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ABSTRACT
Asthma imposes a heavy morbidity burden during childhood; it affects over 10% of children in
Europe and North America and it is estimated to exceed 400 million people worldwide by the year
2025. In clinical practice, diagnosis of asthma in children is mostly based on clinical criteria;
nevertheless, assessment of both physiological and pathological processes through biomarkers,
support asthma diagnosis, aid monitoring, and further lead to better treatment outcomes and
reduced morbidity. Recently, identification and validation of biomarkers in pediatric asthma has
emerged as a top priority across leading experts, researchers, and clinicians. Moreover, the
implementation of non-invasive biomarkers for the assessment and monitoring of paediatric pa-
tients with asthma, has been prioritized; however, only a proportion of them are currently included
in the clinical practise. Although, the use of non-invasive biomarkers is highly supported in recent
asthma guidelines for documenting diagnosis and supporting monitoring of asthmatic patients,
data on the Pediatric population are limited.
In the present report, the Pediatric Asthma Committee of the World Allergy Organization (WAO),
aims to summarize and discuss available data for the implementation of non-invasive biomarkers
in the diagnosis and monitoring in children with asthma. Information on the most studied bio-
markers, including spirometry, oscillometry, markers of allergic sensitization, fractional exhaled
nitric oxide, and the most recent exhaled breath markers and “omic” approaches, will be reviewed.
Practical limitations and considerations based on both experts’ opinion and critical review of the
literature, on the utility of all “well-known” and newly introduced non-invasive biomarkers will be
presented. A critical commentary on biomarkers’ use in diagnosing and monitoring asthma during
the COVID-19 pandemic, cost and availability of biomarkers in different settings and in developing
countries, the differences on the biomarkers use between Primary Practitioners, Pediatricians, and
Specialists and their role on the longitudinal aspect of asthma is provided.
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INTRODUCTION

Asthma in children is a heterogenous disorder
underpinned by chronic airway inflammation; how-
ever, considerable variability in both symptoms and
natural history exists. It is well recognized that most
asthma cases begin in childhood, while the disease
causes a significant morbidity and health care
expenditure in this age group.1 The identification
of different phenotypes in pediatric asthma,
with distinct clinical presentation, pathophysiologic
mechanisms and response to therapeutic
interventions, has led to the recognition of
underlying molecular pathways (endotypes) and
related specific indicators (biomarkers). A biomarker
is “a defined characteristic that is measured as an
indicator of a normal biological process,
pathological process or response to an exposure or
intervention, including therapeutic interventions”.2 In
clinical practice, diagnosis of asthma in children is
mostly based on clinical criteria; nevertheless,
assessment of both physiological and pathological
processes through biomarkers, may support asthma
diagnosis, aid monitoring, and further lead to better
treatment outcomes and reduced morbidity.3

Recently, identification and validation of bio-
markers in pediatric asthma has emerged as a top
priority across leading experts, researchers, and
clinicians from countries of different income.4 The
invasiveness of certain biomarkers, such as
bronchoalveolar lavage and bronchial biopsy,
limits considerably their use in most asthmatic
children with controlled or partly controlled
asthma.5 Limited data exist for sputum induction,
a semi-invasive and technically difficult method
especially for younger children, and only for chil-
dren with severe, therapy resistant asthma.6 Thus,
utilization of noninvasive biomarkers is currently
becoming reinforced in guidelines such as the
Global Initiative for Asthma (GINA) and National
Institute for Health and Care Excellence (NICE) for
supporting diagnosis, classification, and follow-up
of asthma in the pediatric population.7 Despite
emerging evidence on new biomarkers, only a few
are currently used in the clinical practice, while
many of them are applied only in highly
specialized centers.8 The most studied biomarkers
include spirometric and markers of allergic
sensitization and fractional exhaled nitric oxide
(FeNO);9 although, the latter may have a role in
identifying a type 2 inflammatory treatable trait, its
role on monitoring asthma is still debated.10 Data
on oscillometry in the diagnostic algorithm of
children with asthma are encouraging.11 The more
recent exhaled breath markers and “omic”
approaches provide information on specific
asthma phenotypes, however, their clinical
applicability is still unresolved.12

Although recent reports have extensively dealt
with the utility of biomarkers in adult asthma,
respective information for Pediatrics is significantly
less. It is well accepted that the use of non-invasive
biomarkers has a potential clinical utility, contrib-
uting to tailored management of asthmatic chil-
dren.13 In the present report, the Pediatric Asthma
Committee of the World Allergy Organization
(WAO), aims to summarize and discuss available
data in respect to the utility of implementing
non-invasive biomarkers in the diagnosis and
monitoring in pediatric asthma, discussing prac-
tical limitations and considerations, the potential
utility of newly introduced biomarkers and prac-
tices in different parts of the world, and clinical
settings.
AVAILABLE DATA FOR DIAGNOSING AND
FOLLOWING ASTHMA IN CHILDREN BY
COMMONLY USED NON-INVASIVE
BIOMARKERS

Peak expiratory flow (PEF) measurement

Peak expiratory flow (PEF) is a simple measure of
the maximal flow rate that can be achieved during
forceful expiration following full inspiration.14

Although less reliable than spirometry, PEF
measurement aids in asthma diagnosis and
monitoring, seen especially during the COVID-19
pandemic, due to restrictions in spirometry use in
clinical settings.15

Measured over 1–2 weeks, PEF aids in demon-
strating expiratory airflow reversibility, by either
diurnal (>13%), day to day, or visit to visit (>15%)
variability or by a>15% drop following exercise
challenge compared to the baseline PEF values. PEF
improvement can also confirm reversible airflow
limitationwithin10–15minafter inhalationof a rapid-
acting bronchodilator.16 In children, it is highly
recommended to interpret PEF values relative to
the personal best reading, as the highest PEF over
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the preceding 2weeks, if one is known.17 It has been
suggested that PEF assessment coupled with a
written action plan, can be used for monitoring
asthma control, evaluating triggers and worsening
symptoms, and monitoring recovery following an
exacerbation.18 Long-term PEF monitoring has
been used for early detection of exacerbations, in
case of poor symptom perception, in patients with
prior abrupt severe exacerbations and in difficult-to-
control or severe asthma. However, studies evalu-
ating the usefulness of PEFmonitoring for improving
asthma outcomes have yielded conflicting results,
since it is well accepted that PEF long term mea-
surements are associated with poor compliance.
Recently, smart devices and applications, with rela-
tively low or now cost for the patient, have been
introduced into the market aiming at improving
adherence to self-monitoring of PEF, however, the
majority of them failed accuracy testing.19

Besides history and physical examination, PEF
can serve as an objective measure of exacerbation
severity in patients >5 years (mild to moderate
exacerbation if PEF>50%and severe if PEF�50%of
predicted normal value or personal best). However,
in a prospective single-center cohort study, only
48%of childrenwith acute asthma, that were able to
perform PEF measurements before and after the
use of bronchodilators, provided valid information
at both time points.20Despite several limitations on
PEF utility, we recommend, and this agrees with
several guidelines,21–23 that PEF assessment can
guide chronic management decisions and stratify
risk in acute exacerbations, especially in areas
where spirometry is not practical or available.
Spirometry

Spirometry is the most frequently used clinical
laboratory test for assessing and monitoring
asthma in children. Spirometry can contribute to
the diagnosis of asthma, moreover in the presence
of asthma-related symptoms. Nevertheless,
spirometry can range within normal values in
asthmatic children, while spirometric alterations in
asthma are not unique or constantly repeated.

To allow comparisons over time and between lo-
cations, spirometry should be performed according
to established guidelines and standards.24,25 For
asthma, the most useful spirometric variable for
assessing airflow obstructive pattern, is Forced
Expiratory Volume (FEV) in the first second (FEV1), as
it presents the best combination of low variability
and good sensitivity. This combination results from
moderate expiratory effort producing flow limitation
over most of the expiratory flow-volume curve, so
that further effort has little effect on the level of flow.
Longitudinal measurements of FEV1 are best
expressed as percent predicted for height, and stan-
dards for this should be appropriate for the gender
and ethnicity of the subject.26 Other useful
spirometric variables are: Forced Vital Capacity
(FVC), where low levels are indicative of airway
restriction as well as airway obstruction; FEV1/FVC–
low levels indicate airway obstruction and are
consistent with asthma, chronic obstructive
pulmonary disease (COPD), and bronchiectasis; and
Forced Expiratory Flow (FEF)25-75 – measured over
the part of the flow-volume curve, is more reflective
of small airway caliber and in asthma it has high
sensitivity and variability. For all spirometric variables,
the cut-off between normal and abnormal limits,
should be taken from reference values that are
appropriate for age, gender and ethnicity.24

Bronchodilator response (BDR), which represents an
increase in baseline values of at least 12%, 15–
20 min following 2–4 puffs of b2 short acting agonist
(SABA), is useful in establishing asthma diagnosis,
while an increase in FEV1 or FEV1/FVC values of over
two subject-specific Z scores have been suggested
as indicators of airflow limitation and reversibility,
although the latter is rarely used in the clinical prac-
tice.27 More practically, an approximately 12% or
200 mL increase in FEV1 can be used as a measure
of BDR, as suggested by the European Respiratory
Society (ERS) recommendation.25 A positive BDR is
highly suggestive of asthma, but not diagnostic, as
increases can also occur due to poor initial
spirometric technique or airway clearance between
measurements.

Spirometry in preschool children is possible
with careful training of the child and adherence to
guidelines. Due to young children having relatively
larger airways compared to lung volume, and the
fact that the expiration phase may last less than
1 sec, the FEV0.5 has been proposed as a valid
spirometric variable in asthmatic preschoolers.
Although we believe that the specific measure-
ment can be used in this age group, more data are
warranted to support its widespread clinical
utility.28
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Impulse oscillometry

Impulse Oscillometry (IOS) measures the me-
chanical resistance of the respiratory system dur-
ing a spontaneous breathing at tidal volume.29

The technique is based on the use of a
loudspeaker to send small-amplitude oscillatory
pressure waves at the entrance of the airway and,
from the recording of the pressure and flow vari-
ations that these impulses impose to the respira-
tory system, to be able to calculate the impedance
(Zrs) a concept that encompasses both the “resis-
tance” (Rrs) and the Reactance (Xrs) of the respi-
ratory system. Though less data are available due
to the newness of the technique, forced oscillom-
etry, or airway oscillometry has the added advan-
tage of portability and ease of use, and is of
particular use in young children, where it is
difficult to maneuver reproducible lung function
measures.30

IOShasbeenused for thediagnosis andmonitoring
of respiratory tract diseases such as asthma, virus-
induced wheezing,11 bronchopulmonary dysplasia,31

cystic fibrosis,32 eosinophilic bronchitis,33

bronchiectasis,34 vocal cord dysfunction,35 and
tracheal stenosis,36 etc., and to assess bronchial
hyperresponsiveness 37 and the response to asthma
treatment.38,39

In short, in an obstructive problem that affects
the central airways, the main affectation will be
detected in the Resistance curve, which will be
significantly increased in parallel to the reference
values, with similar increases in R5 (Total Resis-
tance) and of the R20 (Central Resistance); that is,
the resistances are increased independently of the
Total Resistance
(RS)

Central Resis
(R20)

Central
obstruction

[[ [[

Peripheral
obstruction

[[ ¼

Mixed obstruction [[[ [[

Restriction ¼ ¼
Table 1. Interpretation of impulse oscillometry using prototypical chan
(R20), peripheral Reactance (X5) and AUC of Reactance (AX) that can us
airway. (*) Being a negative value, although X5 mathematically decreases its ab
oscillation frequency. Resistances at 5 Hz are
increased when the value obtained is greater than
150% of the theoretical value, which, compared to
spirometry, would be equivalent to a 20% drop in
FEV1. On the contrary, no relevant changes will be
detected in the Reactance curve (which will be
superimposed on the reference values). In the case
of peripheral airway obstruction, R5 is increased,
but as this occurs at the expense of peripheral
airway involvement, central resistance (R20) is
normal. And, because of the peripheral involve-
ment, the capacitive reactance of the lung is
decreased so that the reactance curve is displaced
downwards with respect to the predicted values,
the X5 is also decreased, the Frequency of Reso-
nance (Fres) displaced to the right, and the area
under the reactance curve (AUC-AX) increased
(Table 1). It is necessary to highlight that those
central and peripheral obstructive patterns are
prototypical patterns, which are not very
frequently seen in daily clinical practice, where
what is usually observed are mixed patterns.

Additionally, the area under the AX curve (AUC)
reflects the changes of the obstruction in the pe-
ripheral airway and allows a more sensitive
assessment of the bronchodilator response and
changes induced by long-term treatments. It is
perceived as a more sensitive marker of peripheral
airway obstruction compared to the isolated use of
R5 or X5 and can better differentiate between
exacerbation and stable patient in asthma, and
between asthmatic and healthy patient.40

There are no unanimously accepted criteria in
relation to the bronchodilator test in children but, a
bronchodilator response is considered positive if,
tance Peripheral Reactance
(X5) (*)

AUC Reactance
(AX)

¼ ¼

[[ [[

[[ [[

[[ [[

ges in the values of the Total Resistance (R5), Central Resistance
ually be observed depending on the underlying involvement of the
solute values increase compared to the theoretical ones
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after administration of the bronchodilator agent,
there is a decrease in the R5 value greater than
20% and greater than 15% in the R10.41

In conclusion, IOS is a highly sensitive technique
in respect to asthma diagnosis and monitoring,
providing complementary information to that ob-
tained through conventional respiratory function
techniques such as spirometry in all age groups
during childhood; while its use is increasing mostly
in specialized centers in Europe, United States,
Asia, and Australia42
Fractional exhaled nitric oxide (FeNO)

To date, the Fractional concentration of Nitric Ox-
ide in theexhaledair (FeNO)hasbeen suggestedas a
biomarker that aids in the diagnosis and monitoring
the level of control in childhood asthma.3,43 Studies
have established the positive correlation between
FeNO levels and eosinophilic airway inflammation
as assessed by blood, sputum and bronchoalveolar
lavage eosinophils, supporting the diagnosis of T2
asthma, both in children and adults.44,45 FeNO
reflects IL-13 mediated inflammation, as shown by
reduction in the FeNO levels with biologics specif-
ically inhibiting that cytokine.46 Moreover, in pre-
school children FeNO may be helpful in objectively
defining different wheezing phenotypes, while
increased FeNO values have strongly associated with
increased risk of later asthma persistence/develop-
ment. 47,48 In school aged children the diagnostic
value of FeNO is high particularly in atopic children
with asthma-associated symptoms, while children in
the highest FeNO quartile have more than a 2-fold
increased risk of new-onset asthma later in life.49,50

International guidelines and technical standards are
available for FeNOmeasurement51,52 and its clinical
interpretation.53 As exhaled NO values are highly
flow dependent, all measurements should be
performed at a standardized exhalation flow rate of
50 mL/s. Patients exhale against a positive counter
pressure of 10 cm H2O to avoid cross-contamination
with nasal NO.To guide the subjects in performing a
valid exhalation maneuver, the flow parameters are
controlled by visible and/or audible feedback. The
procedure is noninvasive and can be easily and
effectivelyperformedstarting from5 to6yearsof age.

According to the American Thoracic Society
(ATS) guidelines,53 FeNO levels, expressed in part
per billion (ppb), less than 25 ppb (<20 ppb in
children) indicate that eosinophilic inflammation
is less likely, while values > 50 ppb (>35 ppb in
children) indicate that eosinophilic inflammation
and corticosteroid-dependent inflammation are
likely. Intermediate FeNO values (25–50 ppb and
20–35 ppb in children) should be interpreted
cautiously and with reference to the clinical
context. Moreover, a reduction of at least 20% in
FeNO for values over 50 ppb or more than 10 ppb
for values lower than 50 ppb as the cut point,
indicate a significant response to anti-inflammatory
therapy, such as ICS.

Epidemiological and mechanistic studies sug-
gest that FeNO is a valid biomarker for eosinophilic
airway inflammation in asthma, and its use is
increasing in clinical practice due to the growing
availability of affordable and portable devices.
However, clinical trials in children have not consis-
tently confirm the beneficial effect of adding FeNO
to a symptom-based approach, thus its routine use
in monitoring pediatric asthma is still debated.
There are several reasonswhy FeNOhas apparently
failed to translate from promising biomarker to
clinically useful tool, andone reasonmaybea lackof
understanding of confounding endogenous and
exogenous factors that influence FeNO levels.54

Furthermore, FeNO levels in children may be
considered as a moderately reliable biomarker for
type-2 inflammation, rather than a marker for
asthma itself. Future studies need to obtain appro-
priate reference values of different ethnic group or
geographical different areas, as well as to rethink
FeNO cut-off values in children, considering the
effect of increasing age and height on developing
airways.

Bronchial hyperresponsiveness

Bronchial hyperresponsiveness (BHR) has long
been established as a cardinal characteristic in all
asthma phenotypes. The utility of non-specific BHR
for diagnosing asthma has been well established,
while respective data on its use for monitoring
asthma activity are scarce.55 Assessment of non-
specific BHR by stimuli directly affecting the
smooth muscle, such as methacholine is highly
sensitive in ruling out asthma when BHR is nega-
tive, while stimuli acting indirectly on inflammatory
cells and nerves, such as exercise, adenosine,
mannitol, cold air etc., have been long used in
Pediatrics for assessing subjects with symptoms
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highly suggestive of asthma, but with normal
spirometry. Moreover, determination of indirect
bronchial challenges has been used for diag-
nosing exercise induced asthma, adjusting anti-
inflammatory treatment and to discriminate other
asthma – mimicker conditions such as laryngeal
dysfunction.56 BHR has also been assessed as a
marker of asthma persistence in school aged
children with asthma.57,58 Determination of non-
specific BHR represents an important biomarker
in diagnosing asthma, especially due to its nega-
tive predictive value and although we support its
role in monitoring morbidity in asthmatic children,
caveats regarding the technical requirements of
the method such as high cost equipment, More-
over, difficulties in cooperation, the time
consuming methodology, the need for acute
interpretation of the results, and the effect of
concurrent medications including inhalers/bi-
ologics and environmental factors, have underu-
tilized the test in the clinical practice.42

Allergy assessment: SPTs, sIgE, eosinophils,
ISAAC, alex test

Aero-allergen sensitization, assessed either by
skin prick test (SPTs) or by total and specific IgE
determination, is an established marker for atopy
and a significant predictor for the differential
response to inhaled corticosteroids as a mainte-
nance therapy,even inpreschoolerswithasthmaand
to anti-IgE monoclonal antibody therapy in severe
asthmatics.59 IgE values can be easily determined in
most of the clinical settings, although interpretation
of the results should be cautiously performed, since
sensitization, ie, positive IgE values, do not
necessarily suggest clinical disease. In addition,
SPTs are easily and routinely performed by allergy
experts, causing minimal discomfort in children
with respiratory allergy. Nevertheless,
interpretation needs to be cautious and related to
asthma morbidity, since sensitization per se might
not be clinically relevant.60

Blood eosinophils is an easy point of care test,
even in primary care and is currently considered as a
proxy for airway eosinophilias, and response to
asthma treatment, more so steroids and anti-
eosinophilic monoclonal antibodies.61 Recently,
the utility of blood eosinophils on asthma diagnosis
in preschoolers with asthma, has been suggested
by treatment testing (steroid responsiveness),62
with increased blood eosinophils (�250/mm3)
being strongly associated with frequent asthma
attacks/nocturnal symptoms and persistent
wheezing later in life.63 It should be noted
however, that blood eosinophils do not accurately
correlate with airway eosinophilia, more so in
preschoolers with asthma.64 Although studies in
adults have shown that peripheral and airway
eosinophilia are significantly correlated, data in
children are equivocal, since elevated eosinophil
counts can be detected even in the healthy state,
thus altering the cut-off normal limit. In addition,
atopy per se, and asthma triggers/activity impact the
peripheral eosinophil values.65

More recently, component-resolved diagnostic
assays have been introduced for simultaneous mea-
surement of several allergen components, due to
their innovativemicroarray technology (biochip).66,67

TheThermoFisher ImmunoCAP ISAC (Immuno-solid-
phase Allergen Chip) contains 112 allergens from 51
(ormore recently from48) allergen sources, while the
more recently developed MADx Allergen Explorer
(ALEX), contains 282 allergens: 156 extracts and 126
components. The Euroline microstrips is based on
the immunoblot technique. The major advantage of
such comprehensive analysis is the identification of
clinically relevant sensitizations, which supports
asthma diagnosis.68 As with other allergy–related
assays, positive results should be interpreted in the
presence of asthma-related symptoms, although
sensitization to major allergen proteins, is of highly
decisive clinical importance. Multiplex tests are still
high costly, and clinicians should be adequately
trainedand familiarizedwith allergenprotein families.
Moreover, patterns of sensitization may vary consid-
erably between different geographical areas, thus
clinician experts should be aware of the local molec-
ular epidemiology for interpreting the results
properly.69
EMERGING BIOMARKERS OF ASTHMA IN
PEDIATRICS

The demand for using noninvasive biomarkers
for pediatric patients with asthma is steadily
increasing, due to inefficient diagnostic indices in
this age group and the increased need to identify
specific asthma endotype for better disease
monitoring. During the last years emerging bio-
markers for the diagnosis and monitoring of
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asthma have been explored for clinical practice,
with limited however data in children. We report
data for emerging biomarkers which are mainly
derived from cells infiltrating the airway tissues and
the exhaled air, potentially reflecting different as-
pects of airway inflammation.

Sputum

Sputumcell counts and/or solublemediator assays
could serve as potential biomarkers of allergic
inflammation. Eosinophil perioxidase in sputum
samples has been shown to represent a valid and
repeatable surrogate marker of eosinophils and/or
eosinophil degranulation in adults with asthma and
COPD.70 However, relevant studies in children are
scant and most current speculations are
extrapolated from adult’s studies, while the currently
available biomarkers for Type 2 inflammation are
insufficiently sensitive and specific, even in adults.71

Moreover, sputum sampling is technically
challenging in children and procedures to process
and assess cells need specific technical
requirements, thus limiting the usefulness of the
specific biomarker mostly for research purposes.

Cellular biomarkers

A multivariate analysis showed that asthma con-
trol was independently associated with individual
fluctuations in sputum eosinophil count,72 although
a poor correlation between blood and sputum
eosinophil counts was revealed in children.71

Elevated sputum eosinophil count was linked to a
significantly shorter time to first exacerbation,
greater risk of exacerbation in one year of follow-
up73 and accelerated FEV1 decline.

74 Spontaneous
sputum eosinophilia (>3%) was recently reported
in severe asthma, however the concomitant
existence of food allergy in children is also
associated with higher FeNO and sputum
eosinophilia, suggesting enhanced eosinophilic
inflammation.75 Sputum basophil estimation may
represent an additional indicator of T2-high asthma
since it correlatedpositivelywith sputumeosinophils
and inversely with sputum neutrophils in one
study.76 There is no reliable marker of non-TH2
asthma endotype although sputum neutrophil
counting may have some value; exposure to certain
environmental conditions such as cold was associ-
ated with increased airway obstruction and upregu-
lation of sputum neutrophils.77
Potential soluble biomarkers

Vascular endothelial growth factor (VEGF), a key
inducer of angiogenesis, was found elevated in
induced sputum during acute pediatric asthma ex-
acerbations.78 Inverse correlations were
demonstrated between sputum high mobility group
box-1 (HMGB1) levels and pulmonary function
indices in severe asthma.79 Moreover, eosinophilic
asthma in children was associated with increased
expression of sputum clusterin, a sensitive cellular
biosensor of oxidative stress80 and thymus and
activation-regulated chemokine (TARC). The latter
correlated positively with sputum eosinophils, serum
total IgE, FeNO, and bronchodilator response and
inversely with FEV1/FVC.

81 In non-T2 pediatric
asthma, sputum overexpression of IL-10 and IFN-g,
TNF-a and thymic stromal lymphopoietin (TSLP) and
interleukin (IL)-26 protein reflected disease control
and could be potential biomarkers of severity.82

Exhaled breath condensate

Exhaled Breath Condensate (EBC), which was
introducedmore than 20 years ago, is a non-invasive
technique toassess airway inflammation. EBCmainly
consists of water vapor containing both volatile and
non-volatile compounds. Despite the promising
early results regarding its utility in the diagnosis and
monitoring of childhood asthma, high variability in
the sampling and analytical methods of EBC has
precluded its widespread clinical application. To
address this, the European Respiratory Society (ERS)
recently provided guidance on the standardization
of sampling, analyzing, and reporting of relevant
data.52 A variety of biomarkers in EBC have been
assessed, with generally mixed results.83 Hydrogen
ions (as pH), cytokines, markers of oxidative stress
(e.g., hydrogen peroxide), oxides of nitrogen and
leukotrienes are the most frequently examined
biomarkers in the available literature. However,
most of the published studies are cross-sectional,
include a small sample size and are characterized
by significant clinical and methodological hetero-
geneity.83,84 In addition, other factors which could
affect EBC composition such as concomitant upper
airway diseases or medications, should be also
considered.85 Therefore, future studies using
uniform definitions and standardized methodology
in the collection and analysis of EBC will provide
valuable insight in the potential of EBC as a
diagnostic and monitoring tool in children.
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New – upcoming (omics, breath biopsy)

Omics approaches, including genomics, tran-
scriptomics, epigenomics, proteomics, metab-
olomics, and microbiomics, have emerged as
promising tools for precisely endotyping asthma in
the last two decades. Studies have confirmed their
utility in differentiating patients with asthma from
healthy subjects, expanded our view regarding the
internal heterogeneity of asthma, enhanced our
understanding of asthma pathophysiology at the
cellular level and provided insights into the bio-
logical mechanisms, which may affect treatment
response.86 Nevertheless, small, and
heterogeneous samples, lack of standardization
and variations in analytical methods and lack of
longitudinal follow-up in the individual studies
have impeded clinical interpretation of the ob-
tained results.87 Of note, although single omics
approaches are thought to capture only a
dimension of the underlying disease process and
may be of limited clinical utility, only a limited
number of studies have conducted integrated
omics analyses. In specific, McGeachie et al
integrated metabolomic data with genome-wide
genotype, gene expression, and methylation data
of 20 asthmatic children and identified two impli-
cated pathways – arachidonic acid and linoleic
acid metabolism – in asthma control as well as
altered sphingolipid metabolism as an underlying
feature of uncontrolled asthma and cellular
response to albuterol.88 As asthma research
networks and cohorts are expanding and
methods to integrate omics data are growing,
multi-omics approaches in combination with clin-
ical features and laboratory parameters may allow
for accurate disease classification and imple-
mentation of individualized targeted treatment
options.89
COMMENTARY

Biomarkers use in diagnosing and monitoring
asthma during the COVID-19 pandemic

In December 2019 a new infectious disease
started in Wuhan, China, and the pathogen Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2)was identifiedas the cause.90Thispandemic
challenged the health care systems organization,
and the management of chronic diseases to
minimize risks of infection for both the medical
professionals and the patients. Elective healthcare
visits and procedures were postponed by
considering risk and benefits individually.91

In fact, with COVID-19-related lockdown,
asthma diagnosis evaluation and monitoring
changed significantly. Many consultations were
cancelled or turned into teleconsultations and ac-
cess to disease biomarkers changed. In allergy
diagnosis, skin prick tests were not recommended,
and, in asthma diagnosis and monitoring, pulmo-
nary function tests (PFTs) were cancelled or post-
poned, as these procedures could potentially
disseminate infectious particles by various mech-
anisms, including by generated aerosols.92 Clear
recommendations regarding the safe practice in
pulmonary function laboratories were made and
individual protective equipment and other safety
recommendations for performing PFTs must still
be followed.93

The real-life situation experienced by physicians
managing asthma patients during the first lock-
down of the COVID-19 pandemic, was assessed in
a survey promoted by the EAACI asthma section,
that was completed by 339 healthcare pro-
fessionals from 52 countries. 79% of follow-up
consultations were replaced by phone calls,
whereas only 49% of newly referred patients
attended the clinic. 62%, 76%, 66%, 76%, and 87%
of responders did not conduct spirometry, impulse
oscillometry, bronchodilator test, FeNO, or meth-
acholine provocation, respectively, for asthma
diagnosis in adults, with similar rates in children. In
the paediatric patients, 56% of the PFT were
cancelled. About 3/4 of responders based the initial
asthma diagnosis and the prescription of inhaled
therapy on clinical parameters only and PFT were
used in only 29% of cases to monitor asthma
worsening. The authors considered that all neces-
sary resources should be allocated to ensure the
performance of PFT in asthma management.94

In another online survey, including 91 physi-
cians, members of the Pediatric Asthma in Real Life
(PeARL) think tank and the World Allergy Organi-
zation (WHO) Pediatric Asthma Committee, caring
for an estimated population of more than 133 000
children with asthma, it was found that COVID-19
significantly impacted paediatric asthma services:

https://doi.org/10.1016/j.waojou.2022.100727
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39% ceased physical appointments, 47% stopped
accepting new patients, and 75% limited patients’
visits. Virtual clinics and helplines were launched in
most centers. Better than expected disease control
was reported in 20% of patients, whereas control
was negatively affected in only 10%. Children with
asthma do not appear to be disproportionately
affected by COVID-19, and clinical departments
have rapidly responded to the pandemic by
limiting and replacing physical with virtual ap-
pointments.95 Finally, in the multinational PeARL
childhood asthma cohort, it was evaluated the
impact of the COVID-19 pandemic on asthma ac-
tivity. It was confirmed that during the pandemic,
children with asthma experienced improved dis-
ease control. Pulmonary function during the
pandemic compared with the year before was
evaluated in a subgroup of asthmatic children;
paired analyses suggested that pre-
bronchodilation FEV1 and PEF were significantly
improved during the pandemic, while there was
also a non-significant trend for improved post-
bronchodilatation FEV1.

96

Management of asthma patients during the cur-
rent pandemic peaks was mostly supported by
clinical data and with exceptional use of in vivo and
in vitrobiomarkers to achieve thebest control of this
chronic disease. In the future, most of the allergy
community will benefit from e-health, including not
only e-consultations but also other health digital
tools allowing biomarkers acquisition, always with
strict quality control and regulations.
Cost and availability in different settings/
developing countries

While diagnosis of asthma in children has been
largely considered by recurrence of indicative
signs and symptoms, objective measurements and
procedures emerge as a real unmet need.

Classical biomarkers are available for adult
population not only for diagnosis but also for
phenotyping patients, to provide the most appro-
priate management, since “one size fits all” is no
longer supported for asthma treatment, not even
in children.

However, the chance for objective diagnosis
and phenotyping in pediatric population is
restricted by limited access to biomarkers partic-
ularly in developing sites, while availability is not
global either.

We describe biomarkers available in different
countries (reportedby representative specialists from
cited places), with equivalent cost in euros, as shown
in Table 2. We observe that total IgE is the only
biomarker available everywhere, with a wide range
of cost, from a very accessible 3V in Brazil to 45V in
the United States. The cost of Prick Test emerges as
widely available at an affordable cost, from 6V in
Egypt going up to 100V in México. The cost of
specific IgE is also offered at most places but at
higher cost, from 25V in Egypt to tenfold higher
value in Argentina and Mexico. Molecular diagnosis
is not generally available, with a range cost of 75V
to almost 700V, depending on platform and country.

Pulmonary function tests (spirometry) are also
available everywhere at a range cost of less than
8V in Japan to 50V in Mexico. However, a much
cheaper test as Peak Flow is free of charge in Egypt
to 5V in Greece but is not used in some countries.
Also, Impulse Oscilometry is available in same
places at 5V in Egypt to 15V in Greece.

The most restricted access corresponds to a)
Exhaled Breathe Condensate that is not offered to
children anywhere, b) Sputum Eos is offered only in
JapanandGreece, andc) Bronchial ProvocationTest
is performed in several specialized centers across
Asia, Europe,andNorthandSouthpartsof theworld.
Respective costs through bronchial hyper-
responsiveness testing with methacholine are: in
Japan at 15V, 480 Spain at 20V, 35V in Greece,
while in the United States approximately $880 when
billed to insurance companies, and costs to the pa-
tient will vary.

Lastly, FeNO is possible to be measured in both
research and clinical settings (mostly in Europe). A
rough estimation of the cost is 11V in Japan up to
50V in Mexico. Currently sensors are available
even for home monitoring.

In conclusion, the most accessible tests are
related to allergy markers, with the exemption of
molecular components, while tests related to T2
inflammation is scarcely reachable for pediatric
asthma evaluation, no matter its cost.
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Differences in the use of biomarkers for
monitoring pediatric asthmatic patients between
Primary Practitioners, Pediatricians, and
Specialists

Asthma patients often have a poorly controlled
disease, attributed to poor adherence to treatment
andwrong inhalation technique (50–90%and70–80%
of the patients respectively), coupled with other fac-
tors suchashigh tolerance toasthmasymptomsor the
inability to perceive the chronic nature of the dis-
ease.97,98 Primary care doctors should address these
treatable traits, as asthma control visits are highly
irregular in different countries, seeking care only
when there is an exacerbation.99,100 The primary
care doctor, pediatrician and specialist should be
able to make the diagnosis of asthma in any child
with asthma symptoms by applying a
multidimensional approach. The implication of tools
such as the validated questionnaires to assess
asthma control and quality of life and lung function
determination, should be available and known to all
doctors dealing with children with asthma-
associated symptoms.101 Adherence, inhalation
technique and correct dose of the drug must be
verified. Of note, the primary care physician or
pediatrician has the ability to recognize, avoid or
eliminate triggering factors (eg, comorbidities), and
indicate non-pharmacological interventions.21

Nevertheless, symptoms in children are often
nonspecific, while even following diagnosis,
monitoring can be challenging. In case of
inadequate asthma control, referral to an asthma
specialist optimizes the diagnostic approach and
treatment. The use of noninvasive biomarkers
potentially aids at phenotyping the asthmatic child
and guide a more personalized treatment according
to the pathophysiological mechanism, especially in
patients with poor asthma control (difficult-to-treat
asthma or severe asthma).102
Natural history/patterns: assessing the
longitudinal aspect

Time isoftenunderestimated regarding theclinical
use of biomarkers. Cost and other logistic consider-
ations underpin the most common scenario of
biomarker use: that of a one-time, cross-sectional
measurement. Clearly however, biomarker levels
fluctuate in time,103 in some cases rapidly and
extensively. Consequently, clinical interpretation of
any biomarker should be aware of the timing and
possible trajectories of the measure. Both FeNO and
lung function measures fluctuate, to some extent in
parallel or preceding clinical symptoms and
signs.104 It is therefore important to appreciate
change rather than absolute values in these
measures; this is well accepted when it comes to
e.g. peak flow variability in time – a surrogate for
asthma activity, but also in regard to FeNO values
for which variability might be within the overall
"normal" range, however with significant fluctuations
in between individual measurements.11 Another
frequent case where a fluctuating biomarker may
influence management, is the level of total IgE when
considering initiation of anti-IgE. Considering that
the dosage schedule of anti-IgE depends on
baseline total IgE levels, the variation of available
values may generate a challenge in the clinical
setting and requires medical judgement beyond the
formal algorithm. Blood eosinophils may also
fluctuate, therefore "cut-off" values of 150 or
300 cells/mm3, should be seen with some flexibility,
while patient values need to be considered.105 Of
note, both blood differentials as well as IgE levels
may increase in the context of an infection – and
possible exacerbation – in allergic children;106

therefore, to the extent possible, values obtained
away from such events should be considered.
Another longitudinal aspect is normal growth,
particularly for the preschool age. While FeNO
increases with age,9 cut-offs are not age specific. In
all, the use of biomarkers in children with asthma
should be incorporated in a clear, pre-designed,
monitoring plan.
CONCLUSION

Although asthma represents one of the most
common chronic diseases in childhood, confirming
diagnosis and follow up, based on solely clinical
grounds can be challenging.The implementation of
non-invasive biomarkers for assessment and moni-
toring of paediatric patients with asthma, has been
widely studied, however, only a proportion of them
are currently included in the clinical practise.

In the final and in the post-pandemic phases, it is
time to revalue the use of biomarkers in the initial
assessment and monitoring of asthmatic children,

https://doi.org/10.1016/j.waojou.2022.100727


USA Greece Japan Brazil Spain Argentina Egypt Mexico

Fractional exhaled Nitric Oxide 35 20 10.8 N/A
(research
only)

22 N/A
(research
only)

N/A
(research
only)

50

Peak Flow Measurement N/A 5 N/A N/A N/A 3 No
charge

N/A

Spirometry 200 10 7.6 25 10.6 20 5 40

Impulse Oscilometry 12 000 (the whole
equipment)

15 11.5 N/A 10 N/A 5 N/A

Bronchial Provocation
Test

$880 when billed to
insurance companies;
cost to the patient

varies

35 15.4 N/A 20 N/A N/A
(research
only)

N/A
(research only)

Total IgE 45 12 7.7 3 7.5 10 6 12

Specific IgE
(10 allergens)

400 120 84.6 30 80 250 25 250

Skin Prick Test
(10 allergens)

50 20 12.3 N/A 10 30 6 100

ImmunoCAP ISAC Test 400 350 N/A N/A 120 N/A N/A 695

ALEX Test N/A 150 N/A 75 N/A N/A 391

Sputum eosinophils N/A 5 1.2 N/A N/A N/A N/A
(research
only)

N/A

Exhaled Breathe Condensate N/A N/A N/A N/A N/A N/A N/A N/A

Table 2. Cost (in euros) of biomarkers and diagnostic procedures for pediatric asthma diagnosis. N/A: no data available from this country for this specific evaluation
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respecting best practices, and ensuring safety mea-
sures for both health professionals and patients.
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