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Abstract

Nontypeable Haemophilus influenzae (NTHi) are human-adapted commensal bacteria that can cause a number of chronic
mucosal infections, including otitis media and bronchitis. One way for these organisms to survive antibiotic therapy and
cause recurrent disease is to stop replicating, as most antimicrobials target essential biosynthetic pathways. Toxin-antitoxin
(TA) gene pairs have been shown to facilitate entry into a reversible bacteriostatic state. Characteristically, these operons
encode a protein toxin and an antitoxin that associate following translation to form a nontoxic complex, which then binds
to and regulates the cognate TA promoter. Under stressful conditions, the labile antitoxin is degraded and the complex
disintegrates, freeing the stable toxin to facilitate growth arrest. How these events affected the regulation of the TA locus, as
well as how the transcription of the operon was subsequently returned to its normal state upon resumption of growth, was
not fully understood. Here we show that expression of the NTHi vapBC-1 TA locus is repressed by a complex of VapB-1 and
VapC-1 under conditions favorable for growth, and activated by the global transactivator Factor for Inversion Stimulation
(Fis) upon nutrient upshift from stationary phase. Further, we demonstrate for the first time that the VapC-1 toxin alone can
bind to its cognate TA locus control region and that the presence of VapB-1 directs the binding of the VapBC-1 complex in
the transcriptional regulation of vapBC-1.
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Introduction

Unencapsulated (nontypeable) Haemophilus influenzae (NTHi) are

Gram-negative obligate bacteria of the human upper respiratory

tract that have the potential to cause mucosal diseases such as otitis

media, bronchitis, and pneumonia [1]. These infections can be

recurrent, and NTHi have evolved mechanisms to persist between

episodes [2]. One successful survival strategy is the ability to

undergo reversible growth arrest, mediated by toxin-antitoxin

(TA) gene pairs [3]. TA loci have been found in nearly all bacterial

genomes sequenced to date, and many code for a protein toxin

and antitoxin that form a nontoxic complex upon translation

which autorepresses the cognate promoter. Under stressful

environmental conditions such as nutrient limitation, antibiotic

therapy, or oxidative stress, the labile antitoxin is degraded and the

more stable toxin is freed to facilitate growth arrest. Given that

these events would destroy the autoregulatory protein complex,

the means by which TA promoter regulation is returned to its

normal state upon removal of stress and resumption of growth is

not fully understood.

TA gene pairs have been divided into several families, of which

the vapBC locus is by far the most numerous [4]. This remarkable

conservation of vapBC is underscored by the fact that many

microorganisms contain multiple vapBC loci. For example, one

study found that 20 vapBC TA homologues identified in the

Mycobacterium tuberculosis genome were active when expressed in

Mycobacterium smegmatis [5]. NTHi strains maintain two vapBC

alleles in their chromosomes (designated vapBC-1 and vapBC-2),

making this organism an excellent model in which to study the

regulation and function of these highly conserved gene pairs.

The VapC toxins are characterized by a 100 amino acid motif

known as a PilT N-terminus (PIN) domain that contains highly

conserved acidic residues shown to be essential for metal ion

coordination in other PIN-domain containing proteins that are

ribonucleases [6]. The PIN domains display similarity to the

nuclease domains of Taq polymerase, T4 RNase H, and the 59-39

flap endonucleases [7]. The VapB antitoxins are thought to have

evolved to block the ribonucleic activity of their associated VapC

toxins. This is consistent with a study showing that the VapB

antitoxins were specific for their cognate toxins in four separate

vapBC loci in M. tuberculosis [5]. However, another study found that

certain noncognate M. tuberculosis toxin and antitoxin homologues

could associate, both in vivo and in vitro [8], so questions remain

about the exact role of each antitoxin. VapB-1 is a member of the

VagC superfamily of virulence-associated and related proteins,

and contains a SpoVT/AbrB-like domain [9]. AbrB is an

ambiactive transcriptional regulator important during the transi-

tion from vegetative to the sporulation state in Bacillus, and SpoVT

is another member of this family with transcriptional regulation

activity. Therefore, the VapB-1 antitoxin may serve to control

genes involved in stress survival.
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We have shown previously that NTHi vapBC-1 encodes a VapB-

1 antitoxin that binds to and interferes with the activity of its

cognate ribonuclease VapC-1 toxin. This toxin has a PIN domain

and degrades RNA but not single- or double-stranded DNA in vitro

[10]. However, we have yet to determine how the VapBC-1

complex may control its own expression and modulate the toxic

VapC-1 ribonuclease function following stress.

In an earlier study, we also reported that the activity of vapBC-1

promoter::lacZ reporter gene fusions from two NTHi clinical

isolates analyzed over the cell cycle in an Escherichia coli

background displayed an inverse relationship to culture density

[10]. This pattern of transcriptional activity is consistent with

vapBC-1 locus regulation by the Factor for Inversion Stimulation

(Fis), but Fis expression in NTHi had not been characterized,

limiting our interpretation of this data [11]. Fis is a small nucleoid-

associated protein that binds to sites throughout bacterial

chromosomes and regulates a wide array of genes, both directly

by promoter interaction and indirectly by altering DNA structure

during various growth stages [12–16]. In Escherichia coli, the cellular

levels of Fis are dramatically increased upon nutrient upshift from

stationary phase in batch culture, conditions that would precede

TA locus upregulation [11]. A high-affinity binding sequence (59-

GNNYAWWWWWTRNNC-39, where W is A/T) has been

characterized for E. coli Fis; however, the Fis binding sequence for

E. coli and Salmonella is rather degenerate, suggesting significant

variation in bacterial Fis recognition of DNA [14,17–19]. We have

identified a putative Fis binding site within the NTHi vapBC-1

locus control region that matches 13 of 15 residues of the E. coli

sequence, suggesting its possible regulation by the NTHi Fis

protein.

To gain understanding of the growth phase regulation of the

vapBC-1 operon, we have conducted in vivo studies of the fis and

vapBC-1 response to nutrient upshift in a NTHi clinical isolate,

strain R2866, with the hypothesis that Fis and the VapBC-1 TA

complex serve to regulate vapBC-1 expression. Additionally, the

NTHi Fis and VapBC-1 TA proteins were purified and analyzed

for their interaction with the vapBC-1 locus control region. The

work presented herein elucidates a novel role for the VapC-1 toxin

and supports a new model for vapBC-1 TA locus autoregulation.

Materials and Methods

Bacterial strains and culture conditions
The bacterial strains and plasmids used in these studies are

listed in Table 1. E. coli strains were grown in LB broth or agar

630 mg/ml kanamycin or 100 mg/ml ampicillin, as required.

NTHi strains were grown in either brain-heart infusion (BHI)

broth or agar supplemented with 10 mg/ml heme-histidine and b-

NAD (sBHI), or on chocolate agar plates containing 5 kU

bacitracin/L. Where required, the following antibiotics were

Table 1. Bacteria and plasmids used in this study.

Bacteria Description Source

H. influenzae

R2866 Blood isolate from an immunocompetent child with meningitis immunized with the Hib vaccine. A.L. Smith

R2866 DvapBC-1 The vapBC-1 TA locus replaced with a kanamycin resistance cassette. This work

R2866 Dfis The fis gene replaced with a chloramphenicol resistance cassette. This work

R2866 DfisDvapBC-1 fis and vapBC-1 double mutant. This work

E. coli

BL21 F2 dcm ompT hsdS(rB
2 mB

2) gal [malB+]K-12(lS) EMD Bioscience

BL21(DE3) F2 ompT hsdS (rB
2mB

2) gal dcm lDE3 EMD Bioscience

DD12 MC4100 recA::RP4-2-Tc::Mu KmR [23]

DH5a F2 endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG W80dlacZDM15 D(lacZYA-argF)U169, hsdR17 Lab collection

Plasmids Description Source

pBluescript Cloning vector encoding ampicillin resistance. Stratagene

pDD514 RSF1010-based H. influenzae conjugal expression vector encoding gentamicin resistance. [23]

pDD686 pET24b with R2866 vapBC-1. [10]

pDD690 pET24b with R2866 vapB-1. [10]

pDD693 pMC1403 with R2866 vapBC-1 promoter fusion to lacZ. [10]

pDD715 pTrcHisA with R2866 fis. This work

pDD717 pBluescript with the 340 bp R2866 vapBC-1 locus control and upstream region. This work

pDD727 pDD514 with R2866 vapBC-1 promoter fusion to lacZ. This work

pDD731 pGEM5 with R2866 vapBC-1 deletion marked with a kanamycin cassette. This work

pDD733 pBluescript with R2866 fis deletion marked with a chloramphenicol cassette. This work

pDD780 pET24b with the vapC-1 D99N site-directed mutant for protein expression. This work

pET24b C-terminal polyhistidine tag expression vector. EMD Bioscience

pGEM5 Cloning vector encoding ampicillin resistance. Promega

pMC1403 Promoter::lacZ fusion vector. [22]

pTrcHisA N-terminal polyhistidine tag expression vector. Invitrogen

doi:10.1371/journal.pone.0032199.t001
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added: 5 mg/ml gentamicin, 30 mg/ml kanamycin, or 2 mg/ml

chloramphenicol.

Cloning of vapB-1, vapBC-1 and fis
Each wild-type vap gene was cloned into the expression vector

pET24b as a C-terminal polyhistidine tag fusion either in single

copy (vapB-1) or in tandem (vapBC-1) as described previously [10].

To determine whether the polyhistidine tag interfered with

function, VapB-1 was also cloned with an N-terminal polyhistidine

tag in the vector pTrcHisA, which was subsequently removed

using the Enterokinase Cleavage Capture Kit (Novagen) according

to the manufacturer’s instructions. The crystal structure for E. coli

Fis has been solved [20], and the first 23 amino acids of the

homodimer are disordered, whereas the C-terminal domain is

considered important for DNA binding. Therefore, we chose an

N-terminal polyhistidine tag fusion to express and purify NTHi Fis

using the vector pTrcHisA. This tag was subsequently removed

using enterokinase cleavage as above. All PCR reactions were

performed with Phusion FLASH high-fidelity DNA polymerase

(New England Biolabs) using purified genomic DNA from NTHi

strain R2866 as the template. Oligonucleotides used in this study

were custom synthesized by Eurofins MWG Operon. Each

pET24b-based construct was expressed in E. coli BL21(DE3).

The fis gene was amplified from NTHi strain R2866 genomic

DNA using high-fidelity PCR with the primers FisXhoIfor and

FisKpnIrev (Table 2). The 315 bp product was cut with XhoI/KpnI

and ligated to XhoI/KpnI-cut pTrcHisA, resulting in pDD715, the

expression plasmid for Fis with an N-terminal polyhistidine tag.

This construct was confirmed by DNA sequencing and expressed

in E. coli BL21.

Site-directed mutagenesis of VapC-1
The aspartate residue at position 99 in VapC-1 was changed to

an asparagine by PCR mutagenesis of pDD686 using the following

primers: D99NFor and D99NRev (Table 2). The PCR reaction was

incubated with DpnI to digest the template DNA, and the column-

purified product was used to transform competent DH5a cells. The

resulting plasmid was sequenced on both strands to ensure the

correct D99N mutation, and designated pDD758. To express

the VapC-1 D99N mutant alone, pDD758 was amplified with the

primers VapCSacFor and VapCXhoIRev and the 660 bp amplicon

was cut with SacI/XhoI and ligated to SacI/XhoI-cut pET24b,

creating pDD780 (Table 2). This plasmid was used to express the

VapC-1 D99N protein with a C-terminal polyhistidine tag.

Protein purification
Proteins were purified from induced cultures using the Promega

MagneHis protein purification system. Briefly, E. coli strains BL21

(for the pTrcHis vector-based constructs) or BL21(DE3) (for the

pET24b vector-based constructs) carrying the various fusions were

grown to logarithmic phase in LB broth with appropriate

antibiotics and induced for 2 or 3 hours with 1 mM IPTG. The

cells were pelleted, frozen at 280uC, and subjected to 3 freeze-

thaw cycles prior to being processed using the manufacturer’s

protocol for native purification. Purified proteins were quantitated

using the Bradford protein assay (Pierce). Aliquots of purified

proteins were frozen at 280uC and thawed when needed. Where

required, polyhistidine N-terminal tags were removed by entero-

kinase cleavage.

Deletion of vapBC-1 and fis
The vapBC-1 toxin-antitoxin locus was deleted from strain

R2866 by allelic exchange as follows. A 2557 bp area around the

vapBC-1 locus in the R2866 genome was amplified by Phusion

high fidelity PCR using the primers BCFor and BCRev (Table 2).

The amplicon was cut with XbaI and ligated to compatible ends in

SpeI-cut pGEM5, creating pDD730. The pDD730 plasmid was

then cut with BamHI and BglII and gel purified, which removed

564 of the 619 bp of the vapBC-1 operon. A 1275 bp Phusion PCR

amplicon of the aphII gene from pUC4K with BamHI ends was

ligated in the place of the vapBC-1 operon, creating pDD731. This

plasmid was then amplified with primers that flanked the multiple

cloning site, and the amplicon was used to replace the vapBC-1

operon from strain R2866. PCR of the flanking regions followed

by DNA sequencing confirmed the vapBC-1 deletion.

The fis gene was deleted in the following manner. Attempts to

clone the region surrounding the NTHi fis gene were unsuccessful,

so a three-step cloning technique was used. For the first step, a 637

base pair fragment upstream from fis which included 40 base pairs

into the fis coding region was amplified by PCR with the primers

Fis28Sacfor and Fis28Xbarev (Table 2). This was cut with SacI/

XbaI and ligated into the SacI/XbaI–digested vector pBluescript

SK+, creating pDD729. For the second step, pDD729 was cut with

XbaI/PstI and ligated to a XbaI/PstI-cut 317 base pair fragment

representing the last 71 base pairs of fis plus flanking DNA

amplified by PCR using the primers Fis28Xbafor and Fis28Pstrev,

creating pDD732. Finally, pDD732 was cut with XbaI and ligated

to a compatible NheI-cut 900 base pair fragment amplified with the

primers CmNhefor and CmNherev (Table 2) that contained the

chloramphenicol acetyltransferase (cat) resistance cassette from

pACYC184, resulting in pDD733. This strategy deleted 188 bp of

the 299 bp fis gene and inserted a cat cassette in its place. PCR of

the flanking regions followed by DNA sequencing confirmed the fis

deletion. Use of a high-fidelity PCR amplicon of this region in

allelic exchange reactions successfully deleted fis from strains

R2866 and R2866 vapBC-1.

Quantitative real time-polymerase chain reaction
The expression of fis in the wild type NTHi strain R2866

following nutrient upshift was analyzed by qRT-PCR. A 1.5 mL

Table 2. Primers for fis and vapBC-1 cloning.a

FisXhoIfor 59-ATAACTCGAGATGTTAGAACAACAACG-39

FisKpnIrev 59-AAACGGTACCTTATCCCATACCG-39

D99NFor 59-[Phos]AATCTATGGATCGCTTGTCACG-39

D99NRev 59-[Phos]ATTATTTCCGATAGGTCGCC-39

VapCSacFor 59-CGAGGAGCTCTATGATTTATATGTTAGACACC-39

VapCXhoIRev 59-GAATCTCGAGTTTTGTCCAATCTTGCC-39

BCFor 59-GCTTTCTAGACAGGCTAAATATACCG-39

BCRev 59- GGTCTCTAGAGGCATTGTGCGCCAC -39

Fis28Sacfor 59-AAAAGAGCTCAATGTGCCAGTGACC-39

Fis28Xbarev 59-AATATCTAGACCGTTAAGGCATCAGCAGG-39

Fis28Xbafor 59-CGTGTCTAGAATATGCTTGGTATCAACCG-39

Fis28Pstrev 59-GCACCTGCAGTTTACTGGAAAAGTGC-39

CmNhefor 59-GCAGGCTAGCCCGACGCACTTTGC-39

CmNherev 59-CTTAGCTAGCTTACGCCCCGCCCTG-39

BC1403for 59-ACTAGAATTCATCATTTACTCATTGACTTGC-39

BC1403rev 59-GTTAGGATCCTGAAACACTTTAGTAAGC-39

1403Xbafor 59-ATTTTCTAGAGTTATTGTCTCATGAGCGG-39

1403Xbarev 59-TTCCTCTAGAGAAATACGGGCAGACATGG-39

aRestriction enzyme sites used for cloning are underlined.
doi:10.1371/journal.pone.0032199.t002
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aliquot of a stationary phase culture of strain R2866 in sBHI was

diluted into 25 mL of fresh, pre-warmed medium. Culture samples

of 1 ml were obtained immediately prior to inoculation (time zero,

stationary phase), 10, 30, 60, and 120 minutes following nutrient

upshift. Each was immediately added to an equal volume of

RNALater (Ambion) and held at 4uC until used (in all cases, less

than 2 days). Total RNA from each sample was purified using

the Charge Switch Total RNA kit (Invitrogen) according to the

manufacturer’s instructions, with a modification of changing the

DNase I digestion step to 30 min at 37uC. Purified total RNA

concentration was then quantified by NanoDrop spectrophotom-

etry (Thermo Scientific), and each RNA sample was used as the

template for PCR to ensure that there was no genomic DNA

contamination prior to cDNA synthesis. 250 ng of total RNA from

each sample was used for cDNA synthesis utilizing the Fermentas

Maxima Universal First Strand cDNA Synthesis Kit with the

included random hexamer primers. Each cDNA reaction was then

diluted 1:10 and used as template for PCR to ensure that the

cDNA had successfully been synthesized. For real-time PCR,

25 mL reactions were prepared with 12.5 ml of 26 Power SYBR

Green Master Mix (Applied Biosystems), 400 nM of each gene-

specific primer set, and 5 mL of a 1:10 dilution of cDNA. qPCR

was performed using the Applied Biosystems 7300 Real-Time

PCR System with the following cycling conditions: 10 min at

95uC, 40 cycles of 95uC for 15 sec and 60uC for 1 min. Relative

expression of fis was calculated by the comparative Ct method

(2–DDCt) using time zero as the calibrator and the expression of a

DNA gyrase subunit gene, gyrA, as the endogenous control. The

gyrA gene was chosen because it had been used previously in qRT-

PCR studies for this purpose in NTHi [21]. Primers for fis

(forward: 59-AGC AAA CCA TTA CGC GAT TC-39, reverse:

59-TTT GCT GCA CGA GTT TGA T-39) and gyrA (forward: 59-

AGG TGT TCG CGG TAT CAA AC-39, reverse: 59-ATT GCA

CCT TCA CCT TTT TGG-39) were designed based on the

genome sequence of R2866 using the Primer3 software (http://

frodo.wi.mit.edu/primer3/). Three biological replicates and three

technical replicates were analyzed for each time point.

Promoter::reporter gene fusions and activity assays
For the lacZ fusion, a 340 base pair sequence located upstream of

the vapBC-1 locus in strain R2866 that included coding sequence for

the first seven amino acids of vapB-1 was amplified by PCR with the

primers BC1403for and BC1403rev, which included engineered

EcoRI and BamHI sites, respectively (Table 2). This fragment was

then ligated in-frame with a promoterless lacZ reporter gene in the

vector pMC1403 [22], creating pDD693. To express this promoter

fusion in NTHi, pDD693 was used as the template for PCR with the

primers 1403Xbafor and 1403Xbarev. The amplicon was cut with

XbaI and ligated to the compatible ends of the NheI-cut broad host-

range conjugal plasmid pDD514 [23], resulting in pDD727. This

plasmid was then conjugated into strain R2866 and the deletion

mutants, and promoter activity was measured via b-galactosidase

activity assays performed at least three times in triplicate at time

zero (stationary phase) and every 30 minutes for the first 2 hours

following nutrient upshift. The algorithm for determining b-

galactosidase activity is: [OD4202(1.75*OD550)/t*v*OD600]*1000,

where t = time of development of the reaction in minutes,

v = volume of the sample in milliliters, and OD600 is the measure

of the culture density [24]. This equation allows normalization of

culture densities for comparison purposes.

DNase I protection analysis
A 153 bp substrate consisting of the vapB-1 translation initiation

region and upstream sequence from the 340 bp of R2866 vapBC-1

locus control region above was produced by PCR amplification of

pDD717 using high-fidelity Phusion FLASH DNA polymerase

and the forward EcoRIBCpromfor, 59- TTA GAA TTC GCT

CGA TGA TTG CGG-39 and reverse BC1403rev (see Table 2)

primers at equimolar concentration. To enable the detection of

DNase I products arising from the sense strand of the 153 bp

vapBC-1 substrate, the forward primer was 59-labeled with 32P

using T4 polynucleotide kinase (New England Biolabs) and 3000

Ci/mmol [c-32P]ATP (PerkinElmer). The length and purity of the

PCR product was confirmed by electrophoresis on a 1% agarose

gel in TAE buffer (40 mM Tris-acetate pH 8.3/2 mM EDTA).

All DNase I protection reactions contained 10 fmol/mL 32P-59-

labeled 153 bp substrate in total volume of 20 mL of DNase

reaction buffer (25 mM Tris-HCl pH 7.4/70 mM KCl/7 mM

Mg Cl2/3 mM CaCl2/1 mM EDTA/1 mM b-mercaptoethanol/

50 mg/mL BSA/7% glycerol) and were incubated at 25uC for

30 min after the addition of the Fis or Vap proteins for DNA

binding. Samples contained 20–800 fmol/mL protein as indicated

by the molar ratio of protein to DNA given in the figure legend.

For VapBC-1 reactions, VapBC-1 was reconstituted from VapB-1

and VapC-1 proteins at a 3:1 molar ratio by incubation for 20 min

at room temperature prior to addition to the samples. This VapB-

1 to VapC-1 ratio was shown in a previous study to fully inhibit

VapC-1 ribonuclease activity, suggesting that all VapC-1 mole-

cules were sequestered in VapBC-1 complexes [10]. Therefore,

the molar concentration of VapBC-1 complexes in the reconsti-

tuted system was estimated as the concentration of VapC-1, since

the complexes could not be directly measured. Following the

binding incubation, 0.02 U DNase I (New England Biolabs) was

added, and the 25uC incubation continued for 2 min. Reactions

were quenched with 75 mL of DNase I stop solution (90%

ethanol/220 mM sodium acetate/70 ng/mL yeast tRNA), mixed,

and placed immediately in a dry ice/ethanol bath for 30 min. The

nucleic acid was precipitated by centrifugation at 130006 g for

30 min at 4uC, the pellets were washed with cold 70% ethanol,

then dried. The pellets were resuspended in 95% formamide/

0.01% bromophenol blue/0.01% xylene cyanol and resolved on a

5% denaturing 19:1 polyacrylamide gel in TBE (89 mM Tris-

borate/1 mM EDTA). DNase I fragments of the 32P-59-labeled

strand were detected using a GE Healthcare Storm 845

phosphorimaging system.

Electrophoretic mobility shift assays
A set of 32P-59-labeled, 50 bp substrates were prepared for

analysis of protein interaction with the vapBC-1 locus control

region. Complementary single-stranded oligonucleotides contain-

ing vapB-1 translation initiation region (TIR) sequence or an

upstream (US) sequence, shown to lack DNase I protection sites

for Fis and the VapBC-1 complex, were obtained from Eurofins

MWG Operon (Huntsville, AL). The sense strand of each 50 bp

sequence, shown in Table 3, was 32P labeled, as described above,

and annealed at a 1:1.2 molar ratio with the unlabeled,

complementary oligonucleotide by heating at 90uC for 3 min

and cooling slowly to 4uC.

For DNA binding reactions, all samples contained 1 fmol/mL
32P-labeled 50 bp substrate in total volume of 10 mL of EMSA

reaction buffer (20 mM HEPES pH 7.5/100 mM NaCl/0.1 mM

EDTA/1 mM dithiothreitol/50 mg/mL BSA/5% glycerol). Pro-

teins were added at the protein:DNA ratios indicated in the figure

legends and incubated at 25uC for 30 min. VapBC-1 was

reconstituted in a 3:1 VapB-1 to VapC-1 molar ratio as described

above. For the VapB-1 titration, VapC-1 was incubated with

substrate at 25uC for 20 min, VapB-1 was added, and incubation

was continued for 20 min prior to gel loading. Immediately

Regulation of the NTHi vapBC-1 TA Locus
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following addition of 2.5 mL 50% glycerol buffer (50% glycerol/

10 mM Tris-HCl pH 7.4/0.01% bromophenol blue/0.01% xylene

cyanol) samples were loaded onto an 18 cm616 cm61.5 mm 5%

native 29:1 polyacrylamide gel containing 1% glycerol and 0.56
TBE buffer (44 mM Tris-borate/0.5 mM EDTA) that had been

pre-electrophoresed for 30 min in 0.56TBE/1% glycerol at 4uC.

DNA species were resolved by electrophoresis at 20 mA for 45–

55 min at 4uC and detected by phosphorimaging as above.

Results

Fis is subject to growth-phase regulation in NTHi
If Fis functions as an activator of vapBC-1 expression, the

cellular levels of fis transcript should correlate with growth phase

increases in mRNA expression from the vapBC-1 promoter.

Although the regulation of Fis has been studied in other

organisms, no data was available for the NTHi Fis. Therefore,

quantitative real time-PCR was conducted to determine whether

transcription of fis mRNA was induced upon nutrient upshift of

NTHi. Using the gyrA gene as an endogenous control, relative

expression of fis was examined at zero, 10, 30, 60, and

120 minutes following stationary phase culture dilution into fresh

sBHI media (nutrient upshift) (Fig. 1). A dramatic increase in fis

mRNA levels following nutrient upshift was observed. At ten

minutes, fis expression was more than 10-fold that of the stationary

phase culture, with a decrease at 120 minutes post-dilution,

corresponding to the onset of exponential phase growth in NTHi.

These results for NTHi fis expression were consistent with the

pattern of growth phase regulation previously established for Fis in

E. coli [11].

Fis enhances gene expression from the vapBC-1 locus
control region upon nutrient upshift in vivo

To determine the effect of Fis and VapBC-1 proteins on

vapBC-1 expression, NTHi DvapBC-1 and Dfis mutants were

constructed, along with a DvapBC-1 Dfis double mutant. The

broad host-range plasmid pDD727, containing the vapBC-1

promoter::lacZ fusion, was then conjugated into each of the wild

type parent, DvapBC-1, Dfis, and Dfis DvapBC-1 NTHi strains.

Although designated the ‘‘vapBC-1 promoter’’ for ease of

reference, the pDD727 construct contains both the promoter

of R2866 vapBC-1 and the translation initiation region (TIR) of

vapB-1, cloned as described above. Therefore, this protocol

analyzes the genetic effects of Fis and Vap proteins on both the

transcription and translation of the TA operon. Expression of

lacZ from the vapBC-1 promoter was monitored by b-galacto-

sidase activity assays every 30 minutes for the first two hours

following nutrient upshift (Fig. 2). The vapBC-1 mutant expresses

the activator Fis upon nutrient upshift, but not the VapBC-1

repressor complex, therefore transcription induction was the

highest in this strain of the four strains analyzed. The wild type

strain has both Fis and the VapBC-1 repressor complex, which

in combination led to a regulated and lower expression of the

vapBC-1 operon. The Fis deletion strain has only the VapBC-1

repressor present, and resulted in the lowest transcription level.

Finally, the Fis and VapBC-1 double deletion mutant has

neither the activator (Fis) nor the repressor (VapBC-1), which

led to unregulated constitutive transcriptional activity.

The presence of Fis in either the wild type or the DvapBC-1

strain activated lacZ expression from the vapBC-1 promoter upon

nutrient upshift. The highest level of b-galactosidase activity was

Table 3. Gel shift substrates.a

50TIR 59-AAT GAT TAG TAT ATA CTT ATT AAA TAC
ATA GTA TAT ACG AGA GGG TAA AT-39

TG50TIR 59-AAT GAT TAG TAT ATA CTT ATT AAA TAC
ATA GTA GAT ACG AGA GGG TAA AT-39

GC50TIR 59-AAT GAT TAC TAT ATA CTT ATT AAA TAC
ATA GTA TAT ACG AGA GGG TAA AT-39

2M50TIR 59-AAT GAT TAC TAT ATA CTT ATT AAA TAC
ATA GTA GAT ACG AGA GGG TAA AT-39

50US 59-AAC AAC GGT AAT TTG ATC TTC TTA CTT
GCA TAC AGC AAT TGA AAT GAT TA-39

aSense strand sequence of the 50 bp substrate shown with substitutions
underlined.
doi:10.1371/journal.pone.0032199.t003

Figure 1. Expression of NTHi fis following nutrient upshift. Quantitative real-time PCR was performed for fis mRNA following nutrient upshift
of NTHi wild type strain R2866. The zero time point is fis expression in the stationary phase culture prior to dilution into fresh media, while samples at
10, 30, 60, and 120 minutes indicate fis mRNA levels after nutrient upshift. Each time point included three biological replicates and three technical
replicates. Error bars are standard deviations.
doi:10.1371/journal.pone.0032199.g001

Regulation of the NTHi vapBC-1 TA Locus

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32199



observed in the DvapBC-1 mutant (which contained a functional fis

gene), while activity was suppressed below wild-type levels in the

Dfis mutant (which contained a functional vapBC-1 operon),

supporting the hypothesis that Fis enhances vapBC-1 expression

during growth phase and the VapBC-1 protein complex

autorepresses the vapBC-1 locus control region. Interestingly, the

Dfis DvapBC-1 double mutant showed little relative change in b-

galactosidase activity upon nutrient upshift and maintained lacZ

expression during stationary phase, suggesting that vapBC-1

expression is constitutive in the absence of both VapBC-1 and

Fis and that the locus is subjected to little or no growth phase-

related transcriptional or translational regulation in the double

mutant. These data also argue against other regulatory proteins

interacting with the vapBC-1 locus control region under the

conditions of this assay.

Fis and Vap proteins bind distinct sequences in the
vapBC-1 locus control region

The R2866 NTHi vapB-1 TIR contains a putative Fis binding

site that matches 13 of 15 residues of the E. coli Fis high-affinity

consensus sequence [18,19]. An inverted repeat sequence, which

also may be utilized by regulatory proteins, overlaps a portion of

the Fis site (Fig. 3A). The NTHi Fis protein shares 81% identity

with the 97 amino acid E. coli Fis, but is divergent in the N-

terminal region, where a proline insertion results in a 98 amino

acid protein. Therefore, NTHi Fis is expected to display DNA

binding properties similar to the E. coli protein and may utilize the

putative site to mediate nutrient-dependent regulation of vapBC-1.

To analyze Fis and Vap protein interaction with the vapBC-1

locus control region, we performed DNase I protection assays with

a 153 bp substrate containing the vapB-1 TIR and upstream locus

control region sequence of R2866 vapBC-1 used in the pDD727

construct for the in vivo assays. A single DNase I protection

footprint for Fis was noted in the 80–100 base region on the 59-

labeled strand of the substrate (Fig. 3B). The footprint corresponds

to the location of the putative Fis site in the TIR. These findings

are consistent with a role for Fis in growth phase activation of

vapBC-1 expression.

The overexpression of wild-type VapC-1 is toxic to E. coli, and

the toxin must be co-expressed with inhibitory VapB-1, which can

co-purify in complexes with the toxin and limit the analysis of

VapC-1 properties. To facilitate in vitro studies of VapC-1 in the

absence of VapB-1, the ribonuclease function of the toxin was

eliminated by an active site aspartate to asparagine substitution,

forming D99N VapC-1. The purified D99N protein (henceforth

referred to as VapC-1) retained its ability to associate with purified

VapB-1, and VapBC-1 complexes were reconstituted by mixing of

the antitoxin and toxin at a 3:1 molar ratio. This preparation of

VapC-1 allowed for the investigation of its role in the DNA

binding activity of the TA pair.

DNase I protection footprints for VapBC-1 were observed in

nucleotide regions 82–87, 90–98, 102–109, and 112–117 in the

substrate, all of which lie within 50 bases of the ATG translation

start site for vapB-1, which is at position 125 from the labeled end

of the substrate (Fig. 3C). The footprints correspond to the

inverted repeat region of the substrate, and the 82–98 site overlaps

with the single Fis footprint, indicating that VapBC-1 and Fis may

compete for binding of the vapB-1 TIR in the regulation of vapBC-

1 expression. VapB-1 alone showed no DNA interaction when

present at high concentration, suggesting that it must be bound to

VapC-1 in order to interact with DNA (lane 7, Fig. 3C).

Interestingly, VapC-1 alone exhibited several sites of DNase I

protection on the substrate, with footprints overlapping those of

VapBC-1 but also appearing at unique sites within the 40–70

nucleotide region, upstream of the TIR (Fig. 3D). Unlike VapBC-

1, VapC-1 binding also induced DNase I hypersensitive sites,

suggesting that several VapC-1 molecules may interact with each

substrate molecule, leaving short stretches of DNA exposed to the

nuclease. Higher VapC-1 concentrations were required than in

the VapBC-1 samples to observe DNase I protection, likely

because VapC-1 occupied more sites than the TA complex. A

Maxam-Gilbert chemical digestion of the 153 bp substrate was

performed to obtain a banding pattern for strong cleavage at G

and weak cleavage at A [25] (lane G, Fig. 3D). The digest aided the

location of the VapC-1 within the substrate and revealed that the

substrate DNase I fragments migrated slightly faster in the gel than

Figure 2. Expression from the NTHi vapBC-1 promoter. b-galactosidase activity indicating lacZ expression under vapBC-1 promoter control in
wild type R2866 (diamonds), and R2866 mutants, Dfis (squares), DvapBC-1 (crosses), and Dfis DvapBC-1 (triangles), was measured every 30 minutes for
2 hours after nutrient upshift. The zero time point indicates expression in the stationary phase culture prior to dilution into fresh media. Each data
point is the average of three independent assays performed in triplicate. Error bars are standard deviations.
doi:10.1371/journal.pone.0032199.g002
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the corresponding marker fragments (comparing lanes M and G

where asterisks indicate substrate positions 48, 68, 79, 84, 106, and

114). These results indicate that VapC-1 possesses DNA binding

activity, and the toxin may be responsible for VapBC-1 interaction

with the TIR of vapB-1.

Fis, VapC-1 and VapBC-1 interact with the translation
initiation region of vapB-1

Since Fis, VapBC-1 and VapC-1 share footprints in the vapB-1

TIR of the vapBC-1 locus control region, 50 base pair DNA

substrates containing the TIR (50TIR), the TIR with a T to G

mutation in the inverted repeat (TG50TIR), the TIR with a G to

C mutation at the 27 position in the putative Fis site (GC50TIR),

or sequence upstream of the TIR that lacked Fis and VapBC-1

footprints (50US) were studied by gel shift analysis for Fis and Vap

protein binding (Table 2). Initial experiments were performed to

monitor the binding of Fis, VapBC-1 or individual Vap proteins

with the 50TIR substrate (Fig. 4A). Fis decreased the mobility of

50TIR in a concentration-dependent manner; however, the Fis-

bound DNA did not migrate as a distinct band, suggesting that the

Fis:DNA complexes were labile under the gel conditions (Fig. 4B).

The VapC-1 toxin and VapBC-1 complex bound stably to 50TIR,

and VapC-1:DNA complexes were shifted to a DNA mobility

corresponding to that of VapBC-1:DNA complexes when VapB-1

was added following VapC-1 pre-incubation with the substrate

(Fig. 4C). The VapB-1 antitoxin displayed no DNA binding

activity, likewise no DNA interaction was observed with a purified

VapB-1 protein lacking the N-terminal polyhistidine tag, confirm-

ing that the His tag was not interfering with VapB-1 association

with DNA (data not shown). These observations were consistent with

the DNase I protection seen for each protein, but the Fis findings

indicate that the polyhistidine tag on the purified Fis compromised

DNA binding or that Fis may not interact specifically with the

vapB-1 TIR.

NTHi Fis exhibits non-specific binding with the vapBC-1
locus control region

The presence of a single DNase I protection site for Fis

suggested that Fis binding to the vapB-1 TIR was specific;

however, the results above indicate a low affinity of Fis for this

sequence. To more carefully examine Fis interaction with the

vapBC-1 locus control region, purified Fis lacking the N-terminal

polyhistidine tag was prepared to study Fis binding to 50TIR, as

well as the GC50TIR and 50US substrates, to which Fis binding

was expected to be diminished or absent. While a polyhistidine tag

did not alter VapB-1 binding properties, the N-terminal His tag on

Fis appeared to be partly responsible for the instability of Fis

complexes with 50TIR observed in Fig. 4, as a distinct Fis:DNA

band was resolved for Fis without the tag (Fig. 5). Surprisingly, Fis

displayed similar affinity to all three substrates. These results

Figure 3. DNase I protection of the vapBC-1 locus control region by Fis and Vap proteins. (A) The 32P-labeled sense strand of 153 bp DNA
substrate containing vapB-1 TIR and upstream sequence in the vapBC-1 locus control region, is shown with numbers indicating the distance from the
59-labeled end. The putative Fis site (underline), inverted repeat regions (arrows), vapB-1 translation start ATG (italics), and G cleavage products (*)
seen in (D, lane G) are noted. On each gel shown, a 10 bp DNA ladder (lane M), 153 bp substrate without protein (lane 1), and DNase I digest of the
substrate (lane 2) are indicated. Gels show DNase I cleavage products from samples containing: (B) a Fis:DNA molar ratio of 2:1, 7.5:1, 15:1, or 30:1
(lanes 3–6), (C) a VapBC-1:DNA molar ratio of 2:1, 7.5:1, 15:1, or 30:1 (lanes 3–6) or 40:1 VapB-1:DNA (lane 7), and (D) VapC-1:DNA molar ratio of 40:1 or
80:1 (lanes 3 and 4). Vertical bars indicate the DNase I footprint from protein binding. Arrows (,) in panel D indicate DNase I hypersensitive sites. The
gels each represent one of two independent experiments.
doi:10.1371/journal.pone.0032199.g003
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indicate that, while Fis obviously upregulates vapBC-1 expression

upon nutrient upshift in vivo, the protein may do so indirectly

through its effects on DNA structure and not by high-affinity

binding to specific sequences in the locus control region.

VapBC-1 specifically interacts with the vapB-1 translation
initiation region

The VapBC-1 complex protected four areas of the vapB-1 TIR

from DNase I digestion. The footprints were within a 40-base

region that contained both the putative Fis site and an inverted

repeat. As the inverted repeat may serve as a recognition sequence

for the complex, a T to G transversion was introduced in one half

of the repeat, generating TG50TIR (Fig. 6A). The substitution

diminished binding of VapBC-1 by an average of 5 to 10-fold over

a concentration range of VapBC-1, implicating the inverted repeat

in VapBC-1 recognition and possible autoregulation of the vapBC-

1 operon (Fig. 6B). Interestingly, a band corresponding to VapC-

1:DNA complexes was observed for both 50TIR and TG50TIR at

the low concentrations of VapBC-1. The band shifted to the BC-

1:DNA mobility as the concentration of protein increased. This

observation suggests that VapBC-1 formation is not required prior

to DNA binding, and that VapB-1 can associate with VapC-

1:DNA complexes. A double-mutant TIR substrate, 2M50TIR,

was created by including a G to C transversion in the TG50TIR

substrate, which altered the upstream half of the inverted repeat.

Nucleotide changes in both sides of the inverted repeat completely

abolished VapBC-1 interaction with the TIR sequence (Fig. 6D).

VapC-1 binding to the 2M50TIR substrate was reduced only by

half compared to that observed with 50TIR (data not shown). This

result shows that optimal binding of VapBC-1 to the vapB-1 TIR

depends on the inverted repeat. VapBC-1 utilization of both sides

of the repeat suggests that the complex may bind as a dimer, and

the requirement for VapB-1 in conferring complex specificity

indicates that both VapB-1 and VapC-1 contribute to the DNA

binding surface of the complex.

To assess whether VapBC-1 binding was specific to the vapB-1

TIR, the 50US sequence, which contained no detectable VapBC-

1 DNase I footprints, was analyzed for VapBC-1 and VapC-1

binding competition with the 50TIR substrate. A titration of

unlabeled 50US substrate into samples with constant amounts of

VapBC-1 and 50TIR failed to diminish the BC-1:DNA band

(Fig. 7A). Indeed, no interaction of VapBC-1 with a labeled 50US

was observed up to a 300 to 1 molar ratio of protein to DNA (data

not shown). On the other hand, 50US did disrupt binding of

VapC-1 to the 50TIR substrate, indicating that VapC-1 alone

does not have high affinity for the vapB-1 TIR (Fig. 7B). These

results confirmed that VapBC-1 interacts specifically with the

vapB-1 TIR and that VapB-1 may target the complex to the

inverted repeat as a recognition site in suppressing vapBC-1

expression.

VapB-1 targets VapC-1 to the vapB-1 translation initiation
region

Both the DNase I results and initial experiments with 50TIR

indicate that VapC-1 alone binds the locus control region of

vapBC-1; however, the role of VapC-1 binding relative to that of

the VapBC-1 complex is unclear, especially since the toxin is

Figure 4. Fis, VapC-1 and VapBC-1 bind the vapB-1 TIR. (A) The
sequence of the 50TIR indicating the putative Fis binding site
(underline) and the inverted repeat regions (arrows). (B) Gel shift
products from samples containing 50TIR alone (lane 1) and 10, 30, 150
or 600 molar ratios of Fis to DNA. (C) Products from samples containing
50TIR alone (lane 1), VapC-1 (lane 2), VapC-1 followed by VapB-1 (lane 3),
VapB-1 (lane 4), or the reconstituted VapBC-1 complex (lane 5). VapB-1
and VapC-1 are present in a 150:1 molar ratio to 50TIR. In VapBC-1
samples, VapB-1 and VapC-1 are at a 3:1 molar ratio, with a VapC-1:DNA
molar ratio of 150:1. This ratio is reported since VapC-1 is the DNA
binding protein and the actual amount of VapBC-1 complexes cannot
be determined. The identity of each band is noted at the right of each
gel. Each gel represents one of two independent experiments.
doi:10.1371/journal.pone.0032199.g004

Figure 5. Fis interacts non-specifically with the vapB-1 TIR. Gel
shift products from a titration of Fis, lacking a polyhistidine tag, with (A)
50TIR, (B) GC50TIR or (C) 50US are shown. The gels show the products
of the following samples: DNA only (lane 1) and the addition of Fis at 10,
30, 90 or 300 molar ratios with the DNA substrate (lanes 2–5). The
identity of each band is noted at the right of each gel. Each gel
represents one of two independent experiments.
doi:10.1371/journal.pone.0032199.g005
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thought to act primarily as a ribonuclease that is inhibited by

VapB-1. Since VapB-1 has no DNA binding property of its own,

this raises the possibility that VapC-1 facilitates DNA binding by

the VapBC-1 complex, and that VapB-1 binds to VapC-1 for

DNA interaction. The observations above indicate that VapBC-1

formed in the cytosol may specifically bind the vapB-1 TIR or that

VapB-1 may bind to a VapC-1:TIR complex to enhance DNA

affinity. To elucidate whether VapB-1 interacts with VapC-1 on

DNA and how this interaction may affect VapBC-1 specificity,

VapB-1 was added to samples following VapC-1 preincubation

with either the 50TIR or 50US substrates (Fig. 8). VapC-1 alone

forms stable complexes with both substrates, revealing that VapC-

1 lacks specificity for the vapB-1 TIR. As observed in the previous

experiments, VapB-1 shifts the 50TIR substrate from the C-

1:DNA mobility to a slower BC-1:DNA complex band (Fig. 8A),

but interestingly, it causes the dissociation of VapC-1 from 50US

(Fig. 8B). VapB-1 alone did not associate with either substrate,

even at its highest concentration. These findings indicate that

VapB-1 alters the affinity of VapC-1 for DNA and confers

specificity for the vapB-1 TIR to the VapBC-1 complex.

Discussion

Bacteria often encounter microenvironments in the host that

include suboptimal conditions, such as nutrient limitation,

oxidative or antibiotic stress. Organisms that cannot respond to

these challenges in a constructive fashion may not survive until

conditions improve. One straightforward way for a nonsporulating

species to endure poor environments is to enter a reversible

bacteriostatic state. Since most drugs target essential biosynthetic

pathways that are not active during periods of dormancy, growth

arrest confers many benefits upon a bacterium, including very low

metabolic energy requirements as well as nonspecific antibiotic

tolerance. The key to utilizing such a state effectively, however, lies

in the ability of the organism to transition back to replication and

growth when stress is relieved. This novel mechanism of growth

modulation has been attributed to the action of TA loci, and the

vapBC locus has been shown to regulate growth arrest by inhibiting

translation in a number of bacteria [26–28]. Although vapBC loci

from various organisms share little nucleotide homology, many

show conservation of function in their ribonuclease activity

[7,29,30].

The current work focused on understanding the regulation of

the vapBC-1 TA locus in NTHi, a bacterium responsible for a

number of chronic mucosal infections in humans. Given the

growth phase regulation of its operon and its role in gene

regulation in E. coli, NTHi fis expression and its effect on

expression the vapBC-1 locus were studied. We have shown that

the NTHi fis gene, like its homolog in E. coli, is dramatically

upregulated by nutrient upshift, suggesting a role for NTHi Fis in

growth phase dependent gene regulation [11]. Through b-

galactosidase activity studies of vapBC-1 promoter activity in

DvapBC-1, Dfis, and Dfis DvapBC-1 NTHi strains, we have found

that fis is necessary for nutrient upshift activation of the vapBC-1

promoter driving lacZ and that the genomic vapBC-1 attenuates

promoter activity. In fact, the highest level of vapBC-1 promoter

Figure 6. VapBC-1 specifically interacts with the vapB-1 TIR. (A)
The sequence of the 50TIR is shown with arrows indicating the inverted
repeat regions and bases above and below the sequence indicating the
position of the G to C and T to G substitutions in the TG50TIR and
2M50TIR substrates (see Table 3). Gel shift products from a titration of
VapBC-1 with (B) 50TIR or (C) TG50TIR are shown. The lanes in panels B
and C contain the following samples: DNA only (lane 1), the addition of
VapBC-1 at a VapC-1:DNA ratio of 10, 25, 50, 100, 200, 400 or 800 molar
ratio with the DNA substrate (lanes 2–8), and VapC-1 only at an 800:1
protein to DNA ratio (lane 9). (D) A comparison of VapBC-1 binding at a
400:1 molar ratio with each DNA substrate (lanes 2, 4, and 6). Lanes 1, 3,
and 5 contain only DNA. The identity of each band is noted at the right
of each gel. Each gel represents one of three independent experiments.
doi:10.1371/journal.pone.0032199.g006

Figure 7. Competition binding of 50TIR and 50US by Vap
proteins. Gel shift products from addition of 50US substrate into
samples containing 50TIR substrate and either (A) VapBC-1 or (B) VapC-
1 at a 150:1 molar ratio of VapC-1 protein to DNA. VapB-1 and VapC-1
are at a 3:1 molar ratio in the VapBC-1 samples, but VapC-1:DNA molar
ratios are reported since VapC-1 is the DNA binding protein and the
actual amount of VapBC-1 complexes cannot be determined. The gels
show the products of the following samples: 50TIR without protein
(lane 1), protein with only 50TIR (lane 2), the addition of a 1:1, 5:1, 10:1
or 50:1 molar ratio of cold 50US:50TIR (lanes 3–6), and DNA only at 50:1
molar ratio of 50US:50TIR (lane 6). The identity of each band is noted at
the right of each gel. Each gel represents one of two independent
experiments.
doi:10.1371/journal.pone.0032199.g007

Regulation of the NTHi vapBC-1 TA Locus

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e32199



activity was observed in the DvapBC-1 strain. While a DNA

sequence homologous to the E. coli Fis consensus site was identified

in the translation initiation region (TIR) of vapB-1, Fis binding to

this sequence was not specific, indicating that Fis upregulates

vapBC-1 expression indirectly by altering DNA structure [13]. The

autoregulatory effects of VapBC-1 implied by the b-galactosidase

assay appear to be mediated by recognition of the vapBC-1 operon

by the TA pair. We demonstrated that the VapBC-1 complex

binds specifically to the vapB-1 TIR of the vapBC-1 locus control

region by utilizing an inverted repeat sequence. Interestingly, we

discovered that the VapC-1 toxin possesses DNA binding activity,

which appears to facilitate interaction of the VapBC-1 complex

with the vapBC-1 locus. VapC-1 can associate independently with

DNA, while VapB-1 does not bind DNA under any of our

experimental conditions. Some antitoxins do not bind individually

to their cognate promoters in the absence of their toxins. For

example, no DNA binding activity could be detected for two RelB-

like antitoxin proteins in M. tuberculosis [31]. We have previously

shown that VapC-1 is a ribonuclease [10], and its ability to

independently bind double-stranded nucleic acid suggests that it

may act upon RNA secondary structure. The finding that VapC-1

binds DNA is remarkable considering that many TA loci are

autoregulated by the antitoxin product, with the toxin acting as a

co-repressor [32]. Finally, the VapB-1 antitoxin conferred binding

specificity to VapC-1, as it caused VapC-1 to dissociate from sites

outside of the vapB-1 TIR but formed a stable complex with

VapC-1 on the vapB-1 TIR. Taken together, these results suggest

novel roles for the vapBC-1 TA pair in regulation of growth arrest

with Fis serving to indirectly enhance vapBC-1 expression after

growth stimulation.

Previously, the role of VapB-1 in NTHi survival was thought to

be the binding and inactivation of VapC-1 ribonuclease activity.

Figure 8. VapB-1 targets VapC-1 to the vapB-1 translation
initiation region. Gel shift products from a titration of VapB-1 into
samples following VapC-1 binding to (A) 50TIR or (B) 50US at a 100:1
molar ratio of protein to DNA. The gels show the products of the
following samples: VapC-1 and DNA without VapB-1 (lane 1), the
addition of Vap B-1 at a 50, 100, 200 or 300 molar ratio with the DNA
substrate (lanes 2–5), and VapB-1 only at a 300:1 protein to DNA ratio
(lane 6). The identity of each band is noted at the right of each gel. Each
gel represents one of two independent experiments.
doi:10.1371/journal.pone.0032199.g008

Figure 9. Model for the regulation of the vapBC-1 locus. (A) During colonization under favourable conditions, the VapBC-1 complex binds to
and autorepresses TA operon transcription. (B) Stress induces Lon and Clp proteases that degrade VapB-1, releasing active VapC-1 toxin. (C) The
ribonuclease activity of VapC-1 facilitates a state of bacteriostasis, resulting in nonspecific antibiotic tolerance. (D) Upon improved conditions, Fis
activates vapBC-1 operon transcription, displacing any bound VapC-1. Fis levels decrease in early exponential growth, allowing the VapBC-1 complex
to bind and restore transcriptional equilibrium.
doi:10.1371/journal.pone.0032199.g009

Regulation of the NTHi vapBC-1 TA Locus

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e32199



However, our findings suggest a new paradigm for TA locus

autoregulation and for antitoxin activity in bacterial survival of

nutrient stress (Fig. 9). In NTHi, Fis appears to stimulate vapBC-1

expression on resumption of growth, as is observed for other

bacterial species. We have confirmed that VapBC-1 suppresses its

own operon when fis expression drops in early log phase growth

(Fig. 9A). However, VapBC-1 autoregulation of the TA operon is

facilitated through the DNA binding property of the VapC-1

toxin, with the antitoxin serving to target the TA complex to the

vapB-1 TIR. VapC-1 may associate with VapB-1 in the cytosol

prior to DNA interaction or bind to DNA alone, suggesting that

DNA binding by the toxin may also play a role in attenuating its

ribonuclease activity. When nutrient deprivation or environmental

stress arrests NTHi growth, VapB-1 would be degraded by Lon

and Clp proteases, freeing VapC-1 from VapBC-1 complexes and

releasing the inhibition on the VapC-1 ribonuclease (Fig. 9B) [33].

The toxin could remain on the vapB-1 TIR or dissociate to

degrade the cellular RNA pool to inhibit translation (Fig. 9C).

Since the VapC-1 interaction with vapB-1 TIR appears less stable

in the absence of VapB-1, it may be readily displaced by Fis-

induced structural changes in the promoter when conditions favor

the resumption of NTHi growth (Fig. 9D). This model is consistent

with another study that demonstrated reversible growth inhibition

in the absence of the VapB antitoxin when the transcription of the

VapC toxin was first induced, then subsequently blocked, in a M.

smegmatis strain containing a deletion in its single vapBC homologue

[28]. Indeed, if this model serves to explain vapBC-1 regulation in

NTHi, drugs that stabilize the interaction of VapB-1 and VapC-1

or inhibit the ribonuclease function of VapC-1 should provide a

new and effective approach for the treatment of chronic NTHi

infections.
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Biol 226: 209–226.

21. Mason KM, Munson Jr. RS, Bakaletz LO (2003) Nontypeable Haemophilus

influenzae gene expression induced in vivo in a chinchilla model of otitis media.

Infect Immun 71: 3454–3462.
22. Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an

enzymatically active beta-galactosidase segment to amino-terminal fragments of
exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning

of translational initiation signals. J Bacteriol 143: 971–980.

23. Daines DA, Smith AL (2001) Design and construction of a Haemophilus influenzae

conjugal expression system. Gene 281: 95–102.

24. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor
Laboratory Press: Cold Spring Harbor.

25. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl

Acad Sci U S A 74: 560–564.
26. Winther KS, Gerdes K (2009) Ectopic production of VapCs from Enterobacteria

inhibits translation and trans-activates YoeB mRNA interferase. Mol Microbiol
72: 918–930.

27. Buts L, Lah J, Dao-Thi M-H, Wyns L, Loris M (2005) Toxin-antitoxin modules

as bacterial metabolic stress managers. TIBS 30: 672–679.
28. Robson J, McKenzie JL, Cursons R, Cook GM, Arcus VL (2009) The vapBC

operon from Mycobacterium smegmatis is an autoregulated toxin-antitoxin module
that controls growth via inhibition of translation. J Mol Biol.

29. Ahidjo BA, Kuhnert D, McKenzie JL, Machowski EE, Gordhan BG, et al.
(2011) VapC toxins from Mycobacterium tuberculosis are ribonucleases that

differentially inhibit growth and are neutralized by cognate VapB antitoxins.

PLOS One 6: e21738.
30. Miallau L, Faller M, Chiang J, Arbing M, Guo F, et al. (2009) Structure and

proposed activity of a member of the VapBC family of toxin-antitoxin systems:
VapBC-5 from Mycobacterium tuberculosis. J Biol Chem 284: 276–283.

31. Yang M, Gao C, Wang Y, Zhang H, He ZG (2010) Characterization of the

interaction and cross-regulation of three Mycobacterium tuberculosis RelBE
modules. PLOS One 5: e10672.

32. Bailey SES, Hayes F (2009) Influence of operator site geometry on
transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol

191: 762–772.
33. Gronlund H, Gerdes K (1999) Toxin-antitoxin systems homologous with relBE

of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J Mol Biol 285:

1401–1415.

Regulation of the NTHi vapBC-1 TA Locus

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e32199


