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Objective: Transcutaneous auricular vagus nerve stimulation (taVNS) is

e�ective for treatment-resistant depression (TRD). In the current study, we

observed the immediate modulating brain e�ect of taVNS in patients with TRD

using rest-state functional magnetic resonance imaging (rs-fMRI).

Method: Forty patients with TRD and forty healthy controls (HCs) were

recruited. Rs-fMRI was performed before and after 30min of taVNS at

baseline. The brain regions that presented significantly di�erent the Regional

Homogeneity (ReHo) between the TRD patients and HCs were selected

as the ROI to calculate the functional connectivity (FC) of full brain. The

correlations were estimated between the clinical scales’ score and the

functional brain changes.

Results: Following taVNS stimulation treatment, TRD patients showed

significantly reduced ReHo in the medial orbital frontal cortex (mOFC)

(F = 18.06, P < 0.0001), ANCOVA of the mOFC-Based FC images revealed a

significant interaction e�ect on the left inferior parietal gyrus (IPG) and left

superiormarginal gyrus (SMG) (F= 11.6615, P< 0.001,F= 16.7520, P< 0.0001).

Among these regions, the HAMD and HAMA scores and ReHo/FC changes

were not correlated.

Conclusion: This study applied rs-fMRI technology to examine the e�ect

of taVNS stimulation treatment on the brain activity of TRD. These results

suggest that the brain response of TRD patients to taVNS treatment may
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be associated with the functional modulation of cortical regions including the

medial orbital frontal cortex, the left inferior parietal gyrus, and the left superior

marginal regions. Changes in these neuroimaging indices may represent the

neural mechanisms underlying taVNS Immediate Stimulation treatment in TRD.

KEYWORDS

treatment-resistant depression, transcutaneous auricular vagus nerve stimulation,

rest-state functional magnetic resonance imaging (rs-fMRI), amplitude of low-

frequency fluctuations, regional homogeneity, functional connectivity, orbital frontal

cortex

Introduction

Major depressive disorder (MDD) is a common clinical

disorder of the psychiatric system, characterized by persistent

depressed mood, reduced interest and cognitive function,

anhedonia, and somatic disturbances (1). MDD contributes

significantly to the global disease burden, with up to one-third

being treatment-resistant patients (2). In clinical treatment,

about 35% of patients with depression exhibit poor efficacy

even after a complete course of treatment with two or

more antidepressants that possess different chemical structures;

this type of depression is categorized as treatment-resistant

depression (TRD) (3). In addition, the disability and fatality rates

of TRD patients are significantly higher than those of ordinary

depression patients (4). Serretti et al. (5) reported six most likely

risk factors for TRD, including long course of disease, slow

onset, comorbid anxiety, advanced age, episode severity, and

depressive characteristics. Therefore, TRD is a hot but difficult

research topic for psychiatrists at present.

TRD is a complex disorder for which the pathogenesis is not

fully understood. Studies have demonstrated TRD is associated

with functional abnormalities in brain neural circuits related

to emotional and cognition processing, self-representation, and

reward processing, these brain regions include themedial orbital

frontal cortex (mOFC), amygdala, inferior parietal gyrus (IPG),

and superior marginal gyrus (SMG) (6–9). It was reported

that anhedonia is associated with neurological dysfunctions in

the reward system (10). Additional studies (11–13) revealed

the reward loop nervous system carries emotional or cognitive

information and decision-making information in the prefrontal

cortex. The mOFC is a key part that mediates pain experience

and motivation to avoid pain.

TRD treatment is mainly based on drug therapy

combined with non-drug treatment. Most antidepressants

cause adverse reactions, such as cardiovascular disease and

metabolic syndrome (14). Non-drug treatments mainly

include psychotherapy, electroconvulsive therapy (ECT),

repetitive transcranial magnetic stimulation (rTMS), deep brain

stimulation (DBS), and vagus nerve stimulation (VNS). VNS

is an FDA-approved somatic treatment for treatment-resistant

depression (TRD) that can produce clinically significant

antidepressant effects (15). However, the application is limited

by the involvement of surgery and potential side effects. To

overcome the potential barriers to applying VNS, a non-invasive

transcutaneous vagus nerve stimulation (taVNS) method has

been developed. The rationale for using taVNS on the ear is

based on anatomical studies that suggest the ear is the only

place on the surface of the human body where there is afferent

vagus nerve distribution (16, 17). Thus, direct stimulation of the

afferent nerve fibers on the ear should produce an effect similar

to classic VNS in reducing depressive symptoms but without

the burden of surgical intervention (18, 19). Our previous

research group (20–22) discovered that taVNS is clinically

effective in treating TRD and further observed that taVNS has

a significant synergistic effect on TRD patients in maintaining

drug treatment. The taVNS therapeutic mechanism may be

related to the modulating brain default mode network (DMN),

reward network and salience network. However, the mechanism

of the immediate effect of taVNS in the treatment of TRD

remains unclear.

Resting-state functional magnetic resonance imaging

(rs-fMRI) is a neuroimaging technique based on blood

oxygenation level dependent (BOLD) levels to detect brain

activity patterns and is one of the main methods to study

the brain effects of acupuncture (23). Additionally, rs-fMRI

has been gradually applied in the field of bipolar disorder

(24), schizophrenia (25), autism (26), and other psychiatric

disorders. Also, rs-fMRI has been applied to study the

subtypes of depression (27–29). ReHo is used to assess the

level of coordination of neural activity in local brain regions

by calculating ReHo values, which indirectly reflect the

spontaneous activity of local neurons in time synchronization

(30). Functional connectivity (FC), which is a fMRI method for

observing the functional association between different brain

regions by analyzing the statistical correlation between the time

series of different brain regions (31), has also been used in major

depressive disorder research.

Materials and methods

Recruitment of participants

Forty adult patients aged between 18 and 70 years with a

Diagnostic and Statistical Manual of Mental Disorders-IV-Text

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.931838
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ma et al. 10.3389/fneur.2022.931838

FIGURE 1

(A) The electrodes were attached to the surface of cymba conchae. (B) The stimulating place of taVNS. rs-fMRI, rest-state functional Magnetic

Resonance Imaging; taVNS, Transcutaneous Auricular Vagus Nerve Stimulation (the red color areas).

Revision or 5 (DSM-IV-TR or 5) diagnosis of major depressive

disorder who had failed to respond to at least two different

antidepressants with adequate dosage and treatment duration

(i.e., fluoxetine ≥ 20 mg/day for ≥ 60 consecutive days) were

included in our study. Forty healthy controls (HCs) were

recruited and matched with patients in sex, age, and education.

The HCs had no lifetime history of major or minor psychiatric

disorders. In addition, the TRD patients and HCs did not

have major medical or neurological illnesses, or a history of

alcohol or substance abuse. All participants were right-handed.

Before the study, they were all informed of the study protocol

and volunteered to participate in the study. Participants with

fMRI contraindications and severe organic or mental diseases

were excluded.

Ethical review and registration

The present study was reviewed and approved by

the Ethics Committee of Guang’anmen Hospital, China

Academy of Chinese Medical sciences (No. 2017-021-SQ)

and registered at the Chinese Clinical Trial Registry

(No. ChiCTR-1800014277).

Transcutaneous auricular vagus nerve
stimulation

The electro-acupuncture stimulator (SDZ-IIB, Hwato brand,

manufactured in Su Zhou, China) was attached to the

bilateral cymba conchae through electrodes on the skin surface

(Figure 1). Parameters were set according to previous studies of

taVNS (32, 33): Dilatational wave of 4/20Hz and pulse width of

0.2ms ± 30%. The current intensity was adjusted according to

each patient s subjective feeling. Each taVNS session lasted for

30min. Before treatment, the patient’s ear armor was routinely

disinfected with 75% alcohol.

Clinical assessments

All participants accepted Hamilton Rating Scale for

Depression (HAMD) and Hamilton Anxiety Rating Scale

(HAMA) to estimate the mental status of all the participants.

Inclusion in the current study required patients to score >17,

and the HCs would be excluded with a total score of HAMD

or HAMA >7. The process of the current study is shown in

Figure 2. In addition, we screened all patients’ T2-weighted

and structural images to rule out most of the severe metabolic

or immune-related neuropsychiatric diseases, cerebrovascular

diseases, inflammatory diseases of the central never system, and

intracranial tumors.

Scan acquisition

Rest-state functional magnetic resonance imaging (rs-fMRI)

was performed before and after the first 30min taVNS session.

Participants were told to keep their eyes closed and not fall

asleep during the scan. The fMRI data were acquired by

Siemens 3.0T Skyra scanner (Siemens; Munich, Germany).

The scanning parameters were as follows. The BOLD gradient

Echo Planar Imaging (EPI) sequence was used in functional

images. Two hundred volumes lasted 6min and 10 s, repeat

time/echo time: 2,000/30ms, flip angle = 90◦, scanning field of

view: 224mm × 224mm, matrix: 64 × 64, number of layers:

32, layer thickness/spacing: 3.5/0.6mm. In a high-definition

structure image, three-dimensional magnetization was used to

prepare a fast gradient-echo sequence, repeat time/echo time:

2,530/2.98ms, flip angle: 7 degrees, field of view: 256mm
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FIGURE 2

fMRI for instant taVNS were measured before and after the first treatment on the two groups.

× 256mm, matrix: 64 × 64, and Layer thickness/spacing:

1.0/0mm. We obtained 192 images.

Image processing

fMRI data pre-processing

DPABI (http://rfmri.org/DPABI) software (34), an SPM-

based functional MRI pre-processing pipeline, was used for

data pre-processing. The pre-processing steps were as follows.

DICOM file was converted into NIFTI, and the first 10 time

points were removed. The remaining 190 time points were

slice-time corrected and realigned according to the Friston

24-parameter model. The nuisance signals, including linear

trend, head-motion, signals of cerebrospinal fluid, and white

matter, were regressed from the data (35). Then, the functional

images were co-registered to the T1-weighted structural images,

segmented through Voxel-BasedMorphometry (VBM). Derived

images were normalized to Montreal Neurological Institute

(MNI) space according to transformation parameters estimated

by VBM. All data used in this study satisfied the criteria of

spatial movement in any direction <1.5mm or degree. Subjects

demonstrated no significant group differences in head-motion

parameters. In this study, we failed to find significant differences

in FD between groups (F= 0.4939, P= 0.4843).

The limitations of the signal-to-noise ratio and disputes

in sampling and pre-processing strategies for fMRI data

in the existing voxel-based analysis studies are sometimes

contradictory. To better present the short-time intervention, we

employed ReHo and FC to reveal the reproductive results.

Regional homogeneity (ReHo) is calculated using voxel-

based Kendall’s coefficient of concordance (KCC) for the

time series of a given voxel with its nearest neighbors (24).

ReHo maps were calculated using the unsmoothed and filtered

(0.01–0.08Hz) images to remove physiological signals, such as

heartbeat and respiration. Then ReHo maps were taken to

mean ReHo maps by subtracting the mean voxel-wise ReHo

in the entire brain and standardized into Z-value (zReHo

Maps). Calculated zReHo maps were smoothed to MNI space

with 6mm Gaussian kernel full width at the half maximum

smooth nucleus.

FC is the Pearson’s correlations of the temporal fMRI signals

between a Region of Interest (ROI) and all brain. Positive brain

regions after ReHo statistics found by the above voxel based

analyses would be used as the ROI for seed to voxel FC analysis.

The AAL template of the WFU_Pick Atlas_v3.0 software was

used to extract the seed points of the differential brain regions

(36), Calculate the correlation coefficient (r) between the average

time series of different brain regions and the time series of other

voxels in the whole brain, Pearson’s correlation coefficients were

transformed into normally distributed scores according to the

Fisher’s R- to -Z transformation. Statistical inferences were the

same as in the ReHo analysis.

Statistics

Clinical data analysis

Clinical data were analyzed using the SPSS 23.0 statistical

software (IBM Corporation, Somers, New York). One-way

analysis of variance (ANOVA) was used to compare age

and education level among the groups, and the chi-square

test was used to compare sex. A two-sample t-test was

used to compare HAMD-17 and HAMA scores between the

two groups, with P < 0.05 (two-tailed) as the threshold for

statistical significance.

fMRI data analysis

In SPSS 25 (SPSS Inc., Chicago, IL, USA), two-sample t-tests

andχ2 tests were applied to compare the baseline characteristics

between the TRD and HC groups.

For the fMRI data, to determine the group × stimulation

interaction effect between the two groups and the two

scans, the main effects of group (the TRD group and the

HC group) and time (baseline and post taVNS stimulation

period), Covariates in the repeated measures ANCOVA and

post hoc analyses were performed. Gender, age, education

level, and framewise displacement (FD) metric (derived from

Jenkinson’s formula) of the four groups of subjects were used

as covariates. The brain regions showing significant time

differences in the HC group were excluded (37). The result
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for ANCOVA was the performance in Gaussian random

field correction (GRF), combined voxel-wise P-value <0.01

with cluster P-value <0.05 (two-tailed). We performed

post-hoc t-test analysis using DPARSF 5.1 software for

two-by-two comparisons between groups, and Bonferroni

correction was applied to the results, setting a threshold of

P < 0.0125(0.05/4) for statistical significance.

TABLE 1 Demographic and clinical characteristics of the

study participants.

Items TRD

(N = 40)

HC

(N = 40)

Z/χ2
P-value

Age (year) 43.01± 11.90 38.33± 13.04 1.764 0.082

Sex (M/F) 16/24 13/27 0.487 0.32

Education(year) 13.59± 3.63 15.07± 5.38 −1.489 0.141

HAMD 22.10± 4.33 2.40± 1.82 −7.688 <0.01

HAMA 23.97± 8.95 2.85± 2.39 −7.512 <0.01

Z, Wilcoxon rank testing; χ 2, chi-square testing. TRD, treatment-resistant depression;

HC, healthy control. HAMD, Hamilton rating scale for depression; HAMA, Hamilton

anxiety rating scale.

To clarify the behavioral associations of brain function,

we performed Pearson correlation analyses between the fMRI

values and clinical scales in SPSS 25.

Results

Demographic characteristics and clinical
results

The demographic and behavioral data are provided in

Table 1, in which no significant differences in age and sex

between TRD patients and HCs were observed. However, the

HAMD and HAMA scores were higher for the TRD patients

group (n= 40:40, P < 0.01).

fMRI results

ReHo

Group × stimulation interaction differences in ReHo are

shown in Figure 3A and Tables 2, 3. Significant group ×

FIGURE 3

(A) Significant group × stimulation interactions on ReHo were observed in the right medial orbital frontal cortex; (B) post hoc analysis showed

taVNS decreased lower activation in the TRD group than baseline. * p < 0.01; ** p < 0.001. (C) Main E�ect of Time on ReHo. Blue colors

represent decreased ReHo in after taVNS stimulation compared to before, while the hot colors represent the opposite.
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TABLE 2 Brain changes with Group × stimulation interaction.

Items Brain regions (AAL) BA MNI (mm) Number of voxels Peak intensity

X Y Z

ReHo Frontal_Med_Orb_R 11 6 39 −12 42 16.1717

ReHo, Regional homogeneity in the right medial orbital frontal; AAL, Anatomical Automatic Labeling; MNI, Montreal Neurological Institute; BA, Brodmann area.

TABLE 3 Repeated measures ANCOVA of TRD and HC at baseline and

post taVNS stimulation period.

Variables F P

Time 4.870 0.0303

Group 0.1349 0.7143

Time×Group 18.06 <0.0001

Covariates in the repeated measures ANCOVA include gender, age, education level,

and FD.

stimulation interactions on ReHo were observed in the right

medial orbital frontal cortex.

Repeated measures ANCOVA revealed a significant

interaction effect on the right medial orbital frontal cortex

(F= 18.06, P < 0.0001, Figure 3A), post hoc analyses confirmed

that the Reho value in the mOFC of the TRD group was

significantly higher in the HC group in the baseline (t = 2.402,

P < 0.001; Figure 3B). After instant taVNS stimulation, the

ReHo value was significantly decreased (t = −4.314, P < 0.001;

Figure 3B), Before and after treatment in the HC group, the

difference was not statistically significant (t= 1.155, P= 0.2515;

Figure 3B).

Significant main effect on time was found, Compared to

before taVNS stimulation, in the right posterior lobes of the

cerebellum, temporal inferior gyrus, left medial orbital frontal,

and right superior frontal gyrus of the ReHo value decreased,

Left precentral gyrus of the ReHo value increased (Table 4). No

significant main effect on group effect was found. The 3Dmap is

produced by the BrainNet Viewer toolbox (38) (Figure 3C).

FC

According to the ReHo results, we defined the right medial

orbital frontal regions as ROI for the FC analyses (39). Repeated

measures ANCOVA revealed a significant interaction effect on

the left inferior parietal gyrus and left superior marginal gyrus

(F = 11.6615, P < 0.001, F = 16.7520, P < 0.0001; Figure 4A;

Tables 5, 6).

ANCOVA of the mOFC-Based FC images showed that the

group×time interaction effect of the mOFC with IPG showed

statistical significance. Post hoc analyses confirmed that the FC

strength in the TRD group was significantly lower in the HC

group in the baseline (t = 2.133, P < 0.001; Figure 4B), after

instant taVNS stimulation, the FC strength was significantly

increased (t = −4.314, P < 0.001; Figure 4B). Before and after

treatment in the HC group, the difference was not statistically

significant (t= 1.155, P= 0.2515; Figure 4B).

ANCOVA of the mOFC-Based FC showed that the

group×time interaction effect of the mOFC with the SMG

showed statistical significance. Post hoc analyses confirmed that

the FC strength in the TRD group was significantly lower in

the HC group in the baseline (t = 3.236, P < 0.01; Figure 4B),

after instant taVNS stimulation, the FC strength was increased

(t = 1.623, P = 0.11339; Figure 4B), but the difference was not

statistically significant. Furthermore, after treatment in the HC

group, the FC strength was significantly lower in the baseline (t

= 8.704, P < 0.001; Figure 4B).

No significant main effect was found in functional

connection of mOFC and IPG. However Significant main effect

on time was found in mOFC and SMG (Table 7), Compare

before taVNS stimulation in the left middle Cingulate Gyrus, left

middle frontal gyrus, and left Inferior parietal of the FC strength

decreased. No significant main effect on group effect was found.

The 3D map is produced by the BrainNet Viewer toolbox (38)

(Figure 4C).

Correlation analyses

The HAMD and HAMA scores and ReHo/FC changes in the

above-mentioned brain regions were not correlated (Figure 5).

Discussion

This study applied rs-fMRI technology to examine the

effect of taVNS stimulation treatment on the brain activity

of TRD. Our current study revealed that following taVNS

stimulation treatment, TRD patients showed significantly

reduced ReHo in the medial orbital frontal cortex (mOFC).

ANCOVA of the mOFC-Based FC images revealed a significant

interaction effect on the left inferior parietal gyrus (IPG) and

left superior marginal gyrus (SMG). Among these regions,

the HAMD and HAMA scores and ReHo/FC changes were

not correlated.
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TABLE 4 Anatomical Locations of Significant Main E�ect of Group on ReHo.

Items Brain regions (AAL) BA MNI (mm) Number of voxels Peak intensity

X Y Z

ReHo Cerebelum_Crus2_R – 33 −81 −48 205 −5.8082

ReHo Temporal_Inf_R 20 42 −6 −39 168 −3.8751

ReHo Frontal_Med_Orb_L 11 −12 54 −3 160 −4.9271

ReHo Frontal_Sup_R 9 24 15 39 141 −4.5308

ReHo Precuneus_L 7 −9 −63 60 128 4.8316

FIGURE 4

(A) Repeated measures ANCOVA revealed a significant interaction e�ect on the left inferior parietal gyrus and left superior marginal gyrus; (B)

post hoc analysis mOFC-Based FC between the mOFC and IPG; post hoc analysis mOFC-Based FC between the mOFC and SMG. * p < 0.01; **

p < 0.001; (C) Main E�ect of Time on FC of mOFC and SMG. Blue colors represent decreased FC of mOFC and SMG in POST-taVNS stimulation

compared to PRE-taVNS.

TABLE 5 Group×Time Interaction on the mOFC-Based FC.

Items Brain regions (AAL) BA MNI (mm) Number of voxels Peak intensity

X Y Z

FC Parietal_Inf_L 40 −54 −40 39 20 15.466

FC SupraMarginal_L 48 −48 −40 33 20 15.466

FC, Functional connection in the left inferior parietal gyrus and left superior marginal gyrus; AAL, Anatomical Automatic Labeling; MNI, Montreal Neurological Institute; BA,

Brodmann area.
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taVNS can immediately regulate the
synchrony of neuronal activity in the
mOFC brain region of TRD patients

Several studies have confirmed that patients with TRD

tend to have lower reward sensitivity (40). The mOFC is an

integral part of the reward network and is associated with

emotional information and sensory stimuli (41, 42). Fang et al.

(43) illustrated that abnormal OFC-default network functional

connection regulation was significantly related to relieving

depressive symptoms. Studies have also demonstrated that the

gray matter volume of OFC and the functional connection

of OFC-amygdala in TRD patients are positively correlated,

reflecting that TRD patients may suffer from greater stress and

depression, and must call OFC more frequently to regulate the

amygdala response to negative emotions (44). Compared with

the HC group, it was found that ReHo in the mOFC brain

region of TRD patients was decreased by taVNS immediate

treatment. Based on previous studies (20–22), taVNS may

have an immediate regulation effect on the spontaneous brain

activity of mOFC in TRD patients to improve the status of

the limbic system and reward circuit. The mOFC is also a

key brain region involved in safety and risk decision-making.

When TRD shows overactivation of OFC in the resting state,

it will overreact to social rejection signals, thus increasing the

risk of suicidal behavior. In addition, from the perspective

of neural circuits, mOFC is also involved in the motivation

control of punishment avoidance conditions, suggesting that its

significant activation may simultaneously mediate the process of

individuals’ high avoidance motivation for pain (45). More than

half of TRD patients report suicidal thoughts (46). After taVNS

treatment, TRD patients’ ReHo value immediately decreased,

TABLE 6 Repeated measures ANCOVA of TRD and HC at baseline and

post taVNS stimulation period.

Variables Parietal_Inf_L SupraMarginal_L

F P F P

Time 0.0193 0.8898 4.4858 0.0374

Group 0.1269 0.7226 0.2614 0.6106

Time×Group 11.6615 0.0010 16.7520 0.0001

and the synchronization of neuronal activity was significantly

reduced, whichmeans that taVNS can effectively inhibit negative

emotions such as suicidal tendencies in TRD patients. In

conclusion, taVNS treatmentmay activate the emotion cognitive

regulation function involved in mOFC and jointly regulate the

negative emotions of TRD patients.

taVNS has an immediate regulatory e�ect
on brain regions and brain networks
related to the regulation of emotion

In this study, ANCOVA of the mOFC-Based FC images

revealed a significant interaction effect on the left inferior

parietal gyrus (IPG) and left superior marginal gyrus (SMG).

Furthermore, Main Effect of Time on ReHo, Compared

before taVNS stimulation, in the right posterior lobes of

the cerebellum, temporal inferior gyrus, left medial orbital

FIGURE 5

Correlations between the clinical scales’ scores and the fMRI

values. HAMD, Hamilton rating scale for depression; HAMA,

Hamilton anxiety rating scale. ReHo, Regional homogeneity; FC,

Functional connectivity; ReHo PRE/FC PRE, before taVNS

treatment; ReHo POST/FC POST, after taVNS treatment; ReHo

change/FC change, the di�erence in value before and after

treatment.

TABLE 7 Anatomical Locations of Significant Main E�ect of Group on mOFC-based FC of mOFC and SMG.

Items Brain regions (AAL) BA MNI (mm) Number of voxels Peak intensity

X Y Z

FC Cingulum_Mid_L 23 −6 −39 39 159 −4.3617

FC Parietal_Inf_L 40 −45 −60 48 165 −4.7134

FC Frontal_Mid_L 9 −24 33 39 132 −3.9720
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frontal and right superior frontal gyrus of the ReHo value

decreased, left precentral gyrus of the ReHo value increased.

Main Effect of Time on FC of mOFC and SMG, compare

before taVNS stimulation, in the left middle Cingulate Gyrus,

left middle frontal gyrus, and left Inferior parietal of the FC

strength decreased. Abnormalities in these regions have also

been extensively reported in previous studies, and the present

study has accumulated more evidence for the relevant results

(47–49). Previous studies have posited that rumination may

play a pivotal role in the psychopathology of TRD (50, 51),

Default mode network (DMN), such as the medial prefrontal

cortex (MPFC) and posterior cingulate cortex/precuneus.

Frontoparietal control network (FPCN) regions, including the

inferior parietal lobule (IPL), dorsal lateral prefrontal cortex

(DLPFC), and superior marginal gyrus (SMG) (52). DMN and

FPCN are closely related to emotion and cognitive processing

(53), Silani et al. (54) showed that the SMG is a key brain

area for emotion control. The FPCN anatomically connects the

DMN and the dorsal attention network (DAN), and its function

is to integrate stored internal representations with external

environmental information, and to simultaneously resolve

multiple interdependent emergencies and response mappings

to conflicting stimuli, assigning work. Memory and attention

resources. Our study found that the FC strength in the TRD

group was significantly lower in the HC group in the baseline

that the top-down regulation of TRD emotion is abnormal. And

taVNS treatment can reduce the neural activity level of the

mOFC and increase the neural activity intensity of the SMG

and the IPL, which has a dynamic regulatory effect on the brain

function of TRD patients. This suggests that taVNS can regulate

the negative emotions of TRD from bottom to top (55). In

conclusion, taVNS has an immediate regulatory effect on brain

regions and brain networks related to the regulation of emotion.

Interestingly, we also found that after taVNS intervention

in the HC group, the FC strength was significantly lower in the

baseline. The taVNS immediate stimulation also hadmodulating

effects in healthy individuals. Previous studies have also

found short-term antidepressant therapy for healthy individuals

reduce activity in the amygdala, OFC, superior frontal gyrus,

and precentral gyrus, and SMG during emotional stimulation.

These brain regions are associated with the negative affective

of depression (56–64). Our taVNS treatment is consistent with

studies on the regulatory effect of antidepressants on healthy

individuals, which is worthy of further study.

Limitations

First, the study’s sample size is small, and thus the results

may be biased. Fewer brain areas are immediately adjusted to

cause changes, which may be different from those after long-

term treatment. Second, this study only used the commonly

used research indicators of resting-state fMRI to observe the

changes in the immediate effect mechanism of the brain, and the

indicators used are not comprehensive enough.

In our future studies, the sample size will be expanded, and

a variety of functional imaging research methods will be used to

further explore the brain mechanism of the efficacy of taVNS on

TRD patients. More indicators, including arterial spin labeling

(ASL), GABA and other indicators of TRD patients, will need

to be carried out for statistical analysis to improve the scientific

value of this study.

Conclusions

In this study, we found taVNS can immediately regulate

the synchrony of neuronal activity in the mOFC brain region

of TRD patients. ANCOVA of the mOFC-Based FC images

revealed a significant interaction effect on the IPG and SMG.

In summary, the potential mechanism of taVNS treatment for

TRD may be to enhance the function of emotion regulation

circuits, monitor and manage negative emotions. Activity

of emotion-processing networks, reduces the processing of

negative emotions in TRD. Through taVNS treatment, the

abnormal brain regions in TRD can be normalized, or even

reversed, which may play a compensatory role in the reduction

of depressive symptoms and involving DMN, FPCN and

Reward Network.
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