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The triponderal mass index 
as a measure of adiposity 
in pediatric survivors of acute 
lymphoblastic leukemia: 
a cross‑sectional study
Alissa W. Zhang1,2,3, John T. Wiernikowski1,4, Carol Portwine1,4, Lehana Thabane5,6,7,8 & 
M. Constantine Samaan1,2,5,9*

Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer. Treatments of 
ALL predispose survivors to obesity, which increases the risk of cardiovascular disease and diabetes. 
The hallmark of obesity is excess fat mass, and adiposity is a superior predictor of cardiometabolic 
risk when compared to Body Mass Index (BMI), yet clinical measures of adiposity in children are 
lacking. The Tri‑Ponderal Mass Index (TMI) (kg/m3) is a more accurate adiposity measure compared 
to BMI z‑score in the general pediatric population. This cross‑sectional study aimed to validate TMI 
as an adiposity measure against DEXA scan‑derived adiposity, and to compare it to BMI z‑score, 
in pediatric ALL survivors. This study was a retrospective chart review of pediatric ALL survivors 
diagnosed between 2004 and 2015 at McMaster Children’s Hospital, a tertiary pediatric center in 
Ontario, Canada. One hundred and thirteen patients (Female n = 55, 48.70%) were included, and 
adiposity was measured using DEXA scans. Exploratory partial correlations and linear regression 
analyses were adjusted for age, sex, ethnicity, and ALL risk status. Both TMI and BMI z‑score 
correlated with the DEXA‑measured fat mass percentage (FM%) (partial correlation TMI versus FM% 
r = 0.56; p value < 0.0001; BMI z‑score versus FM% r = 0.55; p value < 0.0001). In regression analyses, the 
association of TMI was not inferior to BMI z‑score in assessing adiposity (TMI versus FM% estimated 
unstandardized B 0.80, 95% CI 0.56, 1.02; p value < 0.0001; BMI z‑score versus FM% (unstandardized 
B 0.37, 95% CI 0.26, 0.49; p value < 0.0001). The TMI is a useful clinical adiposity‑specific measure in 
survivors of pediatric ALL.

Acute Lymphoblastic Leukemia (ALL) accounts for 25% of all childhood cancers, making it the most common 
pediatric malignancy with a worldwide incidence of 1–4.75/100,0001,2.

These children undergo 2–3 years of multimodal chemotherapy, including treatment with  corticosteroids3. 
Some children with the high-risk disease would also receive craniospinal irradiation or hematopoietic stem cell 
 transplantation4–6. Survival of children with ALL has reached around 90% in some high-income  countries7–9. 
However, these survivors are at risk of developing cardiometabolic disorders including obesity, metabolic syn-
drome, type 2 diabetes mellitus, and cardiovascular diseases. Obesity is one of the significant drivers of adverse 
outcomes and, together with cardiometabolic disorders, can impact the quality of life and life expectancy of 
these  survivors1,10–17.
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The causes of obesity in this population are multifactorial and include steroids and radiotherapy, obesity at 
diagnosis, and sedentary lifestyle. Obesity can be associated with metabolic abnormalities including dyslipidemia 
and  dysglycemia12,13,18,19. While weight management interventions have been attempted during and after therapy, 
they have had a limited  success20.

The expansion of the adipose tissue compartment is the hallmark of obesity; epidemiological evidence sug-
gests that adiposity is a robust predictor of cardiovascular diseases and type 2 diabetes mellitus risk markers in 
children compared to the most common clinical diagnostic measure of obesity, the Body Mass Index (BMI)21,22.

The protocols used for treating children with ALL recommend regular assessments of bone health using 
Dual-Energy X-ray Absorptiometry (DEXA) as the gold  standard17,23,24. While DEXA scans measure the bone 
mass, they also incorporate measurements of the adipose tissue mass. As adiposity is an essential driver of car-
diometabolic risk, adipose tissue assessment may help predict future cardiometabolic risk and is an attractive 
approach to identify at-risk survivors.

However, DEXA scans are expensive, require designated space for the specialized equipment, and need 
trained personnel to use the machinery and interpret the  scans25–28. Defining clinical adiposity measures can help 
measure fat mass changes during and post-treatment. It may also help evaluate the response to future adiposity 
management interventions in survivors, as these interventions are currently  lacking20.

The Tri-Ponderal Mass Index (TMI) was recently validated as a more accurate measure of adiposity than 
Body Mass Index (BMI) and BMI z-score in the general pediatric population and survivors of childhood brain 
 tumors29,30. Importantly, the TMI utilizes the height and weight measurements recorded in routine clinical set-
tings and considers childrens’ growth patterns by adjusting weight to height cubed (kg/m3) versus the conven-
tional use of height squared in BMI-based calculations (kg/m2)29.

The aim of this study was to validate TMI as a clinical measure of adiposity against DEXA compared to the 
BMI z-score in childhood ALL survivors.

Results
Population characteristics. The details of participants are reported in Table 1. Of the 113 participants 
included in this study, 55 (48.70%) were female. Both males and females had similar age at diagnosis (male 
6.20 ± 5.10  years; female 5.10 ± 3.50  years) and at the first DEXA scan post-therapy (male 10.40 ± 5.60  years; 
female 9.90 ± 4.90 years). The majority of participants were Caucasian (n = 97, 85.80%; female n = 47, 85.50%).

The anthropometric data and DEXA scan measures of body composition are reported in Table 2. Males were 
taller and had a higher weight when compared to females (height: male SDS 0.10 ± 1.10, female SDS -0.07 ± 1.10; 
weight: male SDS 0.17 ± 1.20, female SDS − 0.10 ± 0.90). While BMI percentiles were similar between males and 
females (male 66.50 ± 32.80; female 63.20 ± 34.70), the BMI z-scores were higher in male participants when 
compared to females (male 0.70 ± 1.40; female 0.60 ± 1.30). The TMI measures were similar in both sexes (male 
14.90 ± 3.00; female 14.80 ± 3.00).

Eight females (14.50%) and eight males (13.80%) had a TMI > 85th percentile signifying excess adiposity. 
The female TMI cut-off was 17.20 kg/m3 (range 17.20–26.50) and male TMI cut-off was 17.70 kg/m3 (range 
17.70–26.40).

ALL treatments. The details of the ALL subtypes, risk status, and treatment protocols are reported in 
Table 3. B-cell ALL was the most common subtype (n = 102, 90.20%). Most ALL cases were in the standard 
risk category (n = 78, 69.00%), while 32 (28.30%) were in the high-risk category. All 113 patients were treated 
with Dana-Farber Cancer Institute (DFCI) protocols between 2004 and  201531–34. The majority of patients were 
treated according to DFCI ALL Consortium Protocol 05–001 (DFCI 05–001) approved and activated in 2005 
(n = 77, 68.20%)31–34. Steroid regimens in the treatment protocols are reported in Supplementary Table S1. Five 
patients received craniospinal irradiation (male n = 3, 1650.00 ± 653.80 cGy; female n = 2, 1500.00 ± 424.30 cGy).

Associations of TMI and BMI z‑score with DEXA‑based adiposity measures. Spearman’s correla-
tion analyses were conducted to assess the correlation between body mass and adiposity measures and unad-

Table 1.  Study population characteristics. SD standard deviation.

Variables Total (n = 113) (mean ± SD) Males (n = 58) (mean ± SD) Females (n = 55) (mean ± SD)

Age at diagnosis (years) 5.70 ± 4.40 6.20 ± 5.10 5.10 ± 3.50

Age at post-therapy DEXA scan (years) 10.20 ± 5.30 10.40 ± 5.60 9.90 ± 4.90

Ethnicity

Caucasian 97 (85.80%) 50 (86.20%) 47 (85.50%)

Middle Eastern 8 (7.10%) 3 (5.20%) 5 (9.10%)

South Asian 3 (2.70%) 2 (3.40%) 1 (1.80%)

Mixed ethnicity 2 (1.80%) 1 (1.70%) 1 (1.80%)

Hispanic 1 (0.90%) 1 (1.70%) 0

East Asian 1 (0.90%) 1 (1.70%) 0

African 1 (0.90%) 0 1 (1.80%)



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1404  | https://doi.org/10.1038/s41598-022-05236-5

www.nature.com/scientificreports/

justed and age, sex, ethnicity, and ALL risk status-adjusted partial correlations are reported in Table  4. The 
TMI correlated strongly with BMI z-score (r = 0.81; p value < 0.0001) and both TMI and BMI z-score demon-
strated a positive correlations with DEXA-derived FM% (TMI r = 0.56, p value < 0.0001; BMI z-score r = 0.55, p 
value < 0.0001).

To further assess TMI associations with DEXA-based adiposity, multivariable regression analysis with adjust-
ments for age, sex, ethnicity, and ALL risk status was conducted (Table 5). The TMI was associated with the 

Table 2.  Anthropometric and DEXA data in survivors of childhood ALL. TMI triponderal mass index, BMI 
body mass index, SD standard deviation.

Variables
Total (n = 113)
(mean ± SD)

Males (n = 58)
(mean ± SD)

Females (n = 55)
(mean ± SD)

Height (cm) 136.20 ± 25.40 139.50 ± 28.30 132.80 ± 21.70

Height SDS 0.02 ± 1.10 0.10 ± 1.10 − 0.07 ± 1.10

Weight (kg) 41.10 ± 28.00 46.90 ± 33.60 37.00 ± 19.50

Weight SDS 0.03 ± 1.10 0.17 ± 1.20 − 0.10 ± 0.90

BMI percentile (%) 64.90 ± 33.60 66.50 ± 32.80 63.20 ± 34.70

BMI z-score 0.60 ± 1.30 0.70 ± 1.40 0.60 ± 1.30

TMI (kg/m3) 14.80 ± 3.00 14.90 ± 3.00 14.80 ± 3.00

DEXA data

DEXA-Fat Mass (%) 33.40 ± 8.00 32.50 ± 7.50 34.20 ± 8.40

Fat Content (kg) 14.90 ± 12.60 16.70 ± 15.10 13.00 ± 8.90

Lean Body Mass (kg) 26.20 ± 15.80 29.90 ± 18.90 22.20 ± 10.50

Bone Density (g/cm2) 0.62 ± 0.19 0.63 ± 0.20 0.60 ± 0.18

Bone Mineral Apparent Density (g/cm2) 0.09 ± 0.03 0.10 ± 0.02 0.09 ± 0.04

Bone Mineral Content (g) 1075.40 ± 603.30 1196.50 ± 709.90 947.80 ± 436.50

Table 3.  Leukemia subtype, risk status, and treatment details. ALL Acute Lymphoblastic Leukemia, DFCI 
Dana Farber Cancer Institute Protocol.

Variables
Frequency (n, %)
n = 113

Males (n, %)
n = 58

Females (n, %)
n = 55

Leukemia subtype

B cell 102 (90.20) 49 (84.50) 53 (96.40)

T cell 11 (9.80) 9 (15.50) 2 (3.60)

Risk status

Standard Risk 78 (69.00) 34 (58.60) 44 (80.00)

Intermediate Risk 1 (0.90) 1 (1.70) 0

High Risk 32 (28.30) 22 (37.90) 10 (18.20)

Very High Risk 2 (1.80) 1 (1.70) 1 (1.80)

Treatment protocol

DFCI 11–001 25 (22.10) 12 (20.70) 13 (23.60)

DFCI 05–001 77 (68.20) 42 (72.40) 35 (63.60)

DFCI 2000–01 11 (9.70) 4 (6.90) 7 (12.70)

Table 4.  Partial correlations of TMI and BMI z-scores with DEXA-based Fat Mass Percentage (adjusted 
for age, sex, ethnicity and risk status). TMI triponderal mass index, BMI body mass index, FM% fat mass 
percentage.

Variable BMI z-score p value FM% p value

Unadjusted correlations

TMI 0.81  < 0.0001 0.54  < 0.0001

BMI z-score – – 0.57  < 0.0001

Partial correlations – adjusted for age, sex, ethnicity, and risk status

TMI 0.82  < 0.0001 0.56  < 0.0001

BMI z-score – – 0.55  < 0.0001
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DEXA-based fat mass percentage (FM%; unstandardized B 0.80; 95% CI 0.56, 1.02; p value < 0.0001). A similar 
regression analysis was repeated with the BMI z-scores and demonstrated its association with the FM% (unstand-
ardized B 0.37; 95% CI 0.26, 0.49; p value < 0.0001).

To further compare the associations of the TMI and BMI z-scores with DEXA-based adiposity, we generated 
the Receiver Operating Characteristic (ROC) curve (Fig. 1) and calculated the Area Under the Curve (AUC). The 
analysis demonstrated that both TMI and BMI z-score were excellent tests to predict the DEXA-based adiposity 
(TMI: AUC 0.81, 95% CI 0.71–0.91, p value < 0.0001; BMI z-score: AUC 0.86, 95% CI 0.76–0.97, p value < 0.0001).

Furthermore, the TMI was associated with the BMI z-score (unstandardized B 1.80, 95% CI 1.65, 2.05; p 
value < 0.0001).

Taken together, TMI and BMI z-score is associated with DEXA-based total adiposity measures in pediatric 
survivors of ALL.

Discussion
The advent of novel ALL therapies has transformed the life expectancy of children with ALL over the past few 
 decades35. With the reduction in premature mortality, there has been a widened focus on mitigating the burden 
of morbidities of ALL and its  treatment20.

Some of the most significant morbidities reported in survivors include adverse cardiometabolic health out-
comes such as type 2 diabetes and cardiovascular  diseases17,36. As adiposity is a predictor of adverse cardiovascu-
lar and metabolic outcomes, reliable biological and clinical markers of adiposity are urgently needed to identify 
and target survivors with interventions that mitigate cardiometabolic risk. This study demonstrated that TMI, 
similar to BMI z-score, is significantly associated with DEXA-based total adiposity measures in pediatric ALL 

Table 5.  Multivariable linear regression analyses for TMI associations in pediatric ALL survivors adjusted for 
age, sex, ethnicity, and risk status. Abbreviations: TMI, triponderal mass index; BMI, body mass index; FM%, 
fat mass percentage.

Variables Unstandardized B coefficient

95% CI

p value

Model summary

Lower bound Upper bound Adjusted  R2

Dependent variable: BMI z-score

TMI 1.80 1.65 2.05  < 0.0001 0.67

Dependent variable: FM%

TMI 0.80 0.56 1.02  < 0.0001 0.32

BMI z-score 0.37 0.26 0.49  < 0.0001 0.32

Figure 1.  The ROC curve for the TMI and BMI z-score association with the DEXA-based fat mass percentage 
(FM%).
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survivors. However, as an adiposity-specific measure, TMI has several important advantages when compared to 
BMI-based measures to estimate adipose tissue mass.

TMI has a stronger association with total adiposity in the general pediatric population compared to BMI 
z-score, the latter being inaccurate in estimating adiposity and misclassifying physically advanced children as 
being overweight or  obese29,37–40.

Also, TMI is associated with central adiposity measures, especially waist-to-height ratio, in the general pedi-
atric population and survivors of childhood brain  tumors30,41,42. While our data demonstrate that TMI and BMI 
z-scores are comparable in their association with total adiposity, TMI is a more specific measure of total adiposity. 
This specificity may offer an added advantage in the childhood ALL survivors when estimating the adipose mass. 
The adipose tissue-specific nature of TMI, along with it being sex-specific and age- and puberty-independent 
offers a useful clinical tool that can be tracked longitudinally to assess changes in adiposity in survivors. Impor-
tantly, it can also be used to track responses to interventions to manage adiposity in this population.

An important question is whether TMI can predict cardiometabolic outcomes across the lifespan. While TMI 
is inferior or equal to BMI z-scores in detecting insulin resistance, it is a better predictor of metabolic syndrome 
in children than  BMI43–45, and is positively associated with systolic and diastolic blood pressure in obese youth, 
although the latter association has not been consistently  reported46–49.

Also, childhood BMI and TMI can predict adult obesity, type 2 diabetes, increased carotid intima-media 
thickness, and elevations in Low-Density Lipoprotein in the general  population43.  However, the use of TMI 
as a tool to predict long-term cardiometabolic outcomes in ALL survivors needs further characterization, as 
there are likely differences between ALL patients and the general population regarding the mechanisms driving 
adiposity in these groups.

Pediatric ALL patients are exposed to corticosteroids throughout their  treatment32–34, which leads to excess 
adiposity, increased appetite, weight gain, and decreased bone mineral  density17,50–52. Importantly, steroid treat-
ment leads to the expansion of the total fat mass and is not associated with the redistribution of fat from the 
limbs to the  trunk53, This makes TMI a valid tool to assess adiposity in survivors, as most of the steroid-driven 
weight gain is related to adipose tissue expansion rather than generalized growth, including muscle and bone 
compartments pattern seen with exogenous  obesity53.

One of the strengths of this study is that we report on the association of TMI with total adiposity in ALL 
survivors, a population that has not been previously studied. We have also validated the TMI against DEXA, the 
gold standard in adiposity measurement.

One of the study’s limitations is that no central adiposity measures were included in the analysis, and this 
should be the goal of future studies. The correlation of TMI with waist-to-height ratio and a lesser extent waist-
to-hip ratio, as central adiposity measures have been  documented30, and would be quite essential to replicate in 
the ALL population that is already at higher risk of adverse cardiometabolic disorders when compared to the 
general population. The study’s cross-sectional nature is another limitation, as the evolution of TMI measures 
over time would be essential to assess. The inclusion of pubertal staging and its correlation with TMI in ALL 
survivors is important, as adiposity increases throughout puberty, particularly in  females39.

Conclusion
In conclusion, this study reports the association of TMI and BMI z-score with DEXA measures of adiposity in 
survivors of ALL. This study’s findings provide further evidence that TMI is an accurate and feasible clinical 
marker of adiposity in this population that is at high risk of cardiometabolic disorders. Also, the TMI is advan-
tageous as an age-independent and sex-specific measure of adiposity than BMI z-scores. This allows the use of 
constant cut-offs to determine adiposity in different pediatric populations, including childhood ALL survivors. 
There is a need to validate TMI use in ALL survivors to decide whether it can predict long-term cardiometabolic 
outcomes.

Methods
Participants. This study was a cross-sectional study of pediatric ALL survivors who were diagnosed 
between August 2004-June 2015 at McMaster Children’s Hospital, a tertiary pediatric academic center in Ham-
ilton, Ontario, Canada. One hundred and thirteen patients (n = 55 female, 48.70%) had DEXA data available for 
analysis. The study was a retrospective chart review approved by the Hamilton Integrated Research Ethics Board 
that exempted the study from consent requirements, as the retrospective chart review design involved the dei-
dentification of the data after collection. The study procedures were performed following the relevant guidelines 
and legal regulations.

Data were obtained from patient charts through electronic medical record systems. The anonymized data were 
collected at the end of treatment for each patient, including age, age at diagnosis, sex, ethnicity, ALL subtype, 
ALL risk status, and treatment data. Anthropometric measures, including height and weight, were collected, with 
the height measured to the closest 0.1 cm and weight measured to the nearest 0.1 kg. For the DEXA scan data 
bone mineral content, bone density, bone mineral apparent density, total fat (kg), fat mass percentage (FM%), 
and lean body mass were retrieved from the patient’s first available DEXA scan post completion of therapy. The 
mean duration between the completion of treatment and the DEXA scan was 22.30 ± 29.70 months.

BMI and TMI calculations. The BMI and TMI were calculated using height and weight measurements. 
BMI was calculated as the weight (kg) divided by the height squared in meters  (m2)29, while TMI was calcu-
lated as the weight (kg) divided by height cubed in meters  (m3)29. BMI percentiles were calculated using the 
World Health Organization Growth Charts for  Canada54 and BMI z-scores were calculated using the Calculator 
from the Centres for Disease Control and Prevention anthropometric Z-scores  calculator55. Fat Mass Percentage 
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(FM%) were obtained from DEXA scans (Hologic densitometer (Discovery A; Hologic, Inc, Bedford, Massachu-
setts). Puberty data were unavailable.

Statistical analyses. Statistical analyses were performed using SPSS Version 25.0 for  Macintosh56. Data are 
presented as frequencies (%) for categorical variables and means (SD) for continuous variables. Box plots and 
visual inspections were used to identify outliers for removal from the analysis. Data distribution was assessed 
for normality using the Shapiro–Wilk and Kolmogorov–Smirnov  tests57. The age, BMI z-score, TMI, and FM% 
variables were log-transformed to account for non-normal distributions.

Unadjusted as well as partial correlations of the associations between TMI, BMI, and DEXA-based adiposity 
measures were performed that were adjusted for age, sex, ethnicity, and ALL risk status. Multivariable linear 
regression analyses were conducted to assess the associations of total body mass and adiposity with TMI. The 
dependent variable was the FM% or BMI z-score, and the independent variables were TMI, age, sex, ethnicity, 
and ALL risk status. Results were reported as standardized and unstandardized beta coefficients with 95% con-
fidence intervals and associated p values with statistical significance set at α of 0.05. The ROC curve and AUC 
calculations were used to further examine the association of TMI with DEXA-based  adiposity58.

Data availability
The data for the current study used for statistical analysis are available from the corresponding author upon 
reasonable justification.

Received: 25 February 2021; Accepted: 10 January 2022
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