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Background. The expression pattern of transcription factors (TFs) can be used to develop potential prognostic biomarkers for
cancer. In this study, we aimed to identify and validate a TF signature for predicting disease-free survival (DFS) of breast cancer
(BRCA) patients. Methods. Lasso and the Cox regression analyses were applied to construct a TF signature based on a gene
expression dataset from TCGA. The prognosis value of the TF signature was investigated in the TCGA database, and its
reliability was further validated in 3 independent datasets from Gene Expression Omnibus (GEO). The prognosis performance
of the TF signature was compared with 4 previously published gene signatures. To investigate the association between the TF
signature and hallmarks of cancer, Gene Set Enrichment Analysis (GSEA) was carried out. The correlations of the TF signature
and the levels of immune infiltration were also investigated. Results. An 11-TF prognostic signature was constructed with good
survival prediction performance for BRCA patients. By using the risk score model based on the 11-TF signature, BRCA patients
were stratified into low- and high-risk groups and showed good and poor disease-free survival (DFS), respectively. The risk
score was an independent prediction indicator when adjusting for other clinicopathological factors. Furthermore, the 11-TF
signature had a better survival prediction performance compared to 4 previously published gene signatures. Moreover, the risk
score was a cancer hallmark. Finally, a high-risk score was associated with higher infiltration of M0 and M2 macrophages and
was associated with a lower infiltration of resting memory CD4+ T cells and CD8+ T cells. Conclusion. The findings in this study
identified and validated a novel prognostic TF signature, which is an independent biomarker for the prediction of DFS in BRCA
patients.

1. Introduction

Breast cancer (BRCA) is one of the leading causes of death
from cancer in women and represents a heterogeneous group
of neoplasms originating from the epithelial cells lining the
milk ducts [1, 2]. Traditionally, tumor size; status of nodal
metastasis; and status of the estrogen receptor (ER), proges-
terone receptor (PR), and HER2 were taken as useful prog-
nostic biomarkers for BRCA in the clinic [3–5]. However,
these prognostic biomarkers are still limited in accurately
predicting survival due to the genetic heterogeneity of BRCA
patients [6]. Therefore, establishing an accurate and robust
signature to guide prognostic stratification for BRCA is of
considerable importance.

Transcription factors (TFs) are DNA-binding proteins
that bind to the promoter sequences of genes and subse-
quently regulate gene expression [7]. Previous studies have
demonstrated that TFs are involved in several key cellular
processes, such as cell growth, differentiation, proliferation,
and cell death [8–10]. TFs are often aberrantly expressed in
patients with BRCA, and the association between the expres-
sion of TFs and patient survival has been demonstrated in
BRCA [11]. Nevertheless, the expression pattern and prog-
nostic ability of TFs in BRCA were investigated only in a
few studies.

In the present study, we identified several survival-related
TFs and developed an 11-TF signature for the prediction of
the disease-free survival (DFS) of BRCA patients by analyzing
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the gene expression and the corresponding clinical data of
BRCA patients from The Cancer Genome Atlas (TCGA).
The prognosis performance of the TF signature was validated
in 3 independent datasets from Gene Expression Omnibus
(GEO) and compared with 4 previously published gene sig-
natures. In addition, the association between the risk score
based on the 11-TF signature and cancer hallmarks, and
immune cell infiltration was investigated.

2. Materials and Methods

All data analyses were performed using R software (http://
www.r-project.org/version 3.5.1). A flowchart of the study
process is shown in Figure 1.

2.1. Data Collection. In 2018, Lambert et al. published a com-
pelling review covering ≥1,600 likely human TFs underlying
human physiology and disease [7]. In this study, we collected
1639 TFs from the literature for further exploration. Gene
expression data from BRCA patients were downloaded from
the TCGA through the University of California Santa Cruz
Xena Browser (UCSC Xena, http://xena.ucsc.edu/) [12].
The overlap between TFs in the TCGA and the 1639 TFs
were extracted, and 1554 TFs were obtained for differential
expression analysis in the TCGA cohort (114 paired normal
and tumor samples).

A total of 950 patients with corresponding genomic data
(read counts) and clinical information including DFS data
were recruited from the TCGA database, which served as
training sets. Gene expression profiles and corresponding
clinical information of BRCA patients were selected from
the online public Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database, including three inde-
pendent datasets with accession numbers GSE20685 [13],
GSE21653 [14, 15], and GSE42568 [16]. GSE20685 consisted
of 327 BRCA cases, GSE21653 was composed 266 BRCA
patients, and GSE42568 contained 121 samples (104 BRCA
patients and 17 normal controls, Table 1). A total of 697
tumor samples were generated using the same chip platform
(GPL570 Affymetrix Human Genome U133 Plus 2.0 Array),
and these datasets served as validation sets.

2.2. Tumor Samples. Tumor samples and matched adjacent
normal tissues were collected from 20 BRCA patients at the
Third Hospital of Jilin University (Jilin, China), between Jan-
uary 2020 and November 2020. Oral consent was obtained
from all patients. All experiments were conducted according
to the ethics approval from the Ethics Committee of The
Third Hospital of Jilin University (Jilin, China). All samples
were anonymized before analysis to guarantee the protection
of privacy.

2.3. Identification of Differentially Expressed TFs. The Limma
package was used to identify differentially expressed TFs
between the 114 pairs of BRCA and normal control sam-
ples [17]. Differentially expressed TFs were detected with
the cutoff criteria of ∣log2fold change ðFCÞ ∣ >1 and adjusted
P values ≤ 0.05. All P values were adjusted using the Ben-
jamini and Hochberg method to control false discovery
rates (FDR) [18]. Volcano plots were created based on the

ggplot2 in R package (version 3.2.0, https://cran.r-project.
org/web/packages/ggplot2/index.html) [19]. Hierarchical
cluster analysis on the expression of differential TFs was per-
formed using the pheatmap package (version 1.0.12, https://
cran.r-project.org/web/packages/pheatmap/index.html) [20].

2.4. Construction of the Prognostic TF Signature. To deter-
mine prognostic TF candidates, univariate regression analysis
was performed to assess the correlation between differentially
expressed TFs and DFS in the BRCA cohort. Only TFs with
the Cox P < 0:05 and log-rank P < 0:05were deemed as corre-
lating to survival. Least Absolute Shrinkage and Selection
Operator (Lasso) regression models have considerable advan-
tages in terms of sensitivity and specificity, and their coeffi-
cients can be used to determine true regulatory efficacies in
tissues [21]. In this study, Lasso regression analysis was
employed to determine whether the candidates were efficient
variables for DFS, and those with coefficients = 0 were elimi-
nated. Signature-based prognostic models were used to com-
pute a risk score for each patient using

Risk score = 〠
n

i=1
Ei ∗ βi, ð1Þ

where n is the number of selected genes, Ei represents the
expression of each gene, and i and βi represent the coefficient
of gene i. Of note, the average risk score was defined as the cut-
off criteria to classify samples into the high-risk (scores ≥
median values) and low-risk (scores ≤median values) groups.

For further validation of the prognostic performance of
the TF signature, the AUC of time-dependent receiver oper-
ating characteristic (ROC) curves was assessed [22]. Defining
points were set as 1-, 2-, 3-, 4-, 5-, and 10-year time-
dependent ROC curves employed to assess the predictive
value of the risk score for time-dependent outcomes [22]. A
higher AUC indicated a higher sensitivity.

2.5. Gene Set Enrichment Analysis (GSEA) of the TF
Signatures and Cancer Hallmarks. Cancer hallmarks summa-
rize the relevant information from the datasets, thereby
reducing both variation and redundancy. This provides more
refined and concise inputs for GSEA analysis [23]. In total, 50
hallmark gene sets were recruited from the molecular signa-
ture database (MSigDB, http://software.broadinstitute.org/
gsea/msigdb), which were imported into the GSEA (http://
software.broadinstitute.org/gsea/index.jsp).

2.6. Quantitative Real-Time PCR (qRT-PCR). To validate the
mRNA expression levels of the TFs between tumor and nor-
mal breast tissue samples from the TCGA dataset, mRNA
expression levels of these TFs were measured by qRT-PCR
in collected fresh frozen tumor tissue samples. Subsequently,
qRT-PCR was implemented on RNA collected from cancer
and normal lysates. In brief, total RNA was separated by
means of FastPure Cell/Tissue Total RNA Isolation Kit V2
(Vazyme Biotech Co., Ltd., Nanjing, China) based on the
manufacturer’s guidelines. Next, RNA was transcribed to
cDNA using a HiScript II 1st Strand cDNA Synthesis Kit.
All reactions were implemented using an AceQ Universal
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SYBR qPCRMaster Mix (Vazyme Biotech Co., Ltd., Nanjing,
China) on a QuantStudio™ 5 Real-Time PCR System (ABI,
Life Technologies, Thermo Fisher Scientific, Waltham, MA,
USA). The fold change in expression was computed as the
delta-delta threshold cycle (ΔΔCt) after normalization to an
internal reference. The primer pairs for qRT-PCR are shown
in Table S1.

2.7. Deconvolution of the Infiltrated Immune Cells in the
Tumor Microenvironment. Cell type Identification By Esti-
mating Relative Subsets Of RNA Transcripts (CIBERSORT)
is an algorithm that is used to characterize the cell composi-
tion of complex tissues based on gene expression profiles
[24]. In the present study, the CIBERSORT method was
applied to investigate the immune cell infiltration level of
tumor samples from the TCGA database.

2.8. Statistical Analysis. Survival estimates were performed
using the Kaplan-Meier method [25]. The DFS was defined
as the time between diagnosis and disease recurrence. Statis-
tical differences between survival times were assessed using
log-rank tests [26]. Univariate and multivariate regression
analyses were performed using the Cox proportional hazards
model [27]. P ≤ 0:05 was considered statistically significant.

3. Results

3.1. Identification of a Prognostic TF Signature. In this study,
a total of 287 differentially expressed TFs were identified
between BRCA and normal controls under the threshold of
∣log2FC ∣ >1 and P < 0:05. Of the 287 TFs, 85 were upregu-
lated and 202 were downregulated. Distribution of the differ-
entially expressed TFs was depicted using volcano plots in
which the log2 ðFCÞ was the abscissa and the –log10FDR
was the ordinate (Figure 2(a)). Heatmap visualization of
these differentially expressed TFs is presented in Figure 2(b)
and shows that BRCA (Tumor) and normal controls (Nor-
mal) could be well separated by these TFs (Figure 2(b)).

Univariate regression analysis on the DFS led to the
extraction of 12 survival-associated TFs as candidate prog-
nostic signatures, including E2F2, EGR3, EMX1, FOXD1,
FOXJ1, NKX6-1, NR3C2, PAX7, STAT4, MYBL2, ZNF552,
and MSX1. As shown in Figure 2(c), higher expression of
E2F2, FOXD1, MSX1, MYBL2, NKX6-1, and PAX7 was
associated with a poorer DFS, while elevated expression of
EGR3, EMX1, FOXJ1, NR3C2, STAT4, and ZNF552 was
associated with improved DFS. To identify a prognostic
TF signature, Lasso regression analysis was performed for
the 12 prognosis-associated TFs in the TCGA datasets
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Figure 1: Flow chart of the study.
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(Figure 2(d)). As shown in Figure 2(e), 11 TFs were selected
to construct the prognostic TF signature, while MYBL2 with
the regression coefficient of 0 was removed. General infor-
mation of the 11 TFs is shown in Table 2. Spearman’s cor-
relation analysis suggested that expression of the identified
TFs that composed the TF signature showed little to no cor-
relation, thereby indicating an independent prediction
power of each TF (Figure 2(f)).

3.2. The Risk Score Based on the 11 TF Signatures Predicts the
Survival of BRCA Patients. We next analyzed the expression
pattern of the 11 TFs in the TCGA database. Compared to
normal samples, the expression of E2F2, FOXJ1, EMX1,
PAX7, NKX6-1, FOXD1, and ZNF552 was significantly

higher (P < 0:05) and the expression of MSX1, STAT4,
NR3C2, and EGR3 was significantly lower in tumor samples
(all P < 0:05) (Figure 3(a)). Consistent with these results,
qRT-PCR confirmed that the mRNA expression level of these
TFs showed similar trends to their expression pattern in the
TCGA database (Figure 3(b)). Subsequently, a risk score
model was constructed and used to predict the prognosis of
BRCA patients. According to the median risk score, BRCA
patients were divided into low-risk and high-risk groups
(Figure 3(c)). Patients with high-risk scores were more likely
to relapse compared to patients with low-risk scores
(Figure 3(c)). Hierarchical cluster performance showed that
the 11 prognostic TFs were well classified between low-risk
and high-risk groups (Figure 3(d)).

Table 1: The Cox regression analysis of the association between clinicopathological factors (including risk scores) and the disease-free
survival of BRCA patients.

Variables Group Patients (N)
Univariate analysis

Patients (N)
Multivariate analysis

HR (95% CI) P HR (95% CI) P

TCGA

Risk score Low/high 475/475 4.18 (2.50-6.97) 4:37E − 08 418/411 4.40 (2.31-8.39) 6:62E − 06
Age ≤50/>50 290/660 0.67 (0.43-1.03) 6:59E − 02 251/578 0.66 (0.39-1.11) 1:14E − 01
Pathologic stage I-II/III-IV 723/216 3.34 (2.15-5.19) 8:81E − 08 645/184 4.28 (2.49-7.34) 1:31E − 07
ER status N/P 214/697 0.49 (0.31-0.77) 1:78E − 03 191/638 1.35 (0.32-5.61) 6:82E − 01
PR status N/P 304/604 0.46 (0.30-0.71) 5:34E − 04 274/555 0.56 (0.26-1.19) 1:29E − 01
HER2 status N/P 680/160 0.93 (0.47-1.82) 8:22E − 01 671/158 0.72 (0.30-1.69) 4:47E − 01
Triple negative No/yes 804/146 1.62 (0.97-2.71) 6:39E − 02 685/144 1.89 (0.43-8.35) 4:02E − 01
GSE20685

Risk score Low/high 164/163 2.41 (1.58-3.68) 4:16E − 05 164/158 2.22 (1.43-3.43) 3:55E − 04
Age ≤50/>50 209/118 0.74 (0.48-1.14) 1:71E − 01 206/116 0.79 (0.49-1.27) 3:36E − 01
T stage I-II/III-IV 101/188 1.93 (1.50-2.49) 3:27E − 07 100/186 1.22 (0.86-1.74) 2:57E − 01
N stage N0/N1-3 137/190 3.73 (2.26-6.15) 2:49E − 07 135/187 3.46 (1.99-6.01) 1:06E − 05
M stage M0/M1 319/8 21.96 (10.49-45.99) 2:59E − 16 315/7 5.78 (2.02-16.58) 1:10E − 03
Adjacent CT No/yes 54/268 2.07 (1.07-3.99) 3:05E − 02 54/268 1.34 (0.65-2.76) 4:26E − 01
GSE21653

Risk score Low/high 126/126 2.83 (1.77-4.53) 1:32E − 05 115/113 3.04 (1.80-5.11) 3:00E − 05
Age ≤50/>50 92/160 1.14 (0.72-1.79) 5:83E − 01 81/147 1.31 (0.79-2.17) 2:95E − 01
T stage I-II/III-IV 178/66 1.70 (1.06-2.73) 2:75E − 02 164/64 1.20 (0.72-2.01) 4:87E − 01
N stage N0/N1-3 116/133 1.54 (0.98-2.40) 5:84E − 02 105/123 1.61 (0.97-2.69) 6:81E − 02
ER status N/P 110/140 0.66 (0.43-1.02) 5:94E − 02 100/128 0.46 (0.17-1.26) 1:31E − 01
PR status N/P 124/126 0.84 (0.55-1.30) 4:35E − 01 114/114 1.43 (0.60-3.38) 4:15E − 01
HER2 status N/P 207/26 1.59 (0.84-3.03) 1:58E − 01 204/24 1.09 (0.42-2.85) 8:60E − 01
Triple negative No/yes 160/85 1.19 (0.74-1.89) 4:73E − 01 145/83 0.88 (0.26-2.90) 8:29E − 01
GSE42568

Risk score Low/high 52/52 3.68 (1.97-6.88) 4:55E − 05 51/50 4.18 (2.13-8.17) 2:99E − 05
Age ≤50/>50 27/77 0.66 (0.36-1.21) 1:79E − 01 25/76 0.72 (0.36-1.46) 3:63E − 01
N stage N0/N1-3 45/59 4.35 (2.16-8.76) 3:88E − 05 44/57 4.72 (2.24-9.95) 4:53E − 05
ER status N/P 34/67 0.44 (0.24-0.79) 6:35E − 03 34/67 0.40 (0.21-0.77) 5:77E − 03
HR: hazard ratio; CI: confidence interval; ER: estrogen receptor; PR: progesterone receptor; HER2/erbb2: epidermal growth factor receptor 2; Adjacent CT:
adjacent chemotherapy; N: negative; P: positive.
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Figure 2: Continued.
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Next, we analyzed the survival prediction power of the
risk score in the TCGA database, which was regarded as
the training set. As shown in Figure 4(a), patients in the
low-risk group had significantly longer DFS compared to
patients in the high-risk group (HR = 4:44, 95%CI = 2:64‐
7:48, the Cox P = 2:13e − 08, and log-rank P = 8:77e − 10).
Next, the predictive performance of the risk score was val-
idated in 3 GEO datasets and showed similar prediction
values (GSE20685: HR = 2:41, 95%CI = 1:58‐3:68, the Cox
P = 4:16e − 05, and log-rank P = 2:35e − 05; GSE21653:
HR = 2:83, 95%CI = 1:77‐4:53, the Cox P = 1:32e − 05,
and log-rank P = 5:45e − 06; and GSE42568: HR = 3:68,
95%CI = 1:97‐6:88, the Cox P = 4:55e − 05, and log-rank
P = 1:31e − 05).

To assess the sensitivity and specificity of the 11-TF
signature, time-dependent ROC curves for DFS predictions
were constructed (Figure 4(a)). Excluding the 1-year AUC
values in GSE20685 and GSE21653, all other AUC values
were ≥0.6. The 11-TF signature achieved AUC values for
5-year survival of 0.689, 0.647, 0.672, and 0.721 in TCGA,

GSE20685, GSE21653, and GSE42568, respectively. These
results suggested that the risk scores based on the 11-TF
signature were effective for the prediction of the DFS of
BRCA patients and had a robust predictive performance.

3.3. The 11-TF Signature Showed Superior Prediction
Performance Compared to Previously Published Prognostic
Signatures. In this study, our 11-TF signature was compared
with 4 previously published prognostic signature panels: the
9-TF signature reported by Chen et al. [28], the 12-lncRNA
signature by Zhou et al. [29], the 13-gene epigenetic signa-
ture by Bao et al. [30], and the 12-gene prognostic signature
by Mao et al. [31]. As shown in Figure 4(b), all patients in
the low-risk group had a longer DFS compared to patients
in the high-risk group (Chen et al.: log-rank P = 1:24e − 04;
Bao et al.: log-rank P = 1:24e − 04; Mao et al.: log-rank P =
3:4e − 03; and Zhou et al.: log-rank P = 1:52e − 03). When
compared to the 4 previously published gene signatures,
our 11-TF signature obtained a smaller log-rank P value.
Moreover, our 11-TF signature had the highest 1–10-year
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Figure 2: Identification of the prognostic 11-transcription factor (11-TF) signatures. (a) Volcano plots for differentially expressed TFs. (b)
Heatmaps for differentially expressed TFs. (c) Disease-free survival (DFS) curves for the 12 survival-correlated TFs in the high-risk and
low-risk groups. (d) Lasso regression analysis for the 12 TF candidates. (e) Coefficients obtained from the Lasso algorithm for the 12 TF
candidates. (f) Spearman correlation analysis of the prognostic 11-TF signatures for the prediction of DFS of breast cancer (BRCA). X:
P > 0:05. Color bars: Spearman’s coefficients (r).

Table 2: Details of the 11 transcription factors used to construct the prognostic signature.

Gene symbol Gene stable ID Gene type Chr Gene start (bp) Gene end (bp)

E2F2 ENSG00000007968 Protein coding 1 23506438 23531233

EGR3 ENSG00000179388 Protein coding 8 22687659 22693480

EMX1 ENSG00000135638 Protein coding 2 72916260 72936071

FOXD1 ENSG00000251493 Protein coding 5 73444827 73448777

FOXJ1 ENSG00000129654 Protein coding 17 76136333 76141245

NKX6-1 ENSG00000163623 Protein coding 4 84491987 84498450

MSX1 ENSG00000163132 Protein coding 4 4859665 4863936

NR3C2 ENSG00000151623 Protein coding 4 148078762 148444698

PAX7 ENSG00000009709 Protein coding 1 18630846 18748866

STAT4 ENSG00000138378 Protein coding 2 191029576 191151596

ZNF552 ENSG00000178935 Protein coding 19 57803841 57814913

Abbreviation: Chr=chromosome.
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AUC values. Accordingly, these findings highlighted the best
performance of our 11-TF signature.

3.4. The Risk Score Is an Independent Prognostic Factor.Here,
we firstly performed univariate regression analysis to investi-
gate the correlation between the clinical and pathological fac-
tors and the DFS of BRCA patients. As shown in Table 1, the
risk score, pathological stage, ER status, and PR status were
significantly correlated to the DFS of patients with BRCA in
the TCGA database; the risk score, T stage, N stage, M stage,
and adjacent CT were associated with the DFS of patients in
GSE20685; only risk scores and T stage were associated with
the DFS of BRCA patients in GSE21653; whereas risk scores,
N stage, and ER status were related to the DFS of patients in
GSE42568. Interestingly, we found that the risk score was
associated with DFS across the entire BRCA cohort. Subse-
quently, multivariate regression analysis was performed to
investigate which factors were independent prognostic fac-
tors. As shown in Table 1, only the risk score was an indepen-
dent prognostic factor across all datasets.

We further performed stratification analysis of patients
with clinicopathological variables, molecular subtype, and
the risk score. As shown in Figure 5(a), BRCA patients in
the low-risk group had longer survival times compared to
those in the high-risk groups for all stratified clinicopatho-
logical variable subgroups in each dataset. Specifically, com-
parison of all curves between high- and low-risk groups
suggested significant differences with log-rank P < 0:05 and
the Cox P < 0:05. Moreover, stratification analysis of molec-
ular subtypes demonstrated that high-risk patients showed
poor survival trends in all molecular subtypes (Figure 5(b)).
However, no differences were observed for DFS for normal,
and basal subtypes between high- and low-risk groups. Taken
together, these data suggested that the risk score was an inde-
pendent prognostic factor for the predictions of the DFS of
BRCA patients.

3.5. The Risk Score Is Associated with Immune Cell
Infiltration. Using the CIBERSORT method, we estimated

the abundance of 22 immune cell subtypes to investigate
the association between the risk score and immune cell
infiltration in the tumor microenvironment. As shown in
Figure 6, the fractions of M0 and M2 macrophages, resting
natural killer (NK) cells, regulatory T cells, and memory B
cells were significantly higher in the high-risk group, whereas
native B cells, resting mast cells, monocytes, resting memory
and native CD4+ T cells and CD8+ T cells, resting dendritic
cells, and M1 macrophages were remarkably higher in the
low-risk groups. Furthermore, the two immune cells with
the highest proportion in the high-risk group were M0 and
M2 macrophages. Two types of immune cells, including rest-
ing memory CD4+ T cells and CD8+ T cells had the highest
proportion in low-risk patients.

3.6. The Risk Score Is Associated with the Hallmarks of
Cancer. To investigate if the 11-TF signature was associated
with tumor biological processes, Gene Set Enrichment Anal-
ysis (GSEA) was performed. As shown in Figure 7, a total of 6
hallmark gene sets were enriched (P < 0:05). Four hallmarks
(including MYC_TARGETS_V1, MYC_TARGETS_V2,
GLYCOLYSIS, and DNA_REPAIR) were associated with
high-risk scores, suggesting that the activation of these bio-
logical processes may participate in BRCA progression. In
contrast, the other 2 hallmarks (ESTROGEN_RESPONSE_
EARLY and ESTROGEN_RESPONSE_LATE) were associ-
ated with low-risk scores, suggesting that their activation
inhibits tumor progression and improves survival in BRCA
patients.

4. Discussion

Because of the heterogeneous feature of BRCA, traditional
factors appear not to be sufficient for predicting the survival
of BRCA patients. Hence, the development of valuable bio-
markers for survival-specific prognosis is of utmost impor-
tance. In recent years, several studies have determined
multigene panels that might serve as prognosis indicators in
BRCA. For example, Chen et al. [28] used gene expression

PAX7
E2F2
FOXD1
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EMX1
ZNF552
STAT4
NR3C2
NKX6-1
MSX1
EGR3 –4

2
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–2

0
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Figure 3: TF expression levels, patient relapse status, and cluster performance. (a) Expression patterns of the 11 TF prognostic signatures
between BRCA patients (Tumor) and normal controls (Normal) in the TCGA database. (b) Experimental verification for mRNA
expression levels of the 11 TF signatures between BRCA patients (Tumor) and normal controls (Normal). (c) Relapse status of BRCA
patients in high-risk and low-risk groups. (d) The hierarchical cluster performance of the 11 prognostic TFs between high-risk and low-
risk groups.

8 Computational and Mathematical Methods in Medicine



data and clinical data from the TCGA and GEO databases to
identify a 9-TF signature, which may play important prog-
nostic roles in patients with BRCA. Sun et al. [32] analyzed

lncRNA expression profiles of BRCA patients from the
GEO database to identify a nine-lncRNA signature which
could be a valuable prognostic biomarker to predict the
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Figure 4: The Kaplan-Meier and receiver operating characteristic (ROC) curves of BRCA patients stratified by risk score. (a) The Kaplan-
Meier and ROC curves of BRCA patients stratified by risk score in training datasets (TCGA) and validation datasets (GSE20685,
GSE21653, and GSE42568). (b) The Kaplan-Meier curves and ROC curves of previously published prognostic signatures.
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metastatic risk in patients with BRCA. In another study, the
lncRNA expression profiles of BRCA patients were analyzed
to construct a 12-lncRNA signature to predict recurrence-
free survival [29]. In 2019, Bao et al. [30] established a 13-
gene epigenetic signature via combining mRNA expression
and DNA methylation datasets. A 12-gene prognostic signa-
ture was identified based on the combined independent
BRCA databases by means of gene coexpression network
analyses [31]. Significantly, all these studies focused on the
identification of prognostic signatures; however, they did
not consider immune infiltration analysis nor implement
qRT-PCR to verify the expression level of these signatures
using frozen tissue samples. In our study, in addition to
establishing and validating a prognostic model of an 11-TF
signature that was significant to predict DFS in BRCA
patients through integrating TF data, gene expression data-
set, and clinical information, immune infiltration analysis
was also performed to investigate the correlation of immune

cells and our TF signature. Moreover, we verified the expres-
sion level of TFs using qRT-PCR using frozen tissue samples.
Our findings showed that the risk score was an independent
prognostic factor to successfully classify tumor patients into
high-risk and low-risk groups with significant differences in
DFS. Thus, these results indicate the reproducibility and reli-
ability of the 11-TF signature for DFS predictions of BRCA.

The 11-TF prognostic model was comprised of E2F2,
EGR3, EMX1, FOXD1, FOXJ1, NKX6-1, NR3C2, PAX7,
STAT4, ZNF552, and MSX1. In a previous study, Chen
et al. reported that the E2F family of TFs collectively or indi-
vidually regulate cell proliferation in cancer [33]. Specifically,
E2Fs have prognostic value in BRCA, which is independent
of clinical parameters [34]. In a previous study, it was
reported that the activation of E2F2 is associated with the
resistance to antiestrogen treatment for ERα-positive BRCA
[35]. HER2-regulated E2F2 expression further impacted cell-
matrix adhesion, with potential consequences for metastatic
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Figure 5: The Kaplan-Meier and ROC curves of BRCA patients stratified by clinicopathological factors, molecular subtypes, and risk score.
(a) The Kaplan-Meier and ROC curves of BRCA patients stratified by clinicopathological factors and risk score. (b) The Kaplan-Meier and
ROC curves of BRCA patients stratified by molecular subtypes and risk score.
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colonization [36]. In addition, upregulated E2F2 acts as a
crucial intermediate in HER2-directed signaling circuits in
BRCA [37]. Malorni et al. showed that gene expression signa-
tures could be established based on the investigation of genes
correlating with E2F1 and E2F2 expression in BRCA within
the TCGA database [38]. Our results are consistent with
the findings in these studies, thereby further validating the
key functions of E2F2 in BRCA prognosis. EGR3 actively
participates in estrogen signaling [39]. Inoue et al. demon-
strated that EGR3 plays a critical role in the physiology of
normal and malignant mammary cells, through the induc-
tion of estrogen-responsive genes [40]. In this study, GSEA
revealed that hallmarks of the estrogen response (ESTRO-
GEN_RESPONSE_EARLY and ESTROGEN_RESPONSE_
LATE) were enriched in patients in low-risk groups. We
inferred that EGR3 was a suppressor of TFs through its abil-
ity to promote estrogen signaling during BRCA progression.
The FOX family of DNA-binding proteins regulates DNA
transcription and repair [41]. Interestingly, in this study,
two members of the FOX family (FOXD1 and FOXJ1) were
identified as prognostic signatures for DFS predictions in
BRCA patients. FOXD1 functions as an oncogene in lung,
breast, and brain cancers [42, 43] and is upregulated to pro-
mote breast cancer cell proliferation and chemoresistance by
inducing G1 to S transition [42]. FOXJ1 is hypermethylated
in BRCA cell lines and clinical tissue samples, revealing its
role as a putative tumor suppressor gene [44]. In addition,
DNA_REPAIR was a significant hallmark of cancer that
was enriched in high-risk groups, which is in accordance
with the functions of the FOX family, thereby verifying the
consistency of our studies.

Cancer is a complex multistage process involving genetic
and epigenetic changes that result in the activation of onco-
genic signaling and/or the inactivation of tumor suppressor
signals [45]. Cancer cells acquire a number of changes that
promote tumor growth and invasion [46]. MSigDB, origi-
nally developed for GSEA, remains one of the largest and
most popular repositories of gene datasets [47]. The GSEA
database focuses on the coordinated differential expression
of annotated groups of genes or gene sets and produces data
that can be more easily interpreted in terms of relevant bio-
logical processes [48]. We utilized GSEA to select significant
hallmarks of DFS predictions from MSigDB and the 11-TF
prognostic signature. MYC_TARGETS_V1, MYC_TAR-
GETS_V2, GLYCOLYSIS, and DNA_REPAIR were enriched
in the high-risk group, while ESTROGEN_RESPONSE_
EARLY and ESTROGEN_RESPONSE_LATE were signifi-
cantly enriched in low-risk groups. MYC promotes cell
cycle progression through the activation of Cdk4, Cdc25A,
E2F1, and E2F2 [49]. Furthermore, reduced proliferation
is driven by decreased MYC/E2F1 activity in enteroendo-
crine cells [50]. It had been suggested that high MYC
expression is associated with high GSEA scores for both
MYC hallmarks (MYC_TARGETS_V1 and MYC_TAR-
GETS_V2) [23]. In 2019, Yu et al. showed that MYC plays
a critical role in the aggressive proliferation-related pheno-
types exhibited by BRCA cells expressing ERα mutations
[51]. Thus, targeting MYC in combination with other onco-
genic pathways provides a promising therapeutic strategy
for BRCA [52]. In this study, the 11 TFs were combined
into a single panel, and its prognostic value in DFS in BRCA
was established.
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Figure 7: Gene Set Enrichment Analysis (GSEA) of hallmarks. (a) Four hallmarks were enriched in the high-risk group. (b) Two hallmarks
were enriched in the low-risk group.
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Recently, in several studies, it was suggested that tumor
infiltrating immune cells are correlated with the prognosis
of cancer patients [53, 54]. To further determine the relation-
ship between immune infiltrating cells and the TF signature,
CIBERSORT analysis was performed to reveal the composi-
tion of immune infiltrating cells. In the present study, high
infiltration of M2 macrophages was associated with a high-
risk score, whereas high infiltration of resting memory
CD4+ T cells and CD8+ T cells was associated with a low-
risk score. These results were consistent with the biological
function of these immune cells in cancer progression. In a
previous study, it was revealed that M2 macrophages play
important roles in enhancing tumor growth and metastasis
[55]. Furthermore, M2 macrophages have been reported to
be linked with unfavorable prognosis in triple-negative breast
cancer patients [56]. Resting memory CD4+ T cells and CD8+

T cells have been demonstrated to be correlated with the
increase of overall survival (OS) and DFS of BRCA [57].
Based on these results, we believe that the risk score of this
11-TF signature is reliable for predicting the prognosis of
BRCA patients.

In conclusion, we have identified and validated a prog-
nostic 11-TF signature for the prediction of DFS of patients
with BRCA. The 11-TF signature was an independent factor
and may serve as a complement prognostic factor for clinico-
pathological factors.
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