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Abstract

In genome-wide studies, hundreds of thousands of hypothesis tests are performed
simultaneously. Bonferroni correction and False Discovery Rate (FDR) can effectively
control type I error but often yield a high false negative rate. We aim to develop a
more powerful method to detect differentially expressed genes. We present a Weighted
False Discovery Rate (WFDR) method that incorporate biological knowledge from
genetic networks. We first identify weights using Integrative Multi-species Prediction
(IMP) and then apply the weights in WFDR to identify differentially expressed genes
through an IMP-WFDR algorithm. We performed a gene expression experiment to
identify zebrafish genes that change expression in the presence of arsenic during
a systemic Pseudomonas aeruginosa infection. Zebrafish were exposed to arsenic at
10 parts per billion and/or infected with P. aeruginosa. Appropriate controls were
included. We then applied IMP-WFDR during the analysis of differentially expressed
genes. We compared the mRNA expression for each group and found over 200
differentially expressed genes and several enriched pathways including defense
response pathways, arsenic response pathways, and the Notch signaling pathway.

Keywords: False discovery rate, Family-wise error rate, Genomic studies, Data
integration
Introduction
With the rapid development of novel high-throughput deep sequencing technology,

the study of functional transcriptomes has changed dramatically. Compared to

microarray-based measurements, RNA-sequencing (RNA-seq) technology can profile

RNA transcript abundance within greater depth and accuracy. It can effectively

detect alternative splicing variants and novel transcripts and does not require an

assembled genome sequence. Study [1] compared high-throughput sequencing data

in Illumina and Affymetrix platform and showed that sequencing data are highly

replicable, with much smaller technical variation when compared to microarray data.

In many cases, it is sufficient to sequence each mRNA sample only once.

RNA-seq analysis raises significant challenges when tens of thousands of transcripts

are tested at the same time in order to find those that are differentially expressed
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under given conditions. Multiple testing correction is required to adequately control

type I error, and frequently Bonferroni correction [2] is used to adjust for multiple

testing. The Bonferroni correction is highly stringent, and this correction controls the

error rate by adjusting the significance threshold to maintain the specified p-value

threshold across all tests. This strict correction is less appropriate for genomic data

analysis, where the cost of a false positive is relatively low, the number of observations

is relatively low, and the number of tests is high. Alternative criteria that offer a lower

false negative rate (i.e. missed findings) are more appropriate in this setting. The false

discovery rate (FDR) was proposed by Benjamini and Hochberg [3] for such settings.

This test is more lenient than attempts to control the family wise error rate (FWER),

and it allows adequate control of false positives during genomic data analysis and has

become widely used [4–7].

While FDR provides an improvement for Type II when compared to FWER-based

methods, the FDR method still suffers from reduced power when there are a large

number of tests. The incorporation of weights representing the strength of existing

evidence was developed by Genovese et al. [8] and provides a means to further improve

power. Genovese et al. proved that weight assignments consistent with the rule that

the sum of the weights equaling the total number of tests resulted in effective control

of the FDR at the nominal level (i.e. with WFDR at a nominal level of 0.05, 5 % of the

discoveries would be false positives just as with the unweighted FDR). In the field of

biology, researchers have access to substantial information about biology from both

published experiments and existing biological data. Leveraging this knowledge to

improve the power of genomic tests would provide significant advantages; and FDR

weighting methods that combine biological information and knowledge with gene

expression measurements to more effectively identify differentially expressed genes

represent an area of unmet need.

The Integrative Multi-species Prediction [9, 10] webserver has collected over 2,000

microarray datasets from the NCBI Gene Expression Omnibus (GEO), large collection of

biochemical experiments from the Database of Protein and Genetic Interactions

(BioGRID), tissue-specificity and phenotype characterizations from The Zebrafish

Model Organism Database (ZFIN) and other sources for seven organisms. IMP

integrates these data into functional relationship networks using naïve Bayesian

classifiers. Functional networks represent an efficient and comprehensive summary of

existing publicly available data. Specifically, in each functional network, each node

represents a gene and each edge between two genes is the posterior probability that

the two genes are involved in the same process or pathway [11]. IMP is available

through a web server (http://imp.princeton.edu/). IMP provides gene-gene functional

relationship networks from multiple organisms including zebrafish. The IMP networks

have been used to identify novel genes involved in the development of left-right

asymmetry in zebrafish embryos, which were validated through knockdown experiments

[10]. While these networks have demonstrated utility for guiding targeted experiments,

methods that allow researchers to use these networks to effectively analyze new large-

scale experiments would address a currently unmet need.

In this paper, we develop and evaluate a novel IMP-WFDR method that uses state-

of-the-art genetic network information to infer appropriate weights for WFDR and

adjusts the p-values from simultaneous tests to correct for multiple testing issue.

http://imp.princeton.edu/
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The genetic disorder cystic fibrosis (CF) results from a loss of function variant in

the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF individuals

have difficulty with airway clearance, and most will develop chronic P. aeruginosa

[12] infections. While the underlying cause of CF is genetic, the environment is

expected to play a role in the many factors of the disease. For example, arsenic has

recently been shown to alter CFTR function [13, 14]. We developed a zebrafish model

for CF and found that both cftr and arsenic individually affect innate immunity [15].

Here we identify gene expression changes associated with the innate immune

response in the context of arsenic exposure. We performed RNA sequencing of con-

trol zebrafish as well as those exposed to arsenic at levels seen in the environment (2

ppb and 10 ppb) and those experiencing a chronic P. aeruginosa infection. We apply

our newly developed IMP-WFDR method to detect genes that were differentially

expressed upon exposure to arsenic and/or infection with P. aeruginosa. The IMP-WFDR

method integrates large data compendia through functional networks and focuses

these data on the analysis of a new genome-scale experiment to better identify rele-

vant candidates.
Methods
IMP-WFDR method

Genovese et al. [8] proposed a simple weighted FDR procedure in which non-negative

weights Wi are assigned to each p-value such that ∑i = 1
m Wi =m. Here m refer th the

number of total genes. The BH procedure is applied directly to Qi = Pi/Wi, where Pi
denotes the unweighted p-value. They have proven that weighted FDR controls FDR at

the nominal level.

Given the freedom of assigning weights to p-values, weighted FDR provides an excel-

lent platform to incorporate expert biological knowledge of each gene’s biological func-

tion. Because we already have substantial knowledge about biology, we can use this

procedure to most strongly focus on genes that represent likely candidates. If we assign

weights only to the strongest candidates (i.e. those with known literature involvement),

we limit our ability to make novel discoveries. If we assign weights evenly to all genes,

we do not provide adequate weight to genes with some support. Consequently func-

tional networks, which integrate publicly available data using biological knowledge, pro-

vide both the opportunity to make new discoveries while also allowing us to focus on

candidates that are more promising than randomly selected genes [16, 17]. We use

functional networks from IMP to assign weights and apply weighted FDR to adjust for

multiple testing. The algorithm is depicted in Fig. 1 with the following steps:

� Identify a small set of key genes that relate to a biological process of interest.

� Input the set of gene names into IMP (https:// imp.princeton.edu) and identify

networks that linked to those key genes.

� For each gene i in the network, calculate the total relationship confidence i,

TRCi, which is the likelihood of connecting with other genes in the network. It

can be calculated by summing up the confident scores of the edges linking to

gene i.

� Set Wi ∝ TRCi and apply weighted FDR to adjust for multiple testing.



Fig. 1 Demonstration of WFDR-IMP procedure
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Zebrafish experiment and RNA-seq dataset

There is a growing interest in establishing CF-environment linkages. Using our zebrafish

model, we have recently shown that the cftr gene responsible for CF and arsenic each

separately mediate aspects of innate immunity [15, 18–20]. We hypothesize that

arsenic disrupts the innate immune response. In our previous studies, we were

establishing linkages that show how arsenic affects the innate immune response

through its effects on Cftr function. Patients with CF typically succumb to infection

by the Gram-negative bacterium P. aeruginosa. We recently established a zebrafish

model for P. aeruginosa infection and have applied it to our Cftr morphant fish [20].

We have shown that Cftr morphant fish are indeed more susceptible to P. aeruginosa

infection. In this study, we generated eighteen groups of zebrafish, each with three

replicates, based upon [1] exposure to different levels of arsenic, and [2] infection

with P. aeruginosa (Fig. 2) for each of the three time points tested (6, 12, and 18 h

post-P. aeruginosa infection). At 6, 12, and 18 h post-infection, larvae were collected

and homogenized in Trizol reagent (Life Technologies, Carlsbad, CA)., using a motorized

mortar and pestle. Total RNA was extracted, as per manufacturer’s instructions RNA

integrity was ensured using Nano 6000 RNA chips with the Agilent 2100 Bioanalyzer

(Santa Clara, CA). RNA concentrations were determined with the Nanodrop UV/Vis

spectrophotometer (Wilmingtion, DE). We constructed libraries with the Illumina TruSeq

v2 high throughput library construction procedure (Illumina Inc.) using one micro-

gram of total RNA (RIN>7) and validated library construction using the Agilent

Bioanalyzer 2100 followed by quantitation using the Qubit HS DNA assay and qPCR

kit for Illumina (Kapa Biosystems Inc). Libraries were diluted using the Qubit or



Fig. 2 Zebrafish experiment
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qPCR information and sequenced on the HiSeq 2000 (Agilent). The RPKM (reads per

kilobase per million) value is calculated for each gene using CLC genome bench 4.5.
Weight assignment for zebrafish experiment

To calculate weights for each gene using the IMP-WFDR procedure, we first identi-

fied 14 important genes that are associated with arsenic exposure (fn1, notch1a,

notch1b, pik3r1, akt2, ass1, nfkb2, foxo5) and immune response (il1b, tnfa, il8, mmp9,

irak3, ifnphi1), based on prior biological knowledge.. We queried IMP for these genes

and obtained the subnetwork of all genes connected to these 14 starting genes. Out

of a total of 27,834 genes, IMP was able to identify 18,803 genes in the subnetwork.

The distribution of the genes’ connectivity score is right skewed and 75 % of genes’

TRC are under 0.01 with only 32 genes have a TRC greater than 1. The TRC for the

14 query genes is ranging from 0.16 to 419 with a mean of 72 and standard deviation

of 113. Gene ‘fn1’ received a TRC of 419 which is also the largest of all genes. This is

not surprising because the query genes are served as hubs for the IMP network. To
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stabilize the variance, we tried “log + 1” transformation for all TRCs and divided the

mean value to generate the weight for Zebrafish experiment.
Results
We developed the novel IMP-weighted FDR (IMP-WFDR) procedure to assign FDR

weights. We applied this method to an RNA-seq experiment that tests an organism’s

response to exposure to pathogens and arsenic, and found that IMP-WFDR effectively

identified important players.
RNA-seq data analysis results

We calculated p-values for each treatment by comparing mean RPKM (reads per kilo-

base per million) between PBS control samples and P. aeruginosa-treated samples

while varying the arsenic exposure at 0 and 10 ppb concentrations at 6 or 12 h after

treatment. We applied the IMP-WFDR procedure to generate weights. We compared

FDR using Benjamin and Hochberg’s (BH) procedure and IMP-WFDR to adjust all

p-values and used 0.2 as a cut-off. There were 4 of the 8 comparisons where at least

one gene’s adjusted p-value was under 0.2. To avoid the selection bias on query genes,

we set the weight for all query genes to 1 and performed a sensitivity analysis. Table 1

shows the number of findings identified by IMP-WFDR, sensitivity analysis and FDR.

IMP-WFDR outperforms FDR in 3 comparisons. This indicated that IMP-WFDR can

greatly improve power in detecting differentially expressed genes. The result of the sensi-

tivity analysis is slightly better than IMP-WFDR result because a few extreme large

weights are removed and distributed to the remaining genes so that more genes are

upweighted. Indeed, IMP-WFDR analysis allowed us to identify numerous genes in each

of the comparison groups that had previously been associated with arsenic exposure and/

or immune challenge. Most of these same genes were not identifed by FDR.

To further understand the effect of weight, we generate a volcano plot (Fig. 3) that

overlay the p-values and weighted p-values from comparison of arsenic 0 vs 10 ppb for

PBS samples at 6 h after treatment in zebrafish experiment. We select this comparison

because it has the largest difference in number of findings. IMP-WFDR change the

distribution of p-values dramatically by down-weight most of the p-values to 1 and

upweight the rest. The smallest p-values for both case is at 10^(−5) level, but weighted
p-value have over 140 at 10^(−3) level that will be enough to meet FDR 0.2 threshold.

On other hand original p-values only have one pass FDR 0.2 threshold.

From the genes identified by IMP-WFDR, 36 genes were identified in more than one

comparison. We anticipate that these genes are likely to play an important role in

regulating responses to pathogens such as P. aeruginosa in the context of environmental

exposures such as arsenic. We calculated functional enrichment p-values using this set of

genes [9] to identify biological processes that were enriched within this group. Table 2
Table 1 Compare IMP-WFDR and FDR method in zebrafish experiment

Arsenic 0 vs 10 ppb for
PBS samples at 6H

Arsenic 0 vs 10 ppb for P.
aeruginosa at 6H

PBS vs P. aeruginosa for
Arsenic=0 ppb at 12H

PBS vs P. aeruginosa for
Arsenic=10 ppb at 6H

IMP-WFDR FDR IMP-WFDR FDR IMP-WFDR FDR IMP-WFDR FDR

116 (143) 25 121 (129) 10 157 (167) 1 12 (9) 35

The numbers in bracket is the result from sensitivity analysis that set the weight for all query genes to 1



Fig. 3 Volcano plot that overlay the p-values (black) and weighted p-values (red) from comparison of arsenic
0 vs 10 ppb for PBS samples at 6 h after treatment in zebrafish experiment
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shows these processes. It is interesting to note that we identified 2 out of 6 genes (ifnphi1,

mmp9) that are known to regulate the immune response in zebrafish. The ifnphi1 gene

encodes a type I interferon most often associated with the antiviral ressponse [21]. The

mmp9 gene encodes a collagenase that degrades extracellular matrix proteins and facili-

tates the migration of immune cells like neutrophils [22].

The differential expression of the ifnphi1 gene recapitulates findings that that

mRNA expression of the antiviral cytokine interferon (ifn) was differentially expressed

in arsenic-exposed zebrafish before and after viral infection in a previous study [14].

It is also important to note that the unweighted FDR procedure fails to identify these

differentially expressed genes in any of the 4 comparisons. However, IMP-WFDR

identifies the pair in 3 out of the 4 comparisons. This indicates that our proposed

method can identify more biologically relevant genes than an unweighted FDR

method, which ignores existing biological data and knowledge.
Table 2 GSEA results for overlapping genes

Biological process Network Freq. Genome Freq. Adjusted p-values Genes

Notch signaling pathway 19.4 % (7/36) 0.8 % (49/6131) 8.38E-06 notch1b, jag2 gro2,
dlb, dla, dld, jag1a

regulation of defense response 5.6 % (2/36) 0.0 % (3/6131) 2.92E-02 ifnphi1, mmp9

regulation of immune effector
process

5.6 % (2/36) 0.1 % (4/6131) 3.87E-02 ifnphi1, mmp9

response to arsenic containing
substance

5.6 % (2/36) 0.1 % (5/6131) 4.82E-02 il1b, ifnphi1
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Conclusion and discussion
We have developed a novel IMP-WFDR method that derives weights from a state-of-

the-art data integration algorithm and incorporates them in WFDR to more effectively

account for multiple test given the context of available biological data and knowledge.

IMP has previously been used to guide morpholino assays in zebrafish [9] and our

IMP-WFDR procedure greatly extends IMP’s application by improving the analysis of

genomic experiments through such functional networks. We demonstrate through both

a simulation study and analysis of RNA-seq data that our proposed method identifies

more differentially expressed genes than unweighted FDR or Bonferroni correction,

while maintaining appropriate control of the false discovery rate. We used RPKM to

obtain p-values as our primary goal was to study IMP Weighted FDR, but in practice

edgeR [23] or DEseq [6] can be used to calculate p-values for RNA-Seq reads.

The advantage of IMP-WFDR is that it can effectively incorporate expert biological

knowledge from published experiments and existing biological data as weights and con-

trol false discovery rate to adjust for multiple testing. Roeder and Wasserman proposed

a two-valued weighting scheme [24] to up weight all p-values in a pre-specified priority

list and down-weight the rest. The drawback of this approach is that it demotes novel

findings since all the unknown genes are down-weighted and have less of a chance to

be detected than in the un-weighted case. Rather than up- weight only genes in the

priority list, IMP-WFDR obtains its weight based on the functional subgenetic network

defined by the priority genes. Thus, the choice of weight is much less dependent on the

given priority list. From the Table 1, we see that there were over 200 genes identified by

the IMP-WFDR approach while the input list contains only 14 genes. The sensitivity

analysis results also support this conclusion. Despite the advantages of IMP-WFDR, it

is important to recognize disadvantages of this and other weighted FDR approaches.

The weights used by IMP-WFDR are the total relationship confidence, which is ad

hoc. Future work will focus on identifying an optimal transformation of the network

information into gene specific weights. We will also consider utilizing pathway

information, which is contained alongside the IMP networks in the IMP webserver, to

identify an optimal weighting scheme.

In conclusion IMP-WFDR is a powerful analytic tool that embraces state-of-the-art

genetic network information in identifying differentially expressed genes in high-

dimensional settings. We expect that IMP-WFDR and other tools that allow biologists

to analyze high-throughut data in the context of biological relationships will play a key

role in identifying genes differentially regulated in key models of human physiology.
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