positive
correlation with TNF-a (259)

FGF21 High Very high level (resistance or compensatory effect)? associated with HALS,
insulin resistance, severe steatosis. Very high level post ART (marker of
lipodystrophy) (242)

Low level in chronic HBV and cirrhosis High level in HCC
(260)

Fetuin A High No studies Low level in HBV Very high level in HCC (261) Predictor of
NASH

Chemerin High A possible minor co-receptor in HIV (245) Low level in chronic HBV Very low level in HCC/HBV (262)
Therapeutic potential of chemerin in HCC (262)

Visfatin High High level in ART (247) High serum levels in cirrhosis Very high levels in HCC (263)
Marker of necroinflammation

Selenoprotein
P

High Low level (238); predictor of HIV survival (264–266) Low level Serum level is associated with HBx overexpression
(267)
HBV, hepatitis B virus; HCC, hepatocarcinoma; HALS, HIV/ART–associated lipodystrophy syndrome; NAFLD, non-alcoholic fatty liver disease; NASH, stetatohepatitis; ART, antiretroviral
therapy; *divergent studies.
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which contributes to the suppression of inflammatory cytokines,
the aggravation of liver fibrosis and the risk of malignant
transformation (276, 277). HBcAg induces the secretion of
IL18, a potent proinflammatory cytokine engaged in
hepatocytes pyroptosis, one of the profibrotic mechanisms in
HBV infection (278). HBeAg, the third viral antigen inhibits
NF-kB pathway and ROS production in KCs and consequently
suppresses NLRP3 inflammasomes and the inflammatory
response (279). The inhibition of the inflammatory response
allows HBV to escape the immune response and to induce a
persistent infection along with HBV DNA insertion into the host
genome, which further adds to the risk of oncogenesis.

4.2.2 HBV-Induced Metabolic Dysfunction
HBV has been viewed as a ‘‘metabolic virus’’ with multiple
metabolic interferences (280). Still the correlation between
HBV and the metabolic changes in the pathogenesis of
NAFLD remains unclear. The metabolic dysfunctions are
initiated as the same time with viral replication due to the
activation of some transcription factors and nuclear receptors
(281). These regulatory proteins once activated in the early stages
of HBV transcription increase the expression of key enzymes
involved in the control of metabolic pathways such as lipolysis,
gluconeogenesis and cholesterol synthesis (281, 282). The
activation of metabolic-related transcription factors is related
to the overexpression of hepatitis B virus X protein (HBx), a
regulatory protein involved in FA metabolism, steatosis and
adipogenesis (282, 283). In addition to its metabolic
contribution Hbx is a transcriptional activator mediating both
NF-kB/TNF-a inflammatory signalling and cellular apoptosis,
further contributing to DNA damage and liver carcinogenesis.
Hence, HBx targets multiple mechanisms involved in the
progress of NAFLD (284–286). However despite experimental
evidence, the correlations between HBV and hepatic steatosis
remain inconstant contradictory or even negative (284,
287, 288).

Studies on HBV infected patients have indicated that MetS
appears to evolve independently of the HBV viral infection (289,
290). However, the presence of the metabolic changes once
triggered (obesity, dyslipidaemia, diabetes) and the persistence
of these changes supports the ongoing HBV viral replication. In
turn, viral replication promotes hepatic steatosis and fibrosis,
both of which contribute to the continuous progression of the
metabolic dysfunction (280, 291–296). The duration of the MetS
and of HBV infection may also influence the onset of
steatosis (297).

In conclusion, HBV mainly promotes hepatic steatosis as well
as liver fibrosis and carcinogenesis, yet it is less associated with
liver inflammatory changes (Figure 2). By comparison, HIV
induces early inflammation and irreversible metabolic changes
further boosted by ART, so that during HIV and HBV
coinfection both viruses play additive roles in the evolution of
NAFLD (10, 298). It should be noted that both viruses also
change the cellular metabolism through the conversion of
glucose to lactate and further perpetuates the lactate synthesis
in the presence of oxygen similar to the cancer cells (Warburg
effect) (299). In this respect, HBV has been significantly linked to
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carcinogenesis, while HIV has been shown to strongly modulate
the immune response and MetS.

4.2.3 Hepatokine/Adipokine Axis Breakdown in HBV
Patients With NAFLD
There are few data on the hepatokine/adipokine axis in HBV
infected patients. Studies on HBV infected patients have shown
links between elevated levels of some hepatokines and insulin
inhibition (e.g fetuin), between hepatokines, gluconeogenesis
and the inflammatory response (fetuin A, leptin, resisitin,
visfatin), between hepatokines and steatosis (leptin) as well
as between hepatokines and HCC evolution (ghrelin, FGF21,
fetuin A) (Table 2).

The hepatokines best documented in HBV infected patients
include fetuin A and FGF21.

Fetuin A is a hepatokine predominantly released by the liver
and correlated with the development of both MetS and NAFLD.
The serum level of fetuin A is significantly higher in NAFLD but
decreases in liver failure along with the extension of hepatic
necrosis. A low level of fetuin A in HBV infected patients has
been proposed as a marker of liver damage, as well as a predictive
factor for poor prognosis (300). However, the highest fetuin A
serum levels have been recorded in HBV patients with HCC and
cirrhosis (261) while fetuin A levels in non-HBV patients has not
been associated with fibrotic changes (118). Furthermore
experimental data on HBV infected patients has shown that
fetuin A attenuates the pro-inflammatory response induced by
LPS administration (300). Thus, a low fetuin A secretion which
follows hepatocyte necrosis explains the ensuing hepatic
inflammatory response and the development of NASH, while
fetuin A supplementation could alleviate the inflammatory
response (301).

Another hepatokine that reflects the presence of liver damage
is FGF21 secreted mainly in the liver but active especially in the
adipose tissue. FGF21 is considered a stress hepatokine (302) with
antioxidant and anti-inflammatory potential (303, 304). FGF21
secretion is reduced in chronic HBV infection, particularly in
cirrhosis and the administration of FGF21 in HBV infected
patients could improve liver inflammation and fibrosis (34, 304,
305). However FGF21 serum levels may increase in liver injuries
and a very high level of FGF21 has been associated with HCC risk
possibly as a protective response against the carcinogenesis
process (306). Moreover, a high FGF21 serum level could be
considered a marker of severity in patients with chronic HBV
(260). A moderately elevated level has also been observed in
NAFLD in non-HBV patients (307) in which case the FGF21
concentration has been correlated with metabolic improvement
especially in the insulin response (308). Overall, the increased
secretion of FGF21 arises as a compensatory response to OxS, and
therefore a high level has a limited efficiency in patients with
chronic HBV.

Certain adipokines with a fibrogenetic and neoplastic potential
display high serum levels in HBV infected patients but their levels
decrease during treatment, along withHBV viremia (30). Such is the
case of leptin, a proinflammatory adipokine produced in HSCs and
correlated with NAFLD fibrosis, which decreases during lamivudine
HBV treatment (309).
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Adiponectin is a metabolic, anti-inflammatory and antifibrotic
adipokine. Experimental data indicate an improvement in steatosis,
inflammation and liver fibrosis after adiponectin administration
(228). Patients with chronic HBV infection display a high level of
adiponectin and this level decreases during interferon therapy along
with HBV viral load (253, 310). In these patients the level of
adiponectin correlates with various stages of liver injury from
liver inflammation and fibrosis to HCC (67, 311). Current reports
indicate that adiponectin may promote HBV polymerase activity
and HBV DNA replication, while in turn HBV replication induces
the expression of adiponectin (312). This observation could partly
explain the correlation above, as well as the hypothesis that
adiponectin may play a role in the progression of HBV liver
injury (252). The level of adiponectin differs in patients with HBV
compared with non-HBV/NAFLD patients where, for example, the
level of adiponectin decreases with the development of MetS and
NASH yet may increase in patients with cirrhosis regardless of
metabolic factors (133, 252, 313). In other studies, however, liver
histology indicates a correlation between adiponectin and steatosis
but not between adiponectin and viral factors (311).

Regarding other hepatokines and adipokines, chemerin is a
multifunctional hepatokine with antioncogenic properties
against HCC metastases, yet with reduced activity in HBV-
HCC tissues (314). The low concentrations of chemerin in
HCC-HBV infected patients have been associated with a
favorable prognosis, thus suggesting a potential therapeutic
role for this hepatokine. Nevertheless, the intratumoral level of
chemerin was variable across different studies and experimental
data on the matter are contradictory (262, 314). Resistin is
another adipokine which regulates the development of obesity
and IR and which has been correlated with the severity of liver
damage in HBV infection (258, 315).

The imbalance of the hepatokine/adipokine axis in HBV
infected patients and its implications in the progression of
NAFLD are shown in Figure 2 and Table 5. In most cases the
serum levels of adipokines released in HBV infected patients
resemble the levels reported in other non-HBV infected
patients with NAFLD, as seen in the cases of visfatin, leptin
and resisitin. Regarding HIV infected patients, the serum levels
of hepatokines or adipokines could be comparable to those
detected in HBV as reported for SeP, or could exhibit a marked
difference as for certain adipokines (leptin, adiponectin) or
hepatokines (FGF21). These differences could be related to one
of the following factors, namely the type of tissue damage
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(the lipodystrophy and adipose tissue damage predominate in
HIV while the liver necrosis predominates in HBV), the
incidence of liver fibrosis (more common in HBV), the
degree of liver inflammation (more pronounced in HIV), the
genetic polymorphisms of certain organokines (316) or the
level of viral replication (211).
5 CONCLUSION

The liver contains a wide variety of cells through which it plays a
complex role in the glycolipid metabolism, drug excretion and
immune response. In this context, the metabolic changes, the
treatments with hepatic metabolized drugs and the extent of the
immune response have a direct impact on the structure and
function of the liver parenchyma. One of the consequences of the
immunometabolic imbalance is the development of NAFLD
which gradually evolves from fatty liver and insulin resistance
to inflammation, fibrosis and even to hepatic carcinogenesis.
NAFLD in HIV/HBV co-infected patients could have a high
severity due to the potential of the two viruses to replicate and to
induce an inflammatory response. In addition both HIV and
HBV play an important role in disrupting the glycolipid
metabolism and liver communication through the imbalance
of the hepatokines and adipokines. The two viruses act
complementary and play an additive role in the emergence and
progression of NAFLD. At the same time, ART aggravates the
metabolic context induced by the two viruses, through the toxic
effect on mitochondria and the development of lipodistrophy.

The HIV/HBV correlations with the breakdown of the
hepatokine/adipokine axis during the progression of NAFLD
are complex and largely unknown. Additional studies with
comparable characteristics are needed to better formulate the
assumptions of this axis and to further validate the potential
therapeutic applications of hepatokines and adipokines.
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Agüero R, et al. Adiponectin, Leptin, and IGF-1 Are Useful Diagnostic and
Frontiers in Endocrinology | www.frontiersin.org 13
Stratification Biomarkers of NAFLD. Front Med (2021) 8:683250.
doi: 10.3389/fmed.2021.683250

29. Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in Nonalcoholic Fatty
Liver Disease. Metabolism (2016) 65(8):1062–79. doi: 10.1016/j.metabol.
2015.11.006

30. Kucukoglu O, Sowa J-P, Mazzolini GD, Syn W-K, Canbay A. Hepatokines
and Adipokines in NASH-Related Hepatocellular Carcinoma. J Hepatol
(2021) 74(2):442–57. doi: 10.1016/j.jhep.2020.10.030

31. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kaneko K, Okazaki Y, et al.
Adiponectin Suppresses Hepatic SREBP1c Expression in an AdipoR1/LKB1/
AMPK Dependent Pathway. Biochem Biophys Res Commun (2009) 382
(1):51–6. doi: 10.1016/j.bbrc.2009.02.131

32. Kakuma T, Lee Y, Higa M, Wang ZW, Pan W, Shimomura I, et al. Leptin,
Troglitazone, and the Expression of Sterol Regulatory Element Binding
Proteins in Liver and Pancreatic Islets. Proc Natl Acad Sci USA (2000) 97
(15):8536–41. doi: 10.1073/pnas.97.15.8536

33. Iroz A, Montagner A, Benhamed F, Levavasseur F, Polizzi A, Anthony E,
et al. A Specific ChREBP and Ppara Cross-Talk Is Required for the Glucose-
Mediated FGF21 Response. Cell Rep (2017) 21(2):403–16. doi: 10.1016/
J.CELREP.2017.09.065

34. Xu P, Zhang Y, Liu Y, Yuan Q, Song L, Liu M, et al. Fibroblast Growth Factor
21 Attenuates Hepatic Fibrogenesis Through TGF-b/Smad2/3 and NF-kb
Signaling Pathways. Toxicol Appl Pharmacol (2016) 290:43–53. doi: 10.1016/
J.TAAP.2015.11.012

35. Cheng J, Zhang L, Dai W, Mao Y, Li S, Wang J, et al. Ghrelin Ameliorates
Intestinal Barrier Dysfunction in Experimental Colitis by Inhibiting the
Activation of Nuclear Factor-Kappa B. Biochem Biophys Res Commun
(2015) 458(1):140–7. doi: 10.1016/j.bbrc.2015.01.083

36. Wen F, Xia Q, Zhang H, Shia H, Rajesh A, Wu Y, et al. Resistin Activates P65
Pathway and Reduces Glycogen Content Through Keratin 8. Int J Endocrinol
(2020) 2020:1–11. doi: 10.1155/2020/9767926

37. Dasgupta S, Bhattacharya S, Biswas A, Majumdar SS, Mukhopadhyay S, Ray
S, et al. NF-kappaB Mediates Lipid-Induced Fetuin-A Expression in
Hepatocytes That Impairs Adipocyte Function Effecting Insulin
Resistance. Biochem J (2010) 429(3):451–62. doi: 10.1042/BJ20100330

38. Frühbeck G. Intracellular Signalling Pathways Activated by Leptin. Biochem
J (2006) 393(Pt 1):7–20. doi: 10.1042/BJ20051578

39. Li Z, Xu G, Qin Y, Zhang C, Tang H, Yin Y, et al. Ghrelin Promotes Hepatic
Lipogenesis by Activation of mTOR-Pparg Signaling Pathway. Proc Natl
Acad Sci USA (2014) 111(36):13163–8. doi: 10.1073/pnas.1411571111

40. Kadowaki T, Yamauchi T. Adiponectin and Adiponectin Receptors. Endocr
Rev (2005) 26(3):439–51. doi: 10.1210/er.2005-0005

41. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in
the Maintenance of Metabolic Homeostasis Through Adipose Tissue
Crosstalk. Cell Metab (2016) 23(5):770–84. doi: 10.1016/J.CMET.2016.
04.011

42. Giby VG, Ajith TA. Role of Adipokines and Peroxisome Proliferator-
Activated Receptors in Nonalcoholic Fatty Liver Disease. World J Hepatol
(2014) 6(8):570–9. doi: 10.4254/wjh.v6.i8.570

43. Ishtiaq SM, Rashid H, Hussain Z, Arshad MI, Khan JA. Adiponectin and
PPAR: A Setup for Intricate Crosstalk Between Obesity and Non-Alcoholic
Fatty Liver Disease. Rev Endocr Metab Disord (2019) 20(3):253–61.
doi: 10.1007/s11154-019-09510-2

44. Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ,
et al. Fibroblast Growth Factor-21 Regulates Pparg Activity and the
Antidiabetic Actions of Thiazolidinediones. Cell (2012) 148(3):556–67.
doi: 10.1016/j.cell.2011.11.062

45. Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, et al.
Adipose Fibroblast Growth Factor 21 Is Up-Regulated by Peroxisome
Proliferator-Activated Receptor Gamma and Altered Metabolic States. Mol
Pharmacol (2008) 74(2):403–12. doi: 10.1124/mol.108.044826

46. Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström
I, et al. The Circulating Metabolic Regulator FGF21 Is Induced by Prolonged
Fasting and PPARalpha Activation in Man. Cell Metab (2008) 8(2):169–74.
doi: 10.1016/j.cmet.2008.06.014

47. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ. Nanosilver Particles in
Medical Applications: Synthesis, Performance, and Toxicity. Int J Nanomed
(2014) 9:2399–407. doi: 10.2147/IJN.S55015
March 2022 | Volume 13 | Article 814209

https://doi.org/10.3748/wjg.v23.i47.8263
https://doi.org/10.1016/j.cgh.2011.03.020
https://doi.org/10.1097/QAD.0000000000001574
https://doi.org/10.1097/QAD.0000000000001574
https://doi.org/10.5501/wjv.v9.i5.54
https://doi.org/10.1242/dmm.001180
https://doi.org/10.7326/0003-4819-143-10-200511150-00009
https://doi.org/10.7326/0003-4819-143-10-200511150-00009
https://doi.org/10.1016/j.dld.2014.09.020
https://doi.org/10.1007/s00535-013-0758-5
https://doi.org/10.1089/ars.2016.6776
https://doi.org/10.1016/J.FREERADBIOMED.2013.08.174
https://doi.org/10.1152/physrev.00018.2001
https://doi.org/10.1111/j.1440-1746.2010.06592.x
https://doi.org/10.3109/10715762.2012.677840
https://doi.org/10.5772/46180
https://doi.org/10.5772/46180
https://doi.org/10.1016/s0891-5849(96)00327-9
https://doi.org/10.2337/db11-0347
https://doi.org/10.1016/j.metabol.2015.12.012
https://doi.org/10.1016/j.molmet.2020.101138
https://doi.org/10.1016/j.molmet.2020.101138
https://doi.org/10.3390/ijms22052639
https://doi.org/10.3803/EnM.2018.33.1.33
https://doi.org/10.18388/abp.2015_1252
https://doi.org/10.3389/fmed.2021.683250
https://doi.org/10.1016/j.metabol.2015.11.006
https://doi.org/10.1016/j.metabol.2015.11.006
https://doi.org/10.1016/j.jhep.2020.10.030
https://doi.org/10.1016/j.bbrc.2009.02.131
https://doi.org/10.1073/pnas.97.15.8536
https://doi.org/10.1016/J.CELREP.2017.09.065
https://doi.org/10.1016/J.CELREP.2017.09.065
https://doi.org/10.1016/J.TAAP.2015.11.012
https://doi.org/10.1016/J.TAAP.2015.11.012
https://doi.org/10.1016/j.bbrc.2015.01.083
https://doi.org/10.1155/2020/9767926
https://doi.org/10.1042/BJ20100330
https://doi.org/10.1042/BJ20051578
https://doi.org/10.1073/pnas.1411571111
https://doi.org/10.1210/er.2005-0005
https://doi.org/10.1016/J.CMET.2016.04.011
https://doi.org/10.1016/J.CMET.2016.04.011
https://doi.org/10.4254/wjh.v6.i8.570
https://doi.org/10.1007/s11154-019-09510-2
https://doi.org/10.1016/j.cell.2011.11.062
https://doi.org/10.1124/mol.108.044826
https://doi.org/10.1016/j.cmet.2008.06.014
https://doi.org/10.2147/IJN.S55015
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Iacob and Iacob NAFLD in HIV/HBV Patients
48. Dziegielewska KM, Andersen NA, Saunders NR. Modification of
Macrophage Response to Lipopolysaccharide by Fetuin. Immunol Lett
(1998) 60(1):31–5. doi: 10.1016/s0165-2478(97)00126-0

49. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin Competes
With Lipopolysaccharide for Binding to Toll-Like Receptor 4. J Cell Mol Med
(2010) 14(6B):1419–31. doi: 10.1111/j.1582-4934.2009.00899.x

50. Baffy G. Kupffer Cells in Non-Alcoholic Fatty Liver Disease: The Emerging
View. J Hepatol (2009) 51(1):212–23. doi: 10.1016/J.JHEP.2009.03.008

51. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, et al.
Fetuin-A Acts as an Endogenous Ligand of TLR4 to Promote Lipid-Induced
Insulin Resistance. Nat Med (2012) 18(8):1279–85. doi: 10.1038/nm.2851

52. Chen H. Nutrient Mtorc1 Signaling Contributes to Hepatic Lipid
Metabolism in the Pathogenesis of Non-Alcoholic Fatty Liver Disease.
Liver Res (2020) 4(1):15–22. doi: 10.1016/J.LIVRES.2020.02.004

53. Luedde T, Schwabe RF. NF-kb in the Liver–Linking Injury, Fibrosis and
Hepatocellular Carcinoma. Nat Rev Gastroenterol Hepatol (2011) 8(2):108–
18. doi: 10.1038/nrgastro.2010.213

54. Liu T, Zhang L, Joo D, Sun S-C. NF-kb Signaling in Inflammation. Signal
Transduct Target Ther (2017) 2(1):17023. doi: 10.1038/sigtrans.2017.23

55. Zhao J, Qi Y-F, Yu Y-R. STAT3: A Key Regulator in Liver Fibrosis. Ann
Hepatol (2021) 21:100224. doi: 10.1016/J.AOHEP.2020.06.010

56. Jeong WI, Park O, Radaeva S, Gao B. STAT1 Inhibits Liver Fibrosis in Mice
by Inhibiting Stellate Cell Proliferation and Stimulating NK Cell
Cytotoxicity. Hepatology (2006) 44(6):1441–51. doi: 10.1002/HEP.21419

57. Khodarev NN, Roizman B, Weichselbaum RR. Molecular Pathways
Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor
Resistance to Genotoxic Stress and Aggressive Growth. Clin Cancer Res
(2012) 18(11):3015–21. doi: 10.1158/1078-0432.CCR-11-3225

58. Miyazaki T, Bub JD, Uzuki M, Iwamoto Y. Adiponectin Activates C-Jun
NH2-Terminal Kinase and Inhibits Signal Transducer and Activator of
Transcription 3. Biochem Biophys Res Commun (2005) 333(1):79–87.
doi: 10.1016/j.bbrc.2005.05.076

59. Shu R-Z, Zhang F, Wang F, Feng D-C, Li X-H, Ren W-H, et al. Adiponectin
Deficiency Impairs Liver Regeneration Through Attenuating STAT3
Phosphorylation in Mice. Lab Investig (2009) 89(9):1043–52. doi: 10.1038/
labinvest.2009.63

60. Opoku YK, Liu Z, Afrifa J, Kumi AK, Liu H, Ghartey-Kwansah G, et al.
Fibroblast Growth Factor-21 Ameliorates Hepatic Encephalopathy by
Activating the STAT3-SOCS3 Pathway to Inhibit Activated Hepatic
Stellate Cells. EXCLI J (2020) 19:567–81. doi: 10.17179/excli2020-1287

61. Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, et al. Interplay
Between ChREBP and SREBP-1c Coordinates Postprandial Glycolysis and
Lipogenesis in Livers of Mice. J Lipid Res (2018) 59(3):475–87. doi: 10.1194/
jlr.M081836

62. Xu X, So J-S, Park J-G, Lee A-H. Transcriptional Control of Hepatic Lipid
Metabolism by SREBP and ChREBP. Semin Liver Dis (2013) 33(4):301–11.
doi: 10.1055/s-0033-1358523

63. Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases: A Mini-Review. J
Clin Transl Hepatol (2018) 6(3):332–8. doi: 10.14218/JCTH.2017.00061

64. Wang N, Kong R, Luo H, Xu X, Lu J. Peroxisome Proliferator-Activated
Receptors Associated With Nonalcoholic Fatty Liver Disease. PPAR Res
(2017) 2017:1–8. doi: 10.1155/2017/6561701

65. Ogawa Y, Imajo K, Yoneda M, Kessoku T, Tomeno W, Shinohara Y, et al.
Soluble CD14 Levels Reflect Liver Inflammation in Patients With
Nonalcoholic Steatohepatitis. PloS One (2013) 8(6):e65211. doi: 10.1371/
journal.pone.0065211

66. Miura K, Ohnishi H. Role of Gut Microbiota and Toll-Like Receptors in
Nonalcoholic Fatty Liver Disease.World J Gastroenterol (2014) 20(23):7381.
doi: 10.3748/wjg.v20.i23.7381

67. Liu C-J, Chen P-J, Lai M-Y, Liu C-H, Chen C-L, Kao J-H, et al. High Serum
Adiponectin Correlates With Advanced Liver Disease in Patients With
Chronic Hepatitis B Virus Infection. Hepatol Int (2009) 3(2):364–70.
doi: 10.1007/s12072-008-9111-0
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