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A B S T R A C T

More than one pathway is involved in disease development and progression, and two or more pathways may be
interconnected to further affect the disease onset, as functional proteins participate in multiple pathways. Thus,
identifying cross-talk among pathways is necessary to understand the molecular mechanisms of multiple mye-
loma (MM). Based on this, this paper looked at extracting potential pathway cross-talk in MM through an
integrative approach using Monte Carlo cross-validation analysis. The gene expression library of MM (accession
number: GSE6477) was downloaded from the Gene Expression Omnibus (GEO) database. The integrative ap-
proach was then used to identify potential pathway cross-talk, and included four steps: Firstly, differential ex-
pression analysis was conducted to identify differentially expressed genes (DEGs). Secondly, the DEGs obtained
were mapped to the pathways downloaded from an ingenuity pathways analysis (IPA), to reveal the underlying
relationship between the DEGs and pathways enriched by these DEGs. A subset of pathways enriched by the
DEGs was then obtained. Thirdly, a discriminating score (DS) value for each paired pathway was computed.
Lastly, random forest (RF) classification was used to identify the paired pathways based on area under the curve
(AUC) and Monte Carlo cross-validation, which was repeated 50 times to explore the best paired pathways.
These paired pathways were tested with another independently published MM microarray data (GSE85837),
using in silico validation. Overall, 60 DEGs and 19 differential pathways enriched by DEGs were extracted. Each
pathway was sorted based on their AUC values. The paired pathways, inhibition of matrix metalloproteases and
EIF2 signaling pathway, indicated the best AUC value of 1.000. Paired pathways consisting of IL-8 and EIF2
signaling pathways with higher AUC of 0.975, were involved in 7 runs. Furthermore, it was validated con-
sistently in separate microarray data sets (GSE85837). Paired pathways (inhibition of matrix metalloproteases
and EIF2 signaling, IL-8 signaling and EIF2 signaling) exhibited the best AUC values and higher frequency of
validation. Two paired pathways (inhibition of matrix metalloproteases and EIF2 signaling, IL-8 signaling and
EIF2 signaling) were used to accurately classify MM and control samples. These paired pathways may be po-
tential bio-signatures for diagnosis and management of MM.

1. Introduction

Multiple myeloma (MM) is an incurable cancer of plasma cells,
caused by aberrant expansion of monoclonal plasma B cells in the bone
marrow [1]. MM accounts for 10% of all hematological cancers, and is
characterized by wide clinical and pathophysiologic heterogeneities,
with lethal outcomes. The median survival time of MM patients is 7–8
years [2]. Thus, a better understanding of MM biology will aid in de-
veloping new therapeutic modalities that could potentially cure MM.

Many advances in the understanding of MM pathogenesis have been
the result of major developments in genomic technologies [3, 4]. In
recent years, genomic technologies identified certain disease-related
biomarkers [5,6]. For example, Leone et al. [7] have demonstrated that

CDKN2C plays an important role in the progression and clinical out-
come of MM. Jagani et al. [8] have indicated that Bmi-1 is crucial for
MM growth. However, the reproducibility and overlap of the extracted
genes are poor. Generally, gene biomarkers obtained from gene-based
classification methods are often produced independently. Due to this,
the gene signatures might not synergistically improve the overall clas-
sification ability.

In an attempt to overcome these shortcomings, it is important to
understand the complicated interactions between genes, to help eluci-
date essential principles of cellular systems and the disease machinery
[9]. To obtain a clear interpretation of genomic results, pathway ana-
lysis is the first criteria to identify abnormal pathways, to shed light on
the potential biology of genes, thereby decreasing complexity and

http://dx.doi.org/10.1016/j.jbo.2017.08.001
Received 28 April 2017; Received in revised form 1 August 2017; Accepted 10 August 2017

⁎ Corresponding author.
E-mail address: liugoode@163.com (C. Liu).

Journal of Bone Oncology 8 (2017) 8–12

Available online 12 August 2017
2212-1374/ © 2017 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/22121374
http://www.elsevier.com/locate/jbo
http://dx.doi.org/10.1016/j.jbo.2017.08.001
http://dx.doi.org/10.1016/j.jbo.2017.08.001
mailto:liugoode@163.com
http://dx.doi.org/10.1016/j.jbo.2017.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbo.2017.08.001&domain=pdf


promoting explanatory power [10]. Moreover, several studies have
reported that pathways-based classifiers are more reproducible and
usually achieve better results, as compared to the single gene bio-
markers-based classifier [11].

Remarkably, more than one pathway is involved in the development
of cancer and its progression, due to the complex characterization of
biological systems. Two or more pathways may be interconnected to
further affect the disease onset, as functional proteins might participate
in multiple pathways [12]. Therefore, identifying cross-talk between
pathways is important to understand the molecular mechanisms of MM.
Intuitively, different pathways influence each other, but at present,
there is no reliable method to quantify the amount of cross-talk be-
tween paired pathways [13]. An integrative approach using Monte
Carlo cross-validation has been created, to quantify the cross-talk be-
tween paired pathways.

Therefore, this study considers gene expression profile and biolo-
gical pathway data as study objects, and utilizes Monte Carlo cross-
validation analysis to detect pathway cross-talk in MM. The pathway
cross-talk may be potential signatures for early detection and treatment
of MM.

2. Materials and methods

The integrative approach using Monte Carlo cross-validation
method comprised of four steps: Firstly, identification of differentially
expressed genes (DEGs) between MM and healthy control samples was
conducted. Secondly, the DEGs obtained were mapped to the pathways
downloaded from the database of ingenuity pathways analysis (IPA), to
reveal the relationship between DEGs and pathways enriched by these
DEGs. A subset of pathways enriched by DEGs were also required.
Thirdly, a discriminating score (DS) value for each pair of pathways was
computed. Lastly, random forest (RF) classification was used to identify
paired pathways with high cross-talk, and Monte Carlo cross-validation
analysis was then repeated 50 times, to find the best paired pathways.
During the analysis, all steps were repeated 50 times. After 50 runs, the
top 10 paired pathways with the best AUC were extracted and were
considered as significant paired pathways. These best paired pathways
were tested with another independently published MM microarray data
(GSE85837) using in silico validation.

2.1. Acquisition of gene expression profile

The gene expression library of MM (accession number: GSE6477)
[14] was retrieved from Gene Expression Omnibus (GEO) database,
based on the GPL96 platform of [HG-U133A]Affymetrix Human
Genome U133A Array. There were 150 MM samples and 12 healthy
donor plasma cell samples, in the GSE6477 profile. The repeated probes
were first eliminated, after obtaining the microarray profile. The re-
maining probes were then mapped to the genomics, to further obtain
human gene symbols. Finally, 12,437 genes were identified for sub-
sequent analysis.

2.2. DEGs identification

During the research, “normalized quantile” was used to conduct
normalization on mRNAs, with an average value determined across 162
samples [15]. Genes with values greater than 0.25-fold quantile average
across all samples were extracted. Compared to several other estima-
tors, the quantile-adjusted conditional maximum likelihood (qCML)
was the most reliable in terms of bias, on a wide range of conditions,
and performed best in smaller samples with a common dispersion
quotient [16]. The qCML of edgeR package from Bioconductor was used
to verify if these genes were expressed in a differential manner. Next,
raw P values were corrected using a Benjamini-Hochberg method,
based on a false discovery rate (FDR) [17]. Genes were considered
differentially expressed when FDR was less than 0.001 and |log fold

change (FC)|was more than 2.

2.3. Pathway enrichment analysis

Ingenuity pathways analysis (IPA), is widely utilized as a pathway
database to analyze gene expression profile in the context of known
biological responses and higher-order response pathways. In the present
study, pathway enrichment analysis for DEGs was implemented using
Fisher's exact test based on IPA tool, with the goal to extract significant
pathways enriched by DEGs between MM and control samples. Hence,
589 biological pathways deposited in the IPA database were first
downloaded. After the Fisher's exact test was applied to the genes in the
IPA pathways and DEGs, the pathways enriched with P-value less than
0.01 were extracted. Later, the Benjamini-Hochberg procedure was
used to correct the P values. Differential pathways were extracted based
on the significance of FDR<0.05.

2.4. DS calculation for pathway cross-talk

DS is an index used to compare the expression levels in the subgroup
of samples showing amplification and in samples without amplification
[18]. Thus, DS was employed to analyze the pathway cross-talk, in this
paper. The DS was counted by comparing the gene expression levels of
each paired pathway enriched by DEG in each sample, based on the
description in the study by Cava et al. [19]. Generally, DS score im-
plicates the relationships between paired pathways, and a larger DS
suggests higher difference of activity between pathways.

2.5. Extracting the best paired pathways

RF created by Breiman [20], is a statistical method used to handle
two issues of variable selection. To classify this methodology, an RF
classification model was applied on the paired pathways based on the
DS values of each sample. This helped to classify both MM and the
control samples. AUC was calculated by a 10-fold cross-validation
method, based on the following indexes: mtry and ntree. The mtry (the
number of variables randomly sampled as candidates at each split) was
equivalent to sqrt (p); p was the number of variables in the data matrix;
and ntree (the number of trees grown) was equal to 500. All AUC values
were then ranked in descending order, and the top 10 paired pathways
were selected.

As documented in the validation analysis, the sample size in the
training set was generally larger than that in the testing set. Of note, is
the ratio of 6 to 4, which is a common distribution proportion. For
example, Zhang et al. [21] randomly selected 60% as the training set
and the remaining 40% as the testing data. Thus, in this study, the
Monte Carlo cross-validation method was employed to randomly select
60% of the original microarray data comprising of training data, and
the remaining 40% was assigned to the testing data. This step was re-
peated 50 times, randomly forming new training and test datasets each
time. For each bootstrap, DEGs and pathway enrichment analysis for
DEGs, and a DS for the paired pathways was conducted. For each
bootstrap, a training set was used to detect a DS for the top 10 paired
pathways with the best AUC value between the two groups. For each
bootstrap, a testing partition was employed to confirm the top 10 paired
pathways. At the end of 50 runs, the list of the top 10 paired pathways
sorted by descending rank were selected, such that each pathway pair
was extracted in 50 bootstraps. Ultimately, the top 10 paired pathways
ranked for all 50 runs, were regarded as significant.

2.6. In silico validation with independent MM microarray data

To predict these best paired pathways, other MM data of 15 patients
with MM and 13 control patients, was obtained from the publicly
available microarray dataset GSE85837. For validation, all steps and
selection criteria were the same as the above analysis.
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3. Results

3.1. Identification of DEGs and pathway enrichment analysis

After normalization analysis, 1051 genes were obtained that had
greater than 0.25-fold quantile average across all samples. From the
differential expression analysis of MM and control samples, 60 DEGs
with significance set as FDR<0.001 and |log FC|> 2 (as shown in
Table 1) were identified. Table 2 displays 19 significant pathways en-
riched by DEGs, their FDR values, number of genes for each pathway,
and the count of common genes between DEGs and genes in the path-
ways.

3.2. Selection of best paired pathways

To evaluate the classification ability of this methodology, an RF
model was used on the paired pathways to compute the AUC values
based on the DS values, using a 10-fold cross-validation method. Each
pathway was then sorted out based on its corresponding AUC values. A
total of 32 paired pathways with AUC not less than 0.850 were iden-
tified. In literature, AUC greater than 0.7 is regarded as good, and an
AUC of 1.0 denotes a perfect classification [22]. Higher AUC values
indicate good classification of disease, that is, higher AUC indicates a
stronger pathway correlation with the disease. Thus, the focus was only
on pathways with the 10 best AUC values, selected by Colaprico et al.
[23]. The top 10 paired pathways that had the best classification ability
for MM and control samples for all 50 runs, are displayed in Table 3.
The paired pathways, inhibition of matrix metalloproteases and EIF2
signaling, obtained the best AUC value of 1.000. Moreover, the paired
pathways of IL-8 signaling and EIF2 signaling also revealed good per-
formance, with 0.975 AUC. Similar performance was found in the
paired pathway of IL-8 signaling pathway and regulation of eIF4 and
p70S6K signaling pathway with AUC of 0.939.

Following this, the top 10 paired pathways with occurrence

frequency of not less than 5 in the 50 runs, were identified. Based on
this result, it was found that the PI3K signaling pathway of B lym-
phocytes and EIF2 signaling pathway were involved in 27 bootstraps;
the paired pathways (inhibition of matrix metalloproteases and EIF2
signaling) appeared in 10 runs, and the paired pathways (PI3K sig-
naling in B lymphocytes; regulation of eIF4 and p70S6K signaling) ex-
isted in 10 bootstraps; and IL-8 signaling and EIF2 signaling pathways
were involved in 7 runs. Specific information is shown in Table 4.

Table 1
List of differentially expressed genes (DEGs).

Genes LogFC FDR Genes LogFC FDR

RNASE2 −4.2668 1.25E-24 LMO2 −2.02467 1.26E-04
CLC −4.94929 1.05E-13 CD24 −2.24512 1.65E-04
PRG3 −3.90837 2.93E-12 MRC1 −2.06384 2.36E-04
RNASE3 −4.31871 5.08E-12 CRISP3 −2.73151 2.55E-04
PRG2 −5.93443 1.01E-09 MS4A3 −2.17214 2.61E-04
MPO −2.52454 8.15E-09 ZNF358 2.042213 2.66E-04
DEFA4 −2.22389 1.70E-08 MS4A6A −2.21587 3.54E-04
ELANE −4.39842 1.94E-08 IL4R −2.1392 3.74E-04
EPX −3.18113 9.02E-08 PXDC1 −2.08509 4.67E-04
ARMC7 2.314169 2.21E-07 CD320 2.241042 4.83E-04
CAMP −3.0549 9.82E-07 CD163 −2.52643 5.17E-04
IGHG1 −3.7307 2.23E-06 LUM −3.58203 5.20E-04
CTSH −2.87845 3.55E-06 CXCL8 −2.40243 5.26E-04
AIF1 −2.16656 4.43E-06 NOD2 −2.95453 5.26E-04
LST1 −2.19262 8.38E-06 S100A8 −2.70373 5.61E-04
IGLJ3 −4.49176 1.13E-05 CXCL2 −2.71229 5.61E-04
CLPP 2.32109 1.65E-05 IGHD −4.07084 5.84E-04
LTF −3.89554 1.65E-05 HMOX1 −2.36868 5.99E-04
FABP4 −2.79511 3.18E-05 MS4A4A −3.38126 6.11E-04
LYVE1 −2.9819 3.18E-05 HIF1A −2.13129 6.18E-04
NRP1 −2.08155 3.34E-05 VNN2 −2.4071 6.18E-04
S100A12 −2.16333 3.34E-05 MAFB −3.4547 6.41E-04
CEACAM8 −3.52708 4.20E-05 ALDH1A3 −2.01185 6.80E-04
IGLV1-44 −4.8402 6.64E-05 LHFP −2.18934 6.98E-04
KCTD12 −2.56891 6.99E-05 S100A9 −2.3273 8.20E-04
CD14 −3.15551 7.82E-05 MNDA −3.14832 9.14E-04
RPS11 2.079562 8.44E-05 HLA-DPA1 −2.64283 9.63E-04
IGK −3.99784 9.70E-05 TGFBI −2.93660 9.89E-04
P2RY13 −2.46684 1.05E-04 MAGEA4 2.361871 9.92E-04
DTX2 2.071491 1.05E-04 MROH7 −2.03615 9.95E-04

FC, fold change; FDR, false discovery rate.

Table 2
Pathways enriched by differentially expressed genes (DEGs).

Pathway FDR Genes in
pathway

Number of
common genes

Granulocyte Adhesion and
Diapedesis

6.09E-11 163 4

EIF2 Signaling 2.88E-10 173 6
Atherosclerosis Signaling 1.32E-07 119 1
Hepatic Fibrosis / Hepatic Stellate

Cell Activation
1.66E-07 137 2

LXR/RXR Activation 1.78E-07 121 1
T Helper Cell Differentiation 2.91E-06 62 3
Bladder Cancer Signaling 5.83E-06 86 5
Role of Macrophages 2.23E-05 282 4
Complement System 4.96E-05 32 3
Altered T Cell and B Cell

Signaling in Rheumatoid
Arthritis

6.80E-05 76 2

IL-8 Signaling 6.96E-05 183 1
PI3K Signaling in B Lymphocytes 1.01E-04 122 3
Regulation of the Epithelial-

Mesenchymal Transition
Pathway

1.17E-04 175 1

Neuroprotective Role of THOP1
in Alzheimer's Disease

3.38E-04 40 1

Role of Osteoblasts 5.18E-04 214 2
Acute Myeloid Leukemia

Signaling
5.48E-04 76 3

ILK Signaling 7.71E-04 181 2
Macropinocytosis Signaling 8.53E-04 68 2
LPS/IL-1 Mediated Inhibition of

RXR Function
9.14E-04 210 2

FDR, false discovery rate; common gene, the overlap between DEGs and genes in the
pathway.

Table 3
Top 10 pairs of pathways with AUC value.

Pairs of pathways AUC

(1a) Inhibition of matrix metalloproteases 1.000
(1b) EIF2 signaling
(2a) IL-8 signaling 0.975
(2b) EIF2 signaling
(3a) IL-8 signaling 0.939
(3b) Regulation of eIF4 and p70S6K signaling
(4a) IL-8 signaling 0.927
(4b) FGF signaling
(5a) PI3K signaling in B lymphocytes 0.910
(5b) EIF2 signaling
(6a) PI3K signaling in B lymphocytes 0.900
(6b) FGF signaling
(7a) Colorectal cancer metastasis signaling 0.898
(7b) EIF2 signaling
(8a) Altered T cell and B cell signaling in rheumatoid arthritis 0.897
(8b) EIF2 signaling
(9a) Inhibition of matrix metalloproteases 0.892
(9b) Regulation of eIF4 and p70S6K signaling
(10a) EIF2 signaling 0.890
(10b) TREM1 signaling

AUC, area under the curve.
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3.3. In silico validation with independent MM microarray data

To validate the best paired pathways, independent MM data from
the publicly available microarray dataset of GSE85837, was identified.

Table 5 shows the top 10 paired pathways with the best classifica-
tion for MM and control samples for all 50 runs. The paired pathways,
inhibition of matrix metalloproteases and EIF2 signaling pathways had
the best AUC value of 0.971. Moreover, the paired TREM1 signaling
and EIF2 signaling pathways also indicated high performance, with an
AUC of 0.968. Similar performance levels were found in the paired IL-8
signaling and EIF2 signaling pathways, with an AUC of 0.961. These
results further demonstrate that paired pathways are useful in diag-
nosing MM.

Table 6 shows the top 10 paired pathways with occurrence fre-
quency ≥ 5 in the 50 runs. From this table, it can be seen that the
paired pathways of caveolar-mediated endocytosis signaling and agra-
nulocyte adhesion, as well as diapedesis were involved in 45 bootstraps.
The paired pathways (inhibition of matrix metalloproteases and EIF2
signaling) appeared in 43 runs, and the paired pathways involved in 37
bootstraps were antigen presentation and IL-6 signaling pathways. Also,
IL-8 signaling and EIF2 signaling pathways were involved in 31 runs.
Significantly, based on the above results, it was observed that a total of

5 paired pathways were the common ones, which included EIF2 sig-
naling/inhibition of matrix metalloproteases, EIF2 signaling/IL-8 sig-
naling, EIF2 signaling/IL-17A signaling in fibroblasts, EIF2 signaling/
IL-10 signaling, and PI3K signaling in B lymphocytes/GABA receptor
signaling.

4. Discussion

Pathway analysis has become the preferred approach to understand
biological processes of genes, as this kind of analysis promotes scientific
validity and explanation [24]. Generally, different pathways involved
in several biological processes act in a synergistic way. Extraction of
pathway cross-talk makes data available to study pathway functions in
greater detail, relative to single pathways [25]. However, traditional
pathway analysis methods mainly focus on individual dysregulated
pathways, while pathway interactions are frequently not considered
[26]. Thus, in this paper, an integrative approach with Monte Carlo
cross-validation analysis based on the DS values, was used to identify
the best paired pathways that could distinguish MM from control
samples. Ultimately, a total of 32 paired pathways with AUC not less
than 0.850, among MM and control samples were identified. Never-
theless, only the top 10 paired pathways with higher AUC were focused
on.

In this study, inhibition of matrix metalloproteases and EIF2 sig-
naling pathways obtained the best AUC value of 1.000, with an oc-
currence frequency of 10, in analyzing GSE6477. In silico validation,
inhibition of matrix metalloproteases and EIF2 signaling obtained the
best AUC value of 0.971, with an occurrence frequency of 43. Matrix
metalloproteinases, as a group of zinc-dependent endopeptidases in-
volved in the degradation of extracellular matrix (ECM), exert im-
portant functions in tissue remodeling, and are connected with various
physiological processes including migration, invasion, angiogenesis,
and regulation of inflammatory processes [27–29]. Angiogenesis and
inflammation are the hallmarks of cancer [30,31]. Moreover, suppres-
sing matrix metalloproteases initially appeared to be a promising
therapeutic approach for cancer [32]. Significantly, the functions of
matrix metalloproteases are influenced by reactive oxygen species
(ROS). The inflammatory response at the tumor site creates large
amounts of ROS that are produced by activated neutrophils and mac-
rophages. Moreover, EIF2 alpha kinase has been indicated to control
ROS levels [33]. Hence, the cross-talk between inhibition of matrix
metalloproteases and EIF2 signaling pathways may play a crucial role
in the etiology of MM.

Another set of paired pathways, notably IL-8 signaling and EIF2
signaling pathways, were involved in this study for GSE6477 in 7 runs,
with an AUC of 0.975. In silico validation using GSE85837, IL-8

Table 4
Top 10 pairs of pathways based on occurrence number not less than 5.

Pathway pairs Total occurrence
number

PI3K Signaling in B Lymphocytes; EIF2 Signaling 27
Inhibition of Matrix Metalloproteases; EIF2 Signaling 10
PI3K Signaling in B Lymphocytes; Regulation of eIF4

and p70S6K Signaling
10

Colorectal Cancer Metastasis Signaling; EIF2
Signaling

8

IL-8 Signaling; EIF2 Signaling 7
PI3K Signaling in B Lymphocytes; GABA Receptor

Signaling
7

Role of NFAT in Regulation of the Immune Response;
EIF2 Signaling

6

EIF2 Signaling; IL-17A Signaling in Fibroblasts 6
Granulocyte Adhesion and Diapedesis; EIF2 Signaling 6
Leukocyte Extravasation Signaling; EIF2 Signaling 5
EIF2 Signaling; IL-10 Signaling 5
MSP-RON Signaling Pathway; EIF2 Signaling 5

Table 5
Top 10 pairs of pathways with AUC value, validated using the other MM microarray data.

Pairs of pathways AUC

(1a) Inhibition of matrix metalloproteases 0.971
(1b) EIF2 signaling
(2a) TREM1 signaling 0.968
(2b) EIF2 signaling
(3a) EIF2 signaling 0.961
(3b) IL-8 signaling
(4a) IL-10 signaling 0.956
(4b) EIF2 signaling
(5a) Antigen Presentation Pathway 0.955
(5b) LPS/IL-1 Mediated Inhibition of RXR Function
(6a) Caveolar-mediated Endocytosis Signaling 0.955
(6b) Agranulocyte Adhesion and Diapedesis
(7a) Regulation of eIF4 and p70S6K Signaling 0.953
(7b) Actin Nucleation by ARP-WASP Complex
(8a) Antigen Presentation Pathway 0.947
(8b) IL-6 Signaling
(9a) PI3K Signaling in B Lymphocytes 0.945
(9b) GABA Receptor Signaling
(10a) EIF2 Signaling 0.944
(10b) Actin Cytoskeleton Signaling

AUC, area under the curve.

Table 6
Top 10 pairs of pathways based on occurrence number not less than 5, selected from the
validated microarray data.

Pathway pairs Total occurrence
number

Caveolar-mediated Endocytosis Signaling;
Agranulocyte Adhesion and Diapedesis

45

EIF2 Signaling; Inhibition of Matrix Metalloproteases 43
Antigen Presentation Pathway; IL-6 Signaling 37
EIF2 Signaling; IL-8 Signaling 31
EIF2 Signaling; Regulation of eIF4 and p70S6K

Signaling
31

Antigen Presentation Pathway; LPS/IL-1 Mediated
Inhibition of RXR Function

21

EIF2 Signaling; IL-17A Signaling in Fibroblasts 11
EIF2 Signaling; IL-10 Signaling 9
Regulation of eIF4 and p70S6K Signaling; Actin

Nucleation by ARP-WASP Complex
9

PI3K Signaling in B Lymphocytes; GABA Receptor
Signaling

5
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signaling and EIF2 signaling pathways were obtained, with an AUC
value of 0.961 and an occurrence frequency of 31. As reported, multiple
cytokines or chemokines, play an important role as mediators of para-
crine signals between the tumor and multifarious components of the
tumor microenvironment, which eventually results in tumor growth
and progression [34,35].

As a proinflammatory cytokine, IL-8 is a soluble mediator released
by tumor cells that simultaneously exerts key functions in autocrine and
paracrine modes in the tumor microenvironment. Significantly, in
cancer tissues, tumor-derived IL-8 has been indicated to enhance tumor
cell survival, proliferation, as well as migration based on autocrine
activity, while inducing angiogenesis in endothelial cells due to para-
crine activity [36,37]. Moreover, there is significant epithelial–me-
senchymal transition (EMT) during carcinoma progression [38]. Of
note, Romaine et al. [39] have implicated that IL-8 signaling pathway is
critical in the EMT process of human carcinoma cells. In addition, in
MM patient plasma cells, IL-8 receptors (CXCR1 and CXCR2) were
observed, and IL-8 parallel MM disease activity was related to bone
marrow angiogenesis [40]. Furthermore, EIF2 signaling pathway has
been reported to mediate proinflammatory cytokine expression [41].
Thus, it is speculated that the regulation of IL-8 and EIF2 signaling
pathways may be important in the onset and progression of MM.

However, several limitations should be noted. To begin with, this
study was a preliminary study of molecular mechanisms of MM. This
work was conducted based on the bioinformatics approach, while the
conclusions have not been verified using experiments. Further in-
vestigations are required to reveal changes in MM pathways, using
animal experiments or patients’ tissues.

In conclusion, this analysis sheds new light on the involvement of
pathway cross-talk in the pathology of MM. However, the identified
pathway cross-talk require more functional studies in later work.
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