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Introduction: Elevated levels of blood-based proinflammatory cytokines are linked to

acute moderate to severe traumatic brain injuries (TBIs), yet less is known in acute

mild (m)TBI cohorts. The current study examined whether blood-based cytokines can

differentiate patients with mTBI, with and without neuroimaging findings (CT and MRI).

Material and Methods: Within 24 h of a mTBI, determined by a Glasgow Coma

Scale (GCS) between 13 and 15, participants (n = 250) underwent a computed

tomography (CT) and magnetic resonance imaging (MRI) scan and provided a blood

sample. Participants were classified into three groups according to imaging findings;

(1) CT+, (2) MRI+ (CT–), (3) Controls (CT– MRI–). Plasma levels of circulating cytokines

(IL-6, IL-10, TNFα), and vascular endothelial growth factor (VEGF) were measured using

an ultra-sensitive immunoassay.

Results: Concentrations of inflammatory cytokines (IL-6, TNFα) and VEGF were

elevated in CT+, as well as MRI+ groups (p < 0.001), compared to controls, even

after controlling for age, sex and cardiovascular disease (CVD)-related risk factors;

hypertension, and hyperlipidemia. Post-concussive symptoms were associated with

imaging groupings, but not inflammatory cytokines in this cohort. Levels of VEGF, IL-6,

and TNFα differentiated patients with CT+ findings from controls, with the combined

biomarker model (VEGF, IL-6, TNFα, and IL-10) showing good discriminatory power (AUC

0.92, 95% CI 0.87–0.97). IL-6 was a fair predictor of MRI+ findings compared to controls

(AUC 0.70, 95% CI 0.60–0.78). Finally, the combined biomarker model discriminated

patients with MRI+ from CT+ with an AUC of 0.71 (95% CI 0.62–0.80).

Conclusions: When combined, IL-6, TNFα, and VEGF may provide a promising

biomarker cytokine panel to differentiate mTBI patients with CT+ imaging vs. controls.

Singularly, IL-6 was a fair discriminator between each of the imaging groups. Future

research directions may help elucidate mechanisms related to injury severity and

potentially, recovery following an mTBI.
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INTRODUCTION

Mild traumatic brain injury (mTBI) is common, affecting over
42 million people worldwide each year; accounting for 80–
90% of all head injury cases (1–3). Short and long-term
neurological, cognitive and psychiatric symptoms have been
associated with mTBI, representing a significant burden to
patients, families, and the public health system (3). After
sustaining a mTBI, patients commonly display non-specific
post-concussive symptoms, including headaches, vision and
balance impairments, poor attention, and irritability (4, 5).
Although most of the individuals with mTBI fully recover,
a subset of patients develop persistent symptoms (6, 7).
Identifying differences in the pathophysiology of those who
may develop persistent symptoms may help identify novel
therapeutic avenues. Evidence implicates that individuals with
complicated mTBI (presence of intracranial abnormality on
CT) may experience increased or persistent symptoms as
compared to individuals without intracranial abnormalities on
imaging (8–11). With the recently FDA-approved biomarkers
glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal
hydrolase (UCH-L1) to aid in clinical CT decisions (12), efforts
to identify these patients at risk are underway. However, TBIs
initiate a number of secondary pathological processes including
inflammation (13), and examination of related blood-based
biomarkers may help specify pathological pathways for future
research and therapeutic applications.

TBIs trigger inflammatory activity, initiating a pronounced

increase in cytokines within 24 h after the head injury among
patients with all TBI severities that are important for recovery

processes (14–16). Pro- and anti-inflammatory cytokines are
essential to coordinating a balanced inflammatory response
following TBI (13). Interleukin (IL)-6 activity is crucial for
immune cell recruitment in the acute phase of TBI, although
IL-6 deficiency as well as overexpression are detrimental in
preclinical models (17–19). Deficiency in interleukin (IL)-10,

which functions in a neuroprotective role, also results in poor
outcomes in preclinical models (20). Tumor necrosis factor
alpha (TNFα) mediates the inflammatory response through
microglial activation and increased chemokine production, and
preclinical models demonstrate neuronal damage with elevated
TNFα after TBI (21–23). For individuals with moderate or severe
TBIs, worse clinical outcomes have been linked to increased
acute levels of IL-6, IL-10, and TNFα (24–28). Elevations
in peripheral levels of IL-6 and TNFα have been reported
following blast exposure in military personnel (29), suggesting
that mild brain injuries may have similar biomarker changes.
One preliminary study of extracellular vesicles observed elevated
TNFα following sports-related concussions (30). Elevated
plasma levels of the IL-6 and TNFα are reported in military
personnel with mild blunt force and/or blast TBIs, and these
elevations remain in personnel with neurological symptoms
(31). IL-6 is observed to be acutely increased following
mTBI in emergency room patients (32) and also significantly
discriminated athletes with concussion from controls within 6 h
of injury and was associated with post-concussive symptoms after
injury (33).

A critical issue is that typically studies of inflammatory
cytokines following TBIs do not account for individuals who have
pre-existing inflammatory cardiovascular disease (CVD) risk
factors, including smoking, hyperlipidemia, and hypertension.
Elevations in blood levels of several proinflammatory cytokines,
including IL-6 and TNFα, relate to risk of coronary heart
disease in clinical populations (34). In preclinical mTBI models,
cerebrovascular dysfunction is linked to compromised immune
functioning, as well as neurobehavioral deficits (35). Thus,
determining the impact of CVD risk factors is important, as
they may alter any observed inflammatory responses following
mTBI and/or present additional patient burden which may
impede recovery. One protein which has been shown tomodulate
inflammatory responses following TBI and has been linked to
regulation of permeability in vasculature is vascular endothelial
growth factor (VEGF) (36–40). In a study of patients with TBI,
ranging frommild to severe, Li et al. (38) found that lower VEGF
levels at day 7, as well as higher levels at 21 days post-injury
were associated with improved health. However, examining the
effects of VEGF acutely post-injury and how this response may
be associated with injury severity remains to be determined.

To address these critical issues, we analyzed the relationship
between peripheral blood levels of the cytokines IL-6, IL-10,
TNFα, and VEGF and neuroimaging findings acutely following
a mTBI. We evaluated associations between demographic
and clinical data, and neuroimaging results, examining CVD
history and risk factors when considering correlations between
inflammatory cytokines and mTBI.

MATERIALS AND METHODS

Participants
Participants were enrolled into the Traumatic Head Injury
Neuroimaging Classification (THINC) protocol NCT01132937
and protocol 09-NR-0131 at emergency departments in the
Washington DC metropolitan area. Both protocols were
approved by the National Institutes of Health Intramural
Institutional Review Board (IRB). Prior to participation in
the study, written informed consent was obtained from
all participants. Informed consent for non-English speaking
participants was obtained using an IRB-approved translated
consent document in a language that the participant understood
as well as oral translation by a qualified translator. If there
was any indication that the participant did not understand, the
participant was not enrolled in the study. Study inclusion criteria
included: (1) mild TBI, (2) 18–96 years of age, (3) initial Glasgow
Coma Scale of > 13 in the emergency department, (4) collection
of blood specimens, and (5) initial imaging (clinical CT and
researchMRI) completed within 24 h of injury. Exclusion criteria
included unstable psychiatric conditions, contraindications to
MRI scanning or conditions which would preclude entry to
MRI scanner, and pregnancy. Post-concussive symptoms were
assessed using the Neurobehavioral Symptom Inventory (NSI)
during the emergency department visit, within 24 h of injury.
The NSI is a 22-item assessment of somatosensory, affective,
cognitive, and vestibular symptoms, with ratings from 0 (none)
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to 4 (very severe) for each item (41, 42). Participants also self-
reported any current or past history with each of the three
major risk factors of CVD disease; smoking, hypertension, and
hyperlipidemia (43).

Imaging Protocol
MRI was completed using a 3T (Siemens Healthcare, Malvern,
PA). MRI imaging protocol included diffusion-tensor imaging,
T2∗ gradient recall echo imaging, susceptibility weighted
imaging, 3D high-resolution T1 (3DT1), dynamic susceptibility
contrast perfusion-weighted imaging, and pre- and post-contrast
T1 and T2-Fluid-attenuated inversion recovery (FLAIR). Clinical
CT was performed within 24 h of injury, using a standard
protocol. Participants with mTBI were categorized into three
groups depending on the results of neuroimaging: (1) CT
positive, complicated mTBI (CT+; n = 64); (2) MRI positive
[MRI+ (CT–); n = 80]; and (3) control group (CT– and MRI–;
n= 106).

Laboratory Methods
Blood specimens were collected into ethylenediaminetetraacetic
acid tubes, centrifuged, aliquoted for plasma, and stored
at −80◦C. Blinded to the subject’s clinical history and
imaging data, plasma samples were analyzed using Simoa
(Single Molecule Array) Neurology 4-plex assay kit (Quanterix,
Lexington, MA) for the measurement of IL-6, IL-10, TNFα,
and VEGF.

Statistical Analyses
Analyses were conducted using SPSS V24.0 (Armonk, NY: IBM
Corp.) and GraphPad Prism 7.04 (La Jolla, CA: GraphPad
Software). Analysis of variance (ANOVA) and Chi-square tests
were performed to determine group differences on demographic
characteristics and CVD risk factors. Analysis of covariance
(ANCOVA) were subsequently run, controlling for significant
factors; hyperlipidemia, hypertension, sex, and age. Binomial
logistic regression provided the individual VEGF, IL-6, IL-10,
TNFα, and combined biomarker model ROC curves. Due to
significant age variances across the groups, the ROC curves were
adjusted for age.

RESULTS

Demographic and clinical characteristics of study participants
are described in Table 1. Participants were mostly male (72.4%),
aged between 18 and 96 years (M = 46.1 years; SD = 17.9).
There were no significant differences observed in race or ethnicity
between the groups. Participants with CT+ imaging findings
were significantly older than controls (p < 0.001); MRI+
did not differ significantly between any of the groups. CT+
patients were significantly more likely to have hypertension
and hyperlipidemia then both the MRI+ and controls. Age,
sex, hyperlipidemia, and hypertension were controlled for in
subsequent statistical analyses (Table 1).

The ANCOVA models were significant for IL-6 [F(6, 205)
= 11.56, p < 0.001], TNFα [F(6, 181) = 4.29, p < 0.001],
VEGF [F(6, 234) = 11.84, p < 0.001], and the IL-6/IL-10

TABLE 1 | Demographic and clinical data.

CT+

(n = 64)

MRI+

(n = 80)

Control

(CT– and

MRI–,

n = 106)

p

Age in years, M (SD) 54.0 (22.4) 44.7 (16.7) 42.3 (15.7) 0.001

Sex, No. (%) 0.008

Male 52 (81.3) 63 (78.8) 66 (62.3)

Female 12 (18.8) 17 (21.3) 40 (37.7)

Race, No. (%) 0.948

White/Caucasian 44 (68.8) 60 (75.0) 71 (67.0)

Black/African American 17 (26.6) 17 (21.2) 28 (26.4)

Asian 2 (3.1) 2 (2.5) 3 (2.8)

Multiple races 1 (1.6) 1 (1.3) 1 (0.9)

Other 0 (0) 0 (0) 3 (2.8)

Ethnicity, No. (%)

Latino/Hispanic 9 (14.1) 13 (16.3) 26 (24.5) 0.289

NSI Symptoms, M (SD) 16.6 (13.5) 15.5 (10.9) 20.4 (16.4) 0.047

CVD Risk Factors, yes %

Smoking 34.4 25.0 24.5 0.326

Hyperlipidemia 43.8 21.5 15.5 <0.001

Hypertension 39.7 24.4 35.9 0.003

CT, computed tomography; CVD, cardiovascular disease; M, mean; MRI, magnetic

resonance imaging; NSI, Neurobehavioral Symptom Inventory; SD, standard deviation.

ratio [F(6, 199) = 4.71, p < 0.001]. The model for IL-10 was
not significant (p = 0.828). Concentrations of IL-6 [F(2, 205)
= 29.21, p < 0.001], TNFα [F(2, 181) = 9.28, p < 0.001],
VEGF [F(2, 234) = 31.98, p < 0.001], and the IL-6/IL-10 ratio
[F(2, 199) = 9.38, p < 0.001] significantly differed across imaging
groups, even after controlling for age, sex, hyperlipidemia
and hypertension (Figure 1). IL-6 was significantly higher in
the CT+ group compared to the MRI+ (p = 0.001) and
control (p < 0.001) groups (Figure 1B). Similarly, the MRI+
group had significantly higher IL-6 concentrations compared
to the control group (p < 0.001). TNFα was significantly
higher in the CT+ group compared to the MRI+ (p =

0.013) and control (p < 0.001) groups (Figure 1C); the MRI+
and control groups did not significantly differ (p = 0.444).
Concentrations of VEGF were significantly higher in the CT+
than both the MRI+ (p < 0.001) and control (p < 0.001)
groups; as well significantly higher in MRI+ compared to
controls (p = 0.01) (Figure 1A). Concentrations of IL-10
did not differ between groups (Figure 1D). The IL-6/IL-10
ratio was significantly higher in the CT+ group compared
to both the control (p < 0.001) and the MRI+ groups (p
= 0.092); the MRI+ group compared with controls (p =

0.072) did not significantly differ. Age, sex, hyperlipidemia
and hypertension were not significant predictors in any of the
ANCOVAmodels.

To determine the ability of the cytokines to differentiate
imaging groupings, an area under the curve (AUC) analysis was
performed (Figure 2). In stratifying CT+ and controls, VEGF,
IL-6, and TNFα were significant predictors and had fair to
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FIGURE 1 | Inflammatory cytokines are associated with neuroimaging. Dot plots showing (A) VEGF, (B) IL-6, (C) TNFα, and (D) IL-10 concentrations in the CT+,

MRI+, and control groups. Significant differences are indicated with *p < 0.05, **p < 0.01, and ***p < 0.001. VEGF, vascular endothelial growth factor; IL-6,

interleukin 6; TNFα, tumor necrosis factor alpha; IL-10, interleukin 10.

good AUC values (Figure 2A); the combined biomarker model
showed good discriminatory power (AUC 0.92, 95% CI 0.87–
0.97). In stratifying MRI+ and control groups, only IL-6 was a
fair predictor (AUC 0.70, 95% CI 0.60–0.78; Figure 2B). Lastly,
stratifying CT+ groups, VEGF, IL-6, and TNFα discriminated
between these groups, and the combined model had a fair ability
to distinguish groups (AUC 0.71, 95% CI 0.62–0.80; Figure 2C).

DISCUSSION

In this study, we report that plasma levels of IL-6, TNF-α,
and VEGF are elevated acutely in patients with neuroimaging
findings (CT or MRI) following a mTBI, and that these elevations
remain significant after controlling for demographic and clinical
factors. These findings are important, as they indicate that
inflammatory cytokines are elevated within 24 h after mTBI, and
that these elevations likely reflect neuronal damage resulting
from the TBI that can be measured using either MRI or CT.
These findings suggest that inflammatory activity relates to

even the most mild neuronal injuries as determined by MRI.
Further, total NSI scores were correlated with neuroimaging
findings, but not inflammatory cytokines, in this cohort. Other
mTBI studies have reported associations between postconcussive
symptoms and inflammatory markers (31, 33). However, these
studies report longer-term follow up on symptoms, while the
present findings report one timepoint within 24 h after injury. In
addition to limitations presented with self-reported symptoms,
these findings should be examined in additional mTBI cohorts
over time.

Proinflammatory cytokines, such as IL-6 and TNFα, are
elevated after acute TBI and are also elevated in CVD patients
(24, 27), yet the impact of these elevations, if experienced
concomitantly, remain undetermined. To our knowledge, this
is the first study to consider the possible impact of CVD risk
factors on peripheral measures of inflammation following a
mTBI. Interestingly, the present results suggest that CVD risk
factors do not impact peripheral measures of IL-6, TNFα, or
VEGF in the 24 h following mTBI, suggesting these biomarkers
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FIGURE 2 | Sensitivity of Acute Cytokines to Predict Imaging Group. Receiver

operating characteristic (ROC) curves for VEGF, IL-6, IL-10, and TNFα and

combined model which includes all biomarkers (VEGF, IL-6, IL-10, TNFα). (A)

ROC stratifying CT+ patients vs. controls (CT– and MRI–) [VEGF (AUC 0.86,

95% CI 0.80–0.92); IL-6 (AUC 0.87, 95% CI 0.81–0.93); TNFα (AUC 0.75,

(Continued)

FIGURE 2 | 95% CI 0.67–0.84); model (AUC 0.92, 95% CI 0.87–0.97)], (B)

ROC stratifying MRI+ patients vs. controls [VEGF (AUC 0.59, 95% CI

0.49–0.69); IL-6 (AUC 0.70, 95% CI 0.60–0.78); and TNFα (AUC 0.60, 95% CI

0.50–0.73)] (C) ROC stratifying MRI+ patients vs. CT+ [VEGF (AUC 0.63,

95% CI 0.53–0.72), IL-6 (AUC 0.69, 95% CI 0.60–0.78), TNFα (AUC 0.61,

95% CI 0.51–0.71); model (AUC 0.71, 95% CI 0.62–0.80)].

may have clinical utility, including in patients with CVD risk
factors, though larger cohorts and temporal measures are needed
to replicate this finding.

VEGF plays a central role in neurovascular health
through processes that regulate angiogenesis, neurogenesis,
neuroprotection, and astroglial proliferation following a TBI
(39, 40, 44). Importantly, VEGF modulates inflammatory
processes including cytokines and chemokines, and in turn,
activates proinflammatory processes necessary for neuronal
repair following a TBI (45, 46). Thus, our finding of increased
VEGF levels in both MRI+ and CT+ patients compared to
controls, suggests that VEGF in the peripheral blood reflects
central activities that are related to recovery from a mTBI. This
novel finding after acute mTBI indicates a possible mechanism
for the modulation of inflammation, together with neurovascular
effects, that should be further explored with symptomology and
outcome measures.

A peripheral biomarker approach may be valuable to clinical
care to improve detection of patients with mild injuries and
to identify avenues for possible therapeutic interventions. Up
to 25–40% of CT negative mTBI patients have positive MRI
with increased likelihood of developing neurological symptoms
(47, 48). In the present study, the combination of cytokines yields
increased discriminatory power between subgroups, suggesting
the need for additional, larger studies to identify the clinical
utility of a multimarker approach, especially in the ability to
stratify CT+ vs. MRI+(CT–). Additionally, further studies are
needed to fully elucidate the role of the inflammatory response
and links with neuroimaging in mTBI since inflammatory
pathways are a promising avenue for possible future therapeutic
interventions (40).

There are some limitations in this study. Because the sampling
method was a convenience sample of participants who entered
emergency departments in the DC metro area and volunteered
to participate, results may not be generalizable to the entire
mTBI population. The control patients (CT– MRI–) experienced
external force trauma and there may be outcome deficits as well
as subclinical biomarkers alterations even in this population with
negative neuroimaging as observed in a previous report (49).
Future work that includes comparison to a polytrauma control
group, without head injuries, would be beneficial to elucidate
the influence of peripheral cytokines exclusive to head injury in
contrast to other bodily injuries. Evidence suggests that temporal
peaks in peripheral inflammatory cytokines, including IL-6 and
TNFα, occur within 24 h following injury, with some variation
among studies (14, 50, 51). As such, an important direction for
future work is the inclusion of additional time points in larger
samples to map more precise temporal cascades for peripheral
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inflammatory response. Although outside of the scope of this
study, an interesting future direction in larger studies will be to
compare inflammatory markers with specific lesion types.

CONCLUSION

In summary, our results suggest that IL-6, TNFα, and
VEGF are promising biomarkers of brain injury in patients
with acute mTBI. Therefore, a multi-biomarker approach,
which includes inflammatory markers, may provide important
insights into the mechanisms that relate to recovery from a
mTBI. These findings are limited by a cross-sectional design
in a relatively small population with only one timepoint.
Our findings suggest that larger prospective studies are
needed to evaluate implications of these findings on chronic
symptomology and outcomes. Thus, there is a continued need for
research to elucidate the biomarkers and subsequent underlying
biological mechanisms which are involved in recovery, or lack
thereof, from mTBI.
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