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Background and Aims: We aim to develop a diagnostic tool for pathological-image
classification using transfer learning that can be applied to diverse tumor types.

Methods: Microscopic images of liver tissue with and without hepatocellular carcinoma
(HCC) were used to train and validate the classification framework based on a
convolutional neural network. To evaluate the universal classification performance of
the artificial intelligence (AI) framework, histological images from colorectal tissue and
the breast were collected. Images for the training and validation sets were obtained
from the Xiamen Hospital of Traditional Chinese Medicine, and those for the test set
were collected from Zhongshan Hospital Xiamen University. The accuracy, sensitivity,
and specificity values for the proposed framework were reported and compared with
those of human image interpretation.

Results: In the human–machine comparisons, the sensitivity, and specificity for the
AI algorithm were 98.0, and 99.0%, whereas for the human experts, the sensitivity
ranged between 86.0 and 97.0%, while the specificity ranged between 91.0 and 100%.
Based on transfer learning, the accuracies of the AI framework in classifying colorectal
carcinoma and breast invasive ductal carcinoma were 96.8 and 96.0%, respectively.

Conclusion: The performance of the proposed AI framework in classifying histological
images with HCC was comparable to the classification performance achieved by human
experts, indicating that extending the proposed AI’s application to diagnoses and
treatment recommendations is a promising area for future investigation.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common
cancer worldwide and the second most common cause of
cancer-related deaths (1). In the United States and China, HCC
is estimated to be the fourth and third most common cause
of cancer-related deaths, respectively (2, 3). This liver cancer
develops in patients with liver cirrhosis, especially in patients
with chronic hepatitis B (CHB) or chronic hepatitis C (CHC)-
related liver cirrhosis (4–6). In cirrhosis cases, several nodules
of varying sizes are found in the liver. As they are highly similar,
identification of benign and malignant intrahepatic nodule
is often considerably challenging for computed tomography
(CT) or magnetic resonance imaging (MRI)-based diagnosis; in
selected cases, for example, in case of healthy liver or atypical
imaging presentation, the definitive diagnosis depends on liver
biopsy. Histopathology is the gold standard for determining the
nature of hepatic space occupying lesions; however, diagnosing
a large number of pathology slide images is laborious, and
the substantial observer-to-observer variation in liver biopsy
assessments cannot be neglected (7). Another challenge in
medical-image diagnostics is patient-to-patient variability
in the pathology of disease manifestation. Even experienced
pathologists provide significantly different interpretations
regarding the histopathology of the same disease. Therefore,
novel auxiliary diagnostic facilities should be developed.

Diagnostic approaches to HCC include ultrasound, CT, and
MRI (8). In addition to HCC, colorectal cancer (CRC) and breast
invasive ductal carcinoma (BIDC) are some of the most common
tumors. In 2015, CRC was estimated to be the fifth most common
cause of cancer-related deaths in China (3). Similarly, according
to the 2018 United States cancer statistics published by Siegel et al.
(2). CRC is the third most common cause of cancer-related deaths
in both men and women. Moreover, adenocarcinoma is the most
common type of CRC whose diagnosis depends on pathology
imaging and interpretation. Diagnostic methods for CRC include
CT, colonoscopy, and subsequent tissue examination (9), whereas
breast cancer diagnostics include ultrasound and mammography
(10). In 2015, breast cancer was estimated to have contributed
toward most new cancer cases in China (3). The same was true
in the United States, according to cancer statistics published by
Siegel et al. (2). Invasive ductal carcinoma is the most common
type of breast cancer diagnosed histologically (11). Similar to
CRC, histopathology examination is the diagnostic gold standard
for BIDC. In summary, several imaging approaches in diagnostics
for almost all diseases are available; further, almost all diagnostic
imaging approaches produce a large number of medical images.
For example, a plain scan combined with contrast-enhanced CT
or MRI can produce more than 1,000 images per examination,
whereas capsule endoscopy can produce more than 40,000
medical images per examination. Further, the interpretation of
these images can be time consuming.

The number and types of medical images have expanded
at an unprecedented rate owing to the continuous emergence
of new technologies. However, the challenge of handling the
imbalance between the ability and number of specialized
practitioners and the expanding medical imaging output remains

unsolved. A physician may be familiar with only a few or
even just one type of diagnostic imaging technique, whereas
the interpretation of countless medical images requires human
expertise and judgment to correctly understand and triage.
Therefore, an artificial intelligence (AI) system that can
achieve high classification accuracy with a universal recognition
capability should be developed.

In recent years, AI has been widely used in various fields
(12–17). Several studies have reported the application of AI in
the diagnosis of HCC. With the assistance of AI, the accuracy
of diagnosis of HCC is significantly improved (18–20). More
than that, the deep learning framework is helpful for accurate
HCC segmentation from whole-slide images (21, 22). In addition,
machine learning offers potential as an effective and labor-saving
method for postoperative follow-up observation and HCC risk
stratification (23, 24). For classification tasks that are difficult
for human experts or where the rapid review of a large number
of images is required, AI has outstanding advantages, such as
savings in time, high accuracy, and low volatility. AI plays a
revolutionary role in disease diagnosis. In this study, we develop
an effective convolutional neural network (CNN) based on a
deep-learning algorithm to classify medical images. Then, we
evaluate the generalizability performance of the proposed AI
system in interpreting histological images of several common
types of tumors through transfer learning.

MATERIALS AND METHODS

Patients
Patients who underwent biopsy or surgical resection because of
the diseases of the liver, colorectum, or breast in the Xiamen
Hospital of Traditional Chinese Medicine, or the Zhongshan
Hospital Xiamen University between June 1, 2010, and December
31, 2017, were selected. Among these, adult patients aged between
18 and 75 were enrolled in the study. The inclusion criteria
included biopsy or surgical resection specimens with a completed
structure, and one of the following conditions: (1) chronic
hepatitis-related to hepatis B virus (HBV) or hepatis C virus
(HCV), without HCC, with or without liver cirrhosis; (2) HCC
companied by HBV-related or HCV-related chronic hepatitis,
with or without liver cirrhosis; (3) CRC; and (4) BIDC.

All HCC, CRC, and BIDC were further confirmed based on
the surgically resected specimens. Necroinflammatory activity
and fibrosis or cirrhosis related to chronic hepatitis were
recorded using the Scheuer system (25). The histological
diagnosis of HCC or CRC was performed using the digestive
tumor-classification system formulated by the World Health
Organization (WHO) in 2010 (26), while the histological
diagnosis of BIDC was performed using the breast-tumor-
classification system formulated by WHO in 2012 (27). No
exclusion criteria regarding gender or race exist. This study was
approved by the Ethics Committees of First Affiliated Hospital of
Fujian Medical University. Written informed consent was waived
by the Ethics Commission of the designated hospital because
of the non-interventional nature of the study and because no
identifiable personal information was recorded. All experiments
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were performed in accordance with the relevant guidelines
and regulations.

Images
The collected tissue samples were fixed in wax, followed by
slicing to a thickness of 3 µm. Then, the samples were stained
using hematoxylin-eosin. After staining, histological images were
collected with a 200-fold magnification. A total of 2–6 images
were collected for each patient, and no overlap was observed
between the images. For a case with a tumor, an image of the
tumor was collected accompanied by a corresponding non-tumor
image, which was captured 2 cm away from the tumor. The
strategy of the “full field” was adopted. An image of the tumor was
captured near the tumor, whereas an image of a non-tumor was
captured away from the tumor. In other words, the entire image
of the tumor comprised tumor tissue, while the entire non-tumor
image comprised non-tumor tissue. Each image was examined by
a panel of two independent pathologists, each with over 15 years
of pathology experience. If a disagreement in clinical labeling
exists, the image was further arbitrated by a panel of senior
pathology specialists. Initially, the size of the pathological images
collected using the optical microscope was 1,920 × 1,280. We
resized these images into 224 × 224 pixels before being sent to
the CNN for training. Identifiable personal information, such as
name of the enrolled patients and name of hospital, was removed.

Datasets
Histological images collected from the Department of Pathology,
Xiamen Hospital of Traditional Chinese Medicine, were used
as training and validation sets, while those collected from
the Department of Pathology, Zhongshan Hospital Xiamen
University, were used as test sets to further verify the classification
performance. Histological images of HCC, non-HCC, CRC, non-
CRC, BIDC, and non-BIDC were collected independently from
these two hospitals in the same manner.

Training and Validation of the Artificial
Intelligence Algorithm
Each divided image of 1,920 × 1,280 pixels was imported into the
database with multiple layers of classification. An entire image
was classified as a “tumor” if a tumor was identified even in
one dissected image. However, the image was classified as “non-
tumor” only when all dissected images were recognized as “non-
tumor.” Collected liver pathology images were randomly divided
into training and validation sets in a ratio of 3:1. The training set
was used to train the AI algorithm whereas the validation set was
employed to evaluate the classification performance of the trained
AI algorithm. This process was repeated five times.

Based on deep learning, we developed an AI algorithm
and used the PyTorch platform to adopt the ResNet-34
architecture pretrained using the ImageNet dataset (28).
Retraining comprised the initialization of the convolutional
layers with loaded pretrained weights and update of the neural
network to recognize our classes, such as HCC and non-HCC.
The network structure remained unchanged during the training
process. However, in addition to the last fully connected layer, the

network learning rates were tuned to 0.001. The learning rate of
the last fully connected layer was tuned to 0.02 (0.001 × 20), and
the weights were updated using backpropagation. This strategy
tended to update the first several layers slowly while updating the
output layer more efficiently. Layer training was performed by
stochastic gradient descent in batches of 64 images per step using
a stochastic gradient descent optimizer. The training procedure
was run for 25 epochs with a dropout ratio equal to 0.5. The
modified ResNet-34 was trained on a 14.04.1 Ubuntu computer
with Intel (R) i7-5930K CPU @ 3.50 GHz. An NVIDIA GTX
1080Ti 11 GB GPU was utilized to accelerate training.

Testing the Artificial Intelligence
Algorithm
After the training process was finished, the histological images
collected from the Department of Pathology, Zhongshan Hospital
Xiamen University, were used as the test set to monitor the
classifying decisions of the trained algorithm.

Comparison Between the Artificial
Intelligence Algorithm and Human
Experts
Histological images collected from the Department of Pathology,
Zhongshan Hospital, Xiamen University, were also sent to expert
pathologists for diagnosis. Their classification performance was
compared with that of the AI algorithm. The expert pathologists
were part of the senior staff at the Department of Pathology,
Zhongshan Hospital, Xiamen University, and they each had a
clinical experience of approximately 15 years. The diagnosis
was conducted independently; the error rates were determined
for the AI algorithm and for each human expert. Further,
the performances of the proposed AI algorithm and other
frameworks, such as AlexNet and GoogLeNet, were compared
(29, 30).

Transfer Learning of the Artificial
Intelligence Algorithm
Transfer learning was developed by Donahue et al. (31). To
evaluate the transfer learning performance, the trained AI
algorithm was further tested using two other types of tumors:
CRC and BIDC. Specifically, the classification performance of
the trained AI algorithm was determined independently for
each type of tumor.

The study design is shown in Figure 1, and the CNN schematic
for HCC classification is shown in Supplementary Figure 1.

Statistical Analysis
To evaluate the classification performance of the AI algorithm
on histological images, three indexes, namely, accuracy,
sensitivity, and specificity, were calculated. The receiver
operating characteristics (ROC) curves plot the true-positive rate
(sensitivity) vs. the false-positive rate (1-specificity). P < 0.05 was
set as the level for statistical significance for two-tailed paired test.
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FIGURE 1 | Study design.

Patient Consent Statement
This study was approved by the Ethics Committees of First
Affiliated Hospital of Fujian Medical University.

RESULTS

Patient and Image Characteristics
We obtained 7,000 liver pathology slide images generated from
2,745 patients enrolled from the Xiamen Hospital of Traditional
Chinese Medicine, where 4,000 images showed confirmed HCC,
while the other 3,000 images confirmed other diseases, such

as CHB/CHC with or without cirrhosis. All images passed an
initial image quality check, and they were randomly divided into
training and validation sets at a ratio of 3:1 to train and validate
the classification performance of the AI algorithm. This process
was repeated five times.

Artificial Intelligence Algorithm
Performance During Training and
Validation
During training and validation, the accuracy and cross-
entropy were plotted against the iteration step, as shown
in Supplementary Figure 2. Using the validation set as the
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FIGURE 2 | Performances of the proposed AI model and human experts during human–machine comparison. (A) Confusion matrix of the proposed AI model for
HCC diagnosis. (B) Confusion matrix of human experts for HCC diagnosis. (C) Comparison between the performances of the proposed AI model and human
experts for HCC diagnosis.

reference, the mean sensitivity, specificity, and accuracy of the AI
algorithm were calculated as 98.6, 98.5, and 98.5%, respectively.

Artificial Intelligence Algorithm
Performance Evaluated Using the Test
Set
We generated 2,400 images with or without HCC from 873
patients that enrolled from the Zhongshan Hospital, Xiamen
University; these images were used to further evaluate the
performance of the AI algorithm. In these 2,400 images, 1,324

showed HCC, while 1,076 showed non-HCC. Using the test set
as the reference, the sensitivity, specificity, and area under the
ROC curve of the AI algorithm were calculated as 99.1, 98.0, and
96.0, respectively.

Comparison Between the Results of the
Artificial Intelligence Algorithm and
Human Experts
To compare the performances of the AI algorithm and human
experts, we chose another randomly selected set of 200 images
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FIGURE 3 | Performances of the proposed AI model and other architectures
for HCC diagnosis.

comprising 100 images each with and without HCC. All 200
images were sent to both the AI algorithm and human experts
for clinical decisions. The accuracy, sensitivity, and specificity
for the AI algorithm were 98.5, 98.0, and 99.0%, respectively.
For the human experts, the sensitivity ranged between 86.0
and 97.0%, while the specificity ranged between 91.0 and
100%. Compared with the human experts, the AI algorithm
tended toward a more balanced performance between sensitivity
and specificity. However, a remarkable variation was observed
between sensitivity and specificity, which distinguished the
performance of the AI algorithm from that obtained by human
experts. The performances of the AI algorithm and human
experts are presented in Figure 2.

Comparison Between the Artificial
Intelligence Algorithm and Other
Architectures
The 200 images used for the human–machine comparison were
employed to compare the performance of the AI algorithm
with that of the other architectures. The HCC image-recognition
sensitivity, specificity, and accuracy of the proposed AI system
were superior to those of AlexNet and GoogleNet, as reported in
Supplementary Table 1 and Figure 3.

Transfer Learning of the Artificial
Intelligence Algorithm to Colorectal
Cancer
To evaluate the proposed transfer-learning performance of
the AI system, 3,600 colorectal-tissue microscope slide images
were collected from Xiamen Hospital of Traditional Chinese
Medicine to train and validate the AI algorithm. These 3,600
images comprised 1,800 images each with and without CRC.
Another 600 colorectal-tissue microscope images obtained from
Zhongshan Hospital Xiamen University were used as the test set.
As shown in Figure 4 and Supplementary Table 2, after only
limited training, the proposed AI algorithm showed excellent
accuracy in CRC and non-CRC image classification based on
transfer learning. An accuracy of 96.8% was achieved with a
sensitivity of 97.0% and a specificity of 96.7%.

Transfer Learning of the Artificial
Intelligence Algorithm to Breast Invasive
Ductal Carcinoma
Microscope slide images from breast tissue were collected
to further evaluate the transfer-learning performance of the
proposed AI system. A total of 3,600 histologic images of the
breast obtained from Xiamen Hospital of Traditional Chinese
Medicine were employed to train and validate the AI algorithm.
These 3,600 images comprised 1,800 images each with and
without BIDC. Another 600 breast microscope images were
obtained from the Zhongshan Hospital Xiamen University as a
test set. As shown in Figure 5, after training, the proposed AI
system showed an accuracy of 96.0%, with a sensitivity of 95.7%
and a specificity of 96.3% in classifying images into BIDC or non-
BIDC.

DISCUSSION

In this paper, we described a general AI algorithm for the
interpretation of histological images from the liver, colorectum,
and breast. Although medical imaging techniques such as CT and
MRI are widely used for HCC diagnosis, CT and MRI detection
show a poor performance for HCCs < 1.0 cm, especially for
patients with cirrhosis (32). For those patients without definitive
findings on either CT or MRI, a biopsy may be the only
detection method (1). Owing to potential interobserver bias that
may be present when reviewing histological images generated
from biopsy, AI may be considered a useful ancillary tool for
HCC identification.

Several architectures have been proposed for a classification
task. We evaluated many of these architectures, such as
ResNet-34, ResNet-50, and DenseNet; however, we did not
observe any significant differences between the classification
results of these architectures. Instead, we observed that the
performance of ResNet-34 was slightly better than other models
(Supplementary Tables 3, 4). Thus, we selected ResNet-34 as our
baseline architecture.

We used the Tissue Microarray Images dataset to pre-
train ResNet-34. We employed data augmentation to enhance
the model’s robustness against color. The parameters included
brightness, contrast, and saturation, and thresholds of these three
parameters were 0.8–1.2, 0.75–1.25, and 0.9–1.1, respectively.
Finally, we used our labeled dataset to train the last three
convolution layers and the fully connected network of ResNet-
34. The learning rate for the three convolutional layers in training
was tuned to 0.001, whereas that of the fully connected layer
was tuned to 0.02.

Further, the proposed model demonstrated competitive
performance for analysis of liver histological images. This was
accomplished without the need for a highly specialized deep
learning machine and without using a very large training
database. When the model was trained with 7,000 images
(3,500 images for each class), high performance accuracy,
sensitivity, and specificity were achieved for the correct diagnosis.
Moreover, the performance of the model in diagnosing HCC was

Frontiers in Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 853261

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-853261 April 20, 2022 Time: 11:2 # 7

Chen et al. Universal Recognizing Pathological Images

FIGURE 4 | Transfer-learning performance of CRC diagnosis using colorectal tissue microscope slide images. In (A,B), the training dataset is shown in blue, and the
test dataset is shown in red. Accuracy is plotted against the iteration step (A), and cross-entropy loss is plotted against the iteration step (B) during the length of the
training of the binary-class classifier over the course of 8,000 steps. The curve is smoothed; the test accuracy and loss show better performance. (C) Shows the
confusion matrix of the best test image model classification. The model successfully classifies CRC separately from the non-CRC.

comparable to that of diagnosis by experts with significant clinical
experience in liver pathology.

By employing another set of 200 images (100 images for
each class) as the test set, the proposed AI model showed a
more balanced performance between sensitivity and specificity
in recognizing HCC compared with that of human experts. The
accuracy of the proposed AI model was superior to that of
experts, indicating a remarkable variation between sensitivity and
specificity. The abovementioned test set was used for comparison
between the proposed ResNet-34-architecture-based AI model
and other AI architectures including AlexNet and GoogleNet.
The proposed AI model achieved superior accuracy, sensitivity,
and specificity, thus demonstrating the robustness of the model.

During model construction, we observed that the last three
convolution layers can help improve classification performance.
Inherent differences exist in the process of pathological section
staining, and therefore, the final rendering effect of the
pathological images inevitably has obvious differences. To
overcome this deficiency, we employed data augmentation

to improve our models, including randomly changing the
brightness, contrast, and color saturation of the image.

Kermany et al. (14) employed over 100,000 OCT images
to train the AI framework. In comparison, only 3,600 images
were used in our study to train our AI system, but an excellent
diagnostic performance was achieved. Thus, even with a limited
training dataset, the transfer-learning system demonstrated
highly effective classifications.

Transfer-learning techniques for image analysis could
potentially be employed for a wide range of medical images
across multiple disciplines. In fact, a direct illustration
of its wide applicability in the analysis of two similar
histological image types (CRC and BIDC) was shown. After
a considerably smaller amount of training, the proposed
AI model reported accuracies of 96.8 and 96.0% for CRC
and BIDC, respectively. The proposed AI model showed
balance between sensitivity and specificity. Thus, the proposed
AI system has potential universality in the classification of
histological images.

Frontiers in Medicine | www.frontiersin.org 7 April 2022 | Volume 9 | Article 853261

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-853261 April 20, 2022 Time: 11:2 # 8

Chen et al. Universal Recognizing Pathological Images

FIGURE 5 | BIDC diagnosis transfer-learning performance using breast tissue microscope slide images. In (A,B), the training and test datasets are shown in blue
and red, respectively. The classification accuracy is plotted against training epochs, and in (B), the categorical cross-entropy loss is shown as a function of training
epochs for the binary classification problem. The curve is smoothed. (C) Shows the model-classification confusion matrix for test image classification. As shown, the
proposed model successfully classifies BIDC from non-BIDC images.

An AI model trained using an extremely large training dataset
would have superior performance to that of a transfer-learning-
based model trained from a relatively small training dataset.
However, in practice, the de novo training of a CNN needs
an unlimited supply of training data, and it requires weeks to
achieve good accuracy. Using the retraining layers from other
medical classifications, a transfer-learning-based model yields
a highly accurate model in considerably less time. Thus, for
difficult-to-collect medical images, transfer-learning-based image
recognition is more practical. Recently, several studies have
highlighted the value of transfer learning in medical image
recognition (33–35). Given that imaging-based diagnosis played
a crucial role in guiding treatment, extending the proposed AI’s
application to diagnoses and treatment recommendations is a
promising area for future investigation.

Limitations
This study has several limitations; these are listed below:

1) No further analysis on the learned features was made in
the present study.

2) The amount of the employed images was limited and needs
to be expanded in the future.

3) This study focuses on classification rather than detection.

Despite these limitations, this study is considered valuable
for exploring AI architecture based on transfer learning for the
recognition of the diseases that are difficult in collecting enough
images for training.
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