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Public health trends in neurologically 
relevant infections: a global perspective
Jackson A. Roberts , Ronak K. Kapadia, Daniel M. Pastula and Kiran T. Thakur

Abstract:  Neuroinfectious diseases represent a growing threat to public health globally. 
Infections of the central nervous system remain challenging to diagnose and treat, partially 
driven by the fact that a high proportion of emerging pathogens are capable of causing 
neurological disease. Many of the trends driving the emergence of novel pathogens, including 
climate change, ecological degradation, urbanization, and global travel, have accelerated in 
recent years. These circumstances raise concern for the potential emergence of additional 
pathogens of pandemic potential in the coming years, necessitating a stronger understanding 
of the forces that give rise to the emergence and spread of neuroinvasive pathogens and a 
commitment to public health infrastructure to identify and treat these diseases. In this review, 
we discuss the clinical and epidemiological features of three types of emerging neuroinvasive 
pathogens of significant public health consequences that are emblematic of key ongoing 
trends in global health. We first discuss dengue viruses in the context of climate change, 
considering the environmental factors that allow for the expansion of the geographic range 
and seasonal population of the viruses’ vector. We then review the rising prevalence of fungal 
meningitis secondary to medical tourism, a trend representative of the highly globalized 
nature of modern healthcare. Lastly, we discuss the increasing prevalence of antibiotic-
resistant neurological infections driven by the intersection of antibiotic overuse in medical and 
agricultural settings. Taken together, the rising prevalence of these conditions necessitates 
a recommitment to investment in public health infrastructure focused on local and global 
infectious disease surveillance coupled with ongoing development of novel therapeutics and 
vaccines for emerging pathogens. Such emerging threats also obviate the need to address the 
root causes driving the emergence of novel infectious diseases, including a sustained effort to 
address anthropogenic climate change and environmental degradation.
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Review

Plain language summary 

Public health trends in neurologically-relevant infections: a global perspective

Globally, infections that impact the central nervous system, referring to the brain 
and spinal cord, are of significant public health concern. In the medical setting, 
these infections are challenging to diagnose both because of the overall difficulty of 
diagnosing any neurological infection but also because many infections of the nervous 
system are caused by newly emerging pathogens that lack reliable tests for diagnosis. 
Some of the trends contributing to emergence of new pathogens are the result of 
increasing globalization combined with climate change, destruction of the natural 
environment, increased growth of cities, and global travel. In our review, we discuss 
three types of infections that can affect the nervous system in the context of these 
trends. We discuss dengue viruses, which are spread by mosquitoes, in the context 
of climate change that increases the range at which dengue-carrying mosquitoes can 
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Introduction
The recent COVID-19 pandemic and other 
regional infectious disease epidemics have con-
tributed to a growing recognition of the threat 
that novel emerging pathogens pose to the global 
population. Broadly defined, emerging infections 
are diseases found to be newly infecting humans, 
spreading into a wider geographic range,  
displaying new pathogenic characteristics, or only 
recently having been identified as pathologic 
agents.1,2 Such infections represent a significant 
challenge even to well-established health systems, 
both due to limited therapeutic options for emerg-
ing infectious diseases and the increased volume 
of patients that may occur. In recent decades, the 
forces that drive the emergence of novel patho-
gens, namely climate change, disruption of estab-
lished ecosystems, global travel, and urbanization, 
have accelerated and been coupled with a degree 
of globalization allowing for rapid international 
dissemination of such pathogens. As a result, 
much recent focus has been placed on Pathogen 
X, a representation of the knowledge that  
an infectious pathogen currently unknown to 
cause human disease could cause a future inter-
national pandemic.3,4 Indeed, the World Health 
Organization (WHO) considers Pathogen X 
alongside such known epidemic pathogens as 
Ebola, Zika, and Sars-Cov-2 viruses in terms of 
priority for research and development. Many sus-
pect that Pathogen X will be a zoonosis, emerging 
as a result of spillover from an animal reservoir 
into humans.3

Globally, the pathogenic etiology of most neuro-
logical infections remains undiagnosed. This is at 

least partially driven by the fact that some may be 
from emerging and re-emerging pathogens with-
out available diagnostic testing, in addition to the 
difficulty of pathogen identification in the central 
nervous system (CNS) in general. Focusing on 
emerging viruses, one study estimated that 39% 
of emerging viral infections may cause severe neu-
rological illness, while another 10% do so on a 
more infrequent basis.5 These diseases inflict a 
significant burden on the communities they 
affect, both in terms of acute mortality but also 
with respect to the long-term, disabling sequelae 
neuroinvasive and neurotropic infections cause.6 
Though viruses represent the most likely neuroin-
vasive pathogenic class with pandemic potential, 
bacterial and fungal infections of the CNS also 
pose a significant threat to global health. Like 
viruses, opportunistic fungal pathogens have sim-
ilarly expanded in terms of geographic range but 
are also notable for their impact on the growing 
population of immunocompromised and post-
surgical patients.7 Although significant advances 
have been made in the diagnosis and treatment of 
CNS bacterial infections, emerging antibiotic 
resistance to widely available therapeutics may 
pose a substantial threat to health security.8

In this review, we focus on relevant trends con-
tributing to the emergence and re-emergence of 
neuroinvasive pathogens in recent decades. 
Understanding relevant public health trends that 
drive emergence of such pathogens is essential for 
neurologists, infectious disease specialists, and 
general clinicians, both in terms of utilizing epide-
miology to determine patient risk of disease and 
recognizing how health systems contribute to 

live. We also discuss fungal meningitis, referring to fungal infections of the lining of 
the brain, resulting from patients traveling globally for surgical procedures. We lastly 
discuss the increase in neurological infections resistant to antibiotic treatment, which 
has resulted from overuse of antibiotics in medical and agricultural settings. As a 
whole, these trends show the need to invest further in public health systems at monitor 
for newly emerging diseases, as well as a commitment to developing vaccines and 
treatments for these diseases. The threats of these pathogens also make clear the need 
to address the underlying causes leading to their emergence and spread, including 
climate change and environmental degradation.
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these trends. To this end, we provide a selected 
review of public health issues impacting the pre-
sent and future epidemiology of neuroinvasive 
infections: climate change, medical tourism, and 
antimicrobial resistance (Box 1).

To discuss climate change, we focus on the den-
gue viruses (DENV), arboviruses that have long 
circulated globally but have rapidly expanded 
into new geographic zones with outbreaks of 
increasing magnitude in recent decades as a result 
of rising global temperatures. As the most com-
mon and most rapidly spreading vector-borne 
disease worldwide,9 DENV infections are becom-
ing increasingly relevant and offer insight into the 
factors driving emergence of other neuroinvasive 
vector-borne pathogens. In addition to climate 
change, rapid increases in medical tourism are 
altering the epidemiology of neuroinfectious dis-
eases. Recently, cosmetic medical tourism to 
Mexico directly contributed to the development 
of highly virulent fungal meningitides that pose a 
significant challenge for physicians treating 
returning travelers.10 Lastly, across pathogenic 
classes of neuroinvasive diseases, antimicrobial 
resistance significantly threatens the efficacy of 
existing therapeutics for neurological diseases 
that are already challenging to manage. We dis-
cuss antimicrobial resistance in the setting of bac-
terial meningitis, herpes simplex virus 1 (HSV-1) 
encephalitis, and tuberculosis meningitis (TBM) 
as a subset of the most epidemiologically signifi-
cant neuroinfectious diseases for which therapeu-
tic resistance is emerging rapidly.

Dengue viruses

Clinical features and neuroinvasive potential
DENV, of which there are four recognized dis-
tinct serotypes (DENV1-4), belong to the family 
Flaviviridae and are positive single-stranded ribo-
nucleic acid (RNA) viruses primarily spread by 
Aedes aegypti and A. albopictus mosquitoes found 
ubiquitously in tropical and subtropical cli-
mates.11–13 Transmission of DENV is maintained 
via a human-mosquito-human cycle, as well as a 
distinct sylvatic monkey-mosquito-monkey cycle 
with periodic human spillover.14,15 While the 
majority of DENV infections are mild, the disease 
has acquired the moniker “break-bone fever” due 
to its presentation with severe retro-orbital pain 
in half of patients and myalgias or arthralgias in 
more than 75%.16–18 Notably, while infection 

with one serotype conveys immunity to that sero-
type for several years, secondary infection with a 
distinct serotype increases risk for severe dengue 
characterized by plasma leakage leading to shock, 
organ impairment, and bleeding.19,20

Approximately 1% of patients develop neurologi-
cal manifestations, most often secondary to infec-
tion with DENV-2 and DENV-3 serotypes.21 
The specific pathophysiology of DENV neuroin-
vasive disease remains unclear, but it is likely that 
DENV directly invade the CNS given the detec-
tion of viral RNA in cerebrospinal fluid (CSF) 
and autopsied brain tissue. This may occur in the 
absence of blood-brain barrier (BBB) dysfunc-
tion, as CSF viremia has been detected in the 
presence of negative serum reverse transcriptase 
polymerase chain reaction (RT-PCR) testing.21 
DENV have been shown to infect and replicate 
within BBB endothelial cells, which may facilitate 
entry into the CNS.22 In addition to the BBB, 

Box 1.  Key considerations of public health trends contributing to 
emergence of neuroinfectious diseases.

A. Anthropogenic climate change
  •  Pathogen/disease implicated: arboviruses (i.e., dengue viruses)
  •  Mechanisms of effect:
     � Increases the suitable host range geographically, allowing the 

vector to expand into new populations
     � Amplification of the disease vector population within existing 

vulnerable regions
     � Possible increase in incubation rates and feeding of disease-

transmitting mosquitoes at higher temperatures

B. Medical tourism
  • � Pathogen/disease implicated: neuroinvasive fungi (i.e., fungal 

meningitis)
  •  Mechanisms of effect:
     � Increasing global travel for treatment exposes patients to 

health risks otherwise not encountered locally
     � Variable norms and regulations globally increase risk of 

exposure to contaminated medications or surgical supplies
     � Otherwise rare fungal pathogens are directly introduced into 

the CNS and perpetrate severe disease

C. Antibiotic resistance:
  • � Pathogen/disease implicated: acute bacterial meningitis, HSV-1 

encephalitis, tuberculous meningitis
  •  Mechanisms of effect:
     � Antimicrobial overuse in clinical and agricultural settings 

selects for resistance genes
     � Contamination of soil, water, and food supplies results in 

spread of resistant pathogens into human populations
     � Difficult-to-manage CNS conditions require higher levels of 

systemically toxic medications or less efficacious alternatives
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DENV may also enter the CNS via the blood-
CSF barrier at the choroid plexus, as has been 
suggested for other flaviviruses.23 Multiple lines 
of evidence also suggest the neurotropic potential 
of DENV, including in vitro ability to bind CNS 
cell receptors and actively replicate within neu-
rons.24 Animal models have additionally displayed 
an increase in dengue virions in the rough endo-
plasmic reticulum and Golgi body of infected 
neurons during disease progression.25 DENV-3 
antigens have been demonstrated in human brain 
tissue at autopsy by immunohistochemistry, and 
DENV replication in human neurons, microglia, 
and endothelial cells has been identified in 
autopsy tissue.26

Encephalopathy is the most common neurologi-
cal presentation of DENV, resulting from the sys-
temic complications that accompany severe 
infection, including shock, metabolic distur-
bances, cerebral edema, and hepatic or renal fail-
ure.27 Encephalopathy occurs in approximately 
5–6% of individuals hospitalized with dengue 
hemorrhagic fever.28,29 Encephalitis, most readily 
distinguished from encephalopathy by the pres-
ence of CSF pleocytosis or viremia, occurs in an 
estimated 1% of patients hospitalized with 
DENV. DENV encephalitis is commonly compli-
cated by seizures, in addition to presentation with 
altered mental status, headache, behavioral 
changes, and other focal neurologic deficits.30,31 
Neuroimaging in encephalitis patients demon-
strates T2-weighted and fluid-attenuated  
inversion recovery hyperintensities. These hyper-
intensities are predominately observed in the 
deep structures of the brain with frequent tha-
lamic, basal ganglia, and cerebellum involve-
ment.32–34 Other neurological manifestations are 
less common but have been reported, including 
post-infectious immune-mediated syndromes like 
Guillain-Barré syndrome (GBS), supported by 
autopsy findings of demyelination.21,26 Indeed, a 
large cluster of GBS cases in Fiji was temporally 
associated with a DENV-3 outbreak in 2014.35 A 
similar cluster of GBS cases in Peru in 2023 coin-
cided with large DENV outbreaks of all four sero-
types but with an increasing prevalence of 
DENV-3 and DENV-4.36 While ophthalmic den-
gue is more common, typically involving the pos-
terior segment and presenting as maculopathy or 
retinal vasculopathy, optic neuropathy secondary 
to DENV infection has also been reported.37–39 
Lastly, cerebrovascular complications have been 
reported, commonly during the convalescent 

stage of infection, with an unknown incidence, 
though hemorrhagic stroke appears to be more 
common than ischemic stroke.40

Epidemiological trends and the impact of 
climate change
Since a hypothesized origination in Africa or 
Southeast Asia, DENV outbreaks have occurred 
in a broad range of subtropical and tropical cli-
mates worldwide.41,42 Over the course of the last 
few decades, however, the incidence of infection 
has increased more than 30-fold, such that DENV 
now cause the greatest disease burden of any 
arbovirus, infecting an estimated 390 million 
individuals annually.43,44 While much of the his-
torical spread of DENV occurred due to interna-
tional trade, urbanization, sanitation methods, 
and water storage norms, the current trend in 
DENV spread appears to be driven by anthropo-
genic climate change.45 Increased global tempera-
tures expand the geographic range of habitat 
suitability for DENV’s primary vector, the Aedes 
mosquitoes. Warmer summer temperatures 
induce more rapid production of adult Aedes 
mosquitoes, facilitating successful colonization of 
susceptible regions, and warmer winters reduce 
winter mortality.46 DENV also incubate more 
rapidly at higher temperatures, and Aedes mos-
quitoes may feed more frequently with increased 
temperature.47

Beyond rising global temperatures, other varia-
tions in climate and weather also drive the risk for 
DENV outbreaks. Precipitation in particular has 
a significant effect on the growth, population 
dynamics, and behavior of Aedes species.48 It has 
been thought that while temperature defines the 
viable range for vector survival, humidity and 
precipitation serve to amplify the vector popula-
tion’s potential. Indeed, 80% of DENV cases 
from 1983 to 2001 occurred within a temperature 
range of 27–29.5°C and mean humidity greater 
than 75%.45 In South America, seasonal DENV 
outbreaks have been tied to El Niño and La Niña 
events that bring intermittent heavy rainfall and 
temperature variation.49 These events have 
become less predictable and of greater amplitude 
over time as a result of climate change, providing 
the potential for more severe outbreaks.50 This 
has been particularly relevant in 2023, in which 
the Americas have experienced a record-setting 
surge of infections surpassing 3 million cases.51 
Other countries, including Bangladesh, also 
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reported record-setting years for DENV, driven 
by the confluence of monsoon season, El Niño, 
and rising temperatures.52

Efforts to model the future spread of DENV are 
challenging given the growing unpredictability of 
weather-related events such as El Niño. Estimates 
suggest, however, that the geographic range suit-
able for DENV will grow to include an additional 
2.5 billion individuals by 2080, beyond the esti-
mated 4 billion people already at risk.53 Across 
models, the strongest predictor of increasing fre-
quency of DENV outbreaks is the number of days 
a region spends at warmer temperatures.54,55 This 
is worrisome given that nearly all climate change 
models predict global temperatures will rise by at 
least 2.7°F by 2100 even with as-of-yet unimple-
mented mitigation strategies.56 Areas particularly 
anticipated to be impacted by the future spread of 
DENV include the southern continental United 
States, large cities in coastal Japan and China, 
and higher altitude zones of Central and South 
America. However, southern and West Africa are 
predicted to undergo the greatest increase in 
DENV risk as temperatures and precipitation in 
the regions rise, which will strain healthcare sys-
tems already under-resourced to respond to 
DENV outbreaks.53,57

As DENV spread into new regions and cause out-
breaks more frequently, existing mitigation strate-
gies are unlikely to counteract the risk sufficiently. 
Local vector control strategies centered around 
mosquito eradication are useful but require strong 
public health infrastructure and do not address 
the broader driving causes of DENV outbreaks. 
In the absence of effective therapeutics, signifi-
cant morbidity and mortality due to DENV neu-
roinvasive disease will become increasingly 
common throughout the global population.

Fungal meningitis

General epidemiology and clinical features
Fungi are ubiquitous in the environment, and of 
the over 100,000 species known, approximately 
300 are known to be capable of CNS disease.58 
Fungal meningitis typically occurs secondary to 
hematogenous spread from a systemic focus of 
infection. However, it may also be caused by 
direct extension of infection through the cranial 
bones or sinuses, as well as direct introduction 
during neurosurgical procedures.59 Additionally, 

many patients who develop fungal meningitis 
have an immunocompromized status due to 
human immunodeficiency virus infection, chem-
otherapy, or prolonged corticosteroid use as in 
transplant patients.59,60 Some fungal pathogens 
may also invade immunocompetent hosts, result-
ing in meningitis due to C. neoformans or C. gattii, 
Coccidioides species C. immitis or C. posadii, and 
Histoplasma. Others such as Candida spp. typi-
cally emerge only with immune dysfunction.61 
Nosocomial-acquired fungal meningitis, referring 
to infections acquired in a hospital setting, repre-
sents a growing concern. These cases are most 
commonly caused by Candida spp. infections, fol-
lowed by Aspergillus spp. and more distantly by 
Mucorales, Fusarium, and other mold species.62 
Particularly, Candida spp. cause the most com-
mon and potentially lethal fungal infections fol-
lowing neurosurgical procedures and in those 
with ventriculoperitoneal shunts.63–65 This may 
be selected for by post-surgical antibiotic prophy-
laxis that eliminates competing bacterial flora.66

Though fungal meningitides may present acutely, 
such infections more often present subacutely, 
frequently with low-grade fever and headache. 
Fungal infections are also a common cause of 
chronic meningitis that may present with signs of 
increased intracranial pressure including 
papilledema, seizures, and nonspecific cognitive 
decline.67 Patients with a chronic or subacute 
course may additionally present acutely with vas-
cular complications, such as stroke or arterial dis-
section, which may result from vasculopathy, 
obstruction of venous outflow, and small vessel 
arteritis.68,69 Neuroimaging may identify menin-
geal enhancement, particularly of the basilar cis-
terns, as well as complications of fungal meningitis 
including hydrocephalus or cerebral infarction.67

Medical tourism and fungal meningitis
Medical tourism, referring to international travel 
for the purpose of obtaining medical care, has 
rapidly increased in recent years as physical barri-
ers between countries have been reduced by mod-
ern transportation. Historically, medical tourism 
more commonly flowed from countries with 
weaker healthcare infrastructure to more 
advanced healthcare systems in the United States 
and Europe. However, the directionality of medi-
cal tourism has recently shifted toward a predom-
inance of tourists from high-income countries 
seeking lower-cost or more accessible medical 
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procedures in developing health systems.70 This 
trend is driven by high local costs of healthcare, 
long wait times in patients’ home countries, and 
the lack of availability of certain treatments in 
some regions.71 In 2017, more than 1.4 million 
United States citizens, for instance, turned to 
medical tourism in response to rapidly increasing 
medical costs within the U.S. healthcare sys-
tem.72,73 Most commonly, individuals travel for 
cosmetic surgery, dentistry, dermatological pro-
cedures, cardiac care, and some solid organ trans-
plants.73 According to the International Society of 
Aesthetic Plastic Surgery, 10,607,227 aesthetic 
surgical procedures were recorded globally in 
2018.74 Most medical procedures performed in 
medical tourists are carried out in South America, 
followed by Southeast and Central Europe.75 
Concerningly, medical and surgical procedures in 
tourists performed overseas confer risk of infec-
tious complications due to several factors, includ-
ing lack of regulations for equipment and devices, 
drugs, and medical products.76 Healthcare-
related infectious complications among medical 
tourists are a growing concern for public health 
worldwide.77

Infections acquired through medical tourism rep-
resent a growing concern for clinicians, as exem-
plified by a recent fungal meningitis outbreak 
impacting United States tourists seeking medical 
care internationally.78 In May 2023, the United 
States Centers for Disease Control and Prevention 
(CDC) identified a number of patients in Texas 
who experienced fungal meningitis after receiving 
spinal epidural anesthesia for cosmetic surgery in 
northern Mexico.79 This prompted an extensive 
investigation and closure of the clinics, during 
which nearly 200 residents across more than 25 
U.S. states were determined to be at risk as a 
result of potential exposure during procedures at 
the clinics. The infections were suspected to have 
been transmitted during epidural anesthesia, 
either as a result of contaminated medications or 
inadequate sanitary measures. When elevated 
CSF β-d-glucan levels were observed across mul-
tiple cases, an outbreak of fungal meningitis was 
suspected.80 Later that month, Fusarium solani, a 
filamentous fungus typically only capable of caus-
ing meningitis in immunocompromized patients,81 
was identified as the culprit pathogen.82,83

Notably, the outbreak was similar to two other 
fungal meningitis outbreaks in North America. In 
Durango, Mexico, another cluster of patients 

with F. solani meningitis was identified following 
receipt of epidural anesthesia. The public health 
response identified 1801 potentially exposed 
patients, of whom 80 developed fungal meningi-
tis. Despite the immunocompetency of the 
exposed population, the case fatality rate exceeded 
50%.80,84 Historically, these outbreaks recall the 
largest healthcare-associated fungal meningitis 
outbreak in the United States in 2012–2013, 
which resulted from injections of contaminated 
methylprednisolone acetate, a steroid medica-
tion.85 During that outbreak, 751 patients devel-
oped fungal meningitis, spinal or paraspinal 
infection, and/or peripheral osteoarticular infec-
tion with a mortality rate of 8.5%.86 In this 
instance, the identified pathogen was the brown-
black soil fungus Exserohilum rostratum, similarly 
an exceedingly rare cause of disease in humans 
under normal circumstances.87

In each of these cases, contaminated medications 
or medical equipment contributed to outbreaks 
with severe morbidity and mortality from patho-
gens typically unknown as major causes of human 
disease. In some instances, meningitis resulted 
despite the absence of instrumentation within the 
CNS, underscoring the possible neurotropic 
potential of these fungi following access to spe-
cific tissue sites.88 As norms and regulations for 
medical tourism continue to be defined, under-
standing and addressing risks for severe CNS 
infections acquired during travel will be essential 
for the maintenance of public health.

Antimicrobial-resistant meningitis

Trends in antibiotic-resistant bacterial meningitis
Bacterial meningitis contributes significantly to 
global morbidity and mortality, leading to death 
in 8%–15% of cases even with treatment and per-
manent disabling sequelae in more than 20%.89 
The clinical features and etiologic epidemiology 
of acute bacterial meningitis have been reviewed 
at length elsewhere90; generally, the most com-
mon causes in adults have been Streptococcus 
pneumoniae and Neisseria meningitidis.91 
Historically, Haemophilus influenzae additionally 
caused a substantial proportion of acute bacterial 
meningitis cases, but introduction of the H. influ-
enza type b conjugate vaccines substantially 
reduced its burden.92 Vaccines for S. pneumoniae 
and N. meningitidis have also been introduced 
with substantial success; however, inequitable 
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vaccine access has resulted in a persistently ele-
vated burden of disease due to these pathogens in 
resource-constrained settings.93,94 Furthermore, 
emerging increases in antimicrobial resistance 
among these pathogens may undermine addi-
tional progress in addressing the burden of bacte-
rial meningitis globally.

In general terms, antibiotic resistance refers to the 
ability of a bacterium to elude the bactericidal or 
bacteriostatic effect of a particular antibiotic. In 
the context of CNS infections, antimicrobial 
resistance poses a particular challenge given the 
poor penetration of most antibiotics through the 
BBB. This results in a necessity to employ higher 
concentrations of antibiotics for CNS infections 
to achieve a minimal inhibitory concentration in 
the CSF, which often results in greater treatment 
toxicity or less efficacy when second-line agents 
must be used.95,96

The recognition of penicillin-resistant strains of 
S. pneumoniae dates back to 1967, with increasing 
reports worldwide of treatment failure in S. pneu-
moniae meningitis due to penicillin resistance 
through the 1970s to 1990s.97–99 Empiric treat-
ment with third-generation cephalosporins (e.g., 
ceftriaxone) for bacterial meningitis, as recom-
mended by European guidelines for manage-
ment of acute bacterial meningitis, has become a 
successful strategy in mitigating the risk of treat-
ment failure for penicillin-resistant strains.98,100 
However, optimal treatment paradigms for multi-
drug-resistant S. pneumoniae (i.e., to both penicil-
lin and cephalosporins) are less well defined but 
largely include additional empiric treatment with 
vancomycin or rifampicin.100,101

In contrast to S. pneumoniae, antibiotic resistance 
in meningococcal disease caused by N. menin-
gitidis is historically infrequent. However, in 2020, 
isolates of N. meningitidis serotype Y resistant  
to penicillin and ciprofloxacin were detected in 
the United States.102 The CDC subsequently 
reviewed 2097 samples collected between 2011 
and 2020 and identified 33 isolates resistant to 
penicillin, 11 of which were also resistant to cip-
rofloxacin.102 Similarly, infrequent rates of N. 
meningitidis resistance to penicillin, rifampicin, 
cefotaxime, and ciprofloxacin have been reported 
in other countries.103 This is of particular rele-
vance in the African meningitis belt, where overall 
rates of invasive meningitis disease have fallen fol-
lowing more widespread vaccine introduction, yet 

non-vaccine serotypes have been increasing in 
prevalence. Due to this, the potential for antimi-
crobial resistance in this high-incidence region 
has increased.104,105

Herpes simplex 1 anti-viral resistance
HSV-1 encephalitis is the most common infec-
tious cause of encephalitis, representing 30–40% 
of encephalitis cases with an identified etiology.106 
Prior to the introduction of acyclovir, mortality 
from HSV-1 encephalitis approached 70% but 
has dramatically improved to below 10% in recent 
decades.107 Presenting clinical features are rela-
tively nonspecific but include altered mental sta-
tus, fever, headache, and seizures as in several 
other encephalitis syndromes. However, PCR 
testing in combination with supportive MRI fea-
tures has greatly improved the time to diagnosis 
and therapeutic outcomes as a result.108

HSV-1 resistance to acyclovir, first observed in 
1982, is reported in up to 0.5% of immunocom-
petent patients and 10% of immunocompromised 
patients; however, acyclovir resistance in the set-
ting of HSV-1 encephalitis is rarely tested or 
reported.109–112 Acyclovir resistance occurs due to 
thymidine kinase mutation in 95% of cases, while 
DNA polymerase mutations are less commonly 
reported.109 The mutations that drive acyclovir 
resistance likely reduce the pathogen’s ability to 
establish latency and reactivation, which may 
limit the clinical impact of acyclovir resistance, 
especially in cases of encephalitis.109 Nonetheless, 
acyclovir resistance should be considered in 
patients with HSV-1 encephalitis who do not 
respond to acyclovir, as alternative agents (i.e., 
foscarnet) have led to clinical improvement in 
these rare instances.111,113

Multidrug-resistant Mycobacterium 
tuberculosis and tuberculous meningitis
TBM represents the most severe form of TB, 
resulting in mortality in approximately 20% of 
patients and severe neurological sequelae in 
nearly 50%.114–116 Prevalence of TBM varies 
between high and low TB prevalence regions, 
generally accounting for about 5% of all extrapul-
monary TB cases and 1% of all TB cases.117 It 
occurs following the hematogenous spread of  
M. tuberculosis to the CNS via the choroid plexus, 
with subsequent rupture of tubercles into the sub-
arachnoid space. This results in the formation of 
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a dense exudate that concentrates in the basal cis-
terns and infiltrates the meningeal vasculature, 
leading to obstructive hydrocephalus and tissue 
infarction in a high proportion of cases.118,119 In 
addition to expectant management of its compli-
cations, TBM requires urgent initiation of inten-
sive anti-tubercular therapy with adjunctive 
dexamethasone. Delays in treatment, along with 
more severe initial presentation, portend a wors-
ened prognosis.120 Unfortunately, increasing rates 
of resistance to first- and second-line anti-tuber-
cular medications threaten to complicate man-
agement of this already challenging disease. 
Indeed, the presence of drug resistance in TBM 
has been found strongly to predict death.121

Specifically, multidrug-resistant TB (MDR-TB) 
refers to M. tuberculosis resistant to both isoniazid 
and rifampicin.122 Various other drug resistance 
patterns in TB are recognized, including monore-
sistance to isoniazid or rifampicin, polyresistance 
beyond isoniazid and rifampicin, and extensive 
drug resistance (i.e., fluoroquinolone or second-
line drug resistance).123 Drug-resistant TB infec-
tions occur as a result of either primary transmission 
of circulating drug-resistant M. tuberculosis or 
development of mutations conferring resistance 
after initial infection and attempted treatment.124 
The emergence of MDR-TB poses a major chal-
lenge to worldwide TB control and threatens to 
worsen outcomes in TBM. A systematic review 
and meta-analysis of TB patients primarily in Asia 
found MDR-TB and isoniazid monoresistance in 
5.2% and 9.4% of patients, respectively.125 
Similarly, a multi-center European cohort identi-
fied MDR-TB/TBM in 3.5% of patients, and 
14.1% displayed resistance to at least one anti-
tubercular drug.126 Drug resistance, especially 
MDR-TB, in TBM is associated with a high rate 
of mortality, ranging from 67% to 100%.121,127 
While intensified treatment regimens for TBM, 
including higher dose rifampicin and the addition 
of levofloxacin, demonstrate some promise in 
improving survival in patients with isoniazid-
resistant TBM, MDR-TB remains a highly mor-
bid and difficult-to-treat condition.128

Antimicrobial use and emergence of resistance 
in a global context
Though antimicrobial resistance is a naturally 
occurring phenomenon, the evolution and spread 
of resistance to specific medications has recently 
been accelerated by overuse of antimicrobials in 

community, hospital, and agricultural con-
texts.129–131 Indeed, across all contexts, the rate of 
antibiotic consumption directly correlates with 
the rates of emerging antimicrobial resistance due 
to the increased selective pressure medication 
overuse induces.132,133 In the United States, for 
instance, one study of outpatient antibiotic pre-
scribing found that likely 30% of 154 million out-
patient antibiotic prescriptions were inappropriate 
in 2010–2011.134 Such trends have only acceler-
ated, as antibiotic consumption globally increased 
by 65% between 2010 and 2015. This was pri-
marily driven by increased rates of use in low and 
middle-income counties (LMICs) that are quickly 
converging with the longstanding history of over-
use in high-income countries (HICs).135 As 
urbanization and density of transportation net-
works continue to grow in LMICs, rates of anti-
microbial resistance now exceed 50% in some 
settings,136 and LMICs now have the highest 
rates of resistance for many pathogens.137 Coupled 
with surveillance systems inadequate for monitor-
ing antimicrobial resistance and poor sanitation 
infrastructure, this allows for a high incidence of 
community-level transmission of antimicrobial-
resistant pathogens through wastewater and food 
processing networks.138 International travel fur-
ther compounds this issue, as individuals are able 
to transmit highly resistant pathogens bidirection-
ally between different settings.139

In addition to overuse of medications in health-
care settings, human-environment interactions 
also contribute substantially to the increasing 
prevalence of antimicrobial resistance. In 2017, 
for instance, 73% of all antimicrobial use occurred 
in animals,140 and use of antibiotics has displayed 
a robust correlation with antimicrobial-resistant 
colonization of common livestock.141 At least part 
of this trend is driven by increasing global demand 
for animal protein,142 which has resulted in a shift 
from small-scale agriculture (particularly in mid-
dle-income countries) to large-scale industrial 
agricultural practices that more commonly utilize 
antimicrobials to promote growth and longevity 
in livestock.143 After selection occurs for resist-
ance genes in livestock, drug-resistant pathogens 
may then propagate in manure and surface soil, 
which can then runoff into waterways utilized for 
human consumption and hygiene.144,145 Food 
products serve as a route for spread of antimicro-
bial-resistant pathogens to humans, either 
through direct consumption of contaminated 
meat or during food processing.146 Consumption 
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of contaminated water or food products may then 
colonize both human and animal gastrointestinal 
tracts, further enhancing transmission of antibi-
otic-resistant pathogens within local networks.147

These trends, both overuse in medical and agri-
cultural settings, are also reshaping the environ-
mental landscape from which resistant pathogens 
emerge. Resistance genes are ubiquitous and evo-
lutionarily ancient among bacteria in the environ-
ment, which provides fertile soil for rapid 
emergence of antimicrobial resistance in the envi-
ronment once selective pressure is intro-
duced.148,149 In both humans and animals, many 
antibiotics are excreted into the environment 
without chemical modification,150 which can 
drive selection for resistant pathogens even at low 
concentrations.151 Therefore, both direct con-
tamination of the environment via runoff of 
human and animal waste laden with resistant 
pathogens and deposition of antibiotics into the 
environment serve to increase the prevalence of 
antimicrobial resistance in soil. Indeed, soils 
treated with manure or utilized for agricultural 
production have been found to display an 
increased prevalence of antibiotic resistance genes 
and bacteria with higher minimum inhibitory 
concentrations than other environments.152 
Similarly, wildlife have been found to harbor 
extended-spectrum beta-lactamase-producing 
bacteria, but only after such bacteria were identi-
fied in livestock.153 Environmental contamination 
in turn then drives an increased risk of both 
human and animal disease. For instance, out-
breaks of multidrug-resistant Acinetobacter, a pre-
viously drug-susceptible organism prevalent in 
soil and water, have occurred in hospital settings 
following environmental exposure in military per-
sonnel and survivors of earthquakes.149,154,155 As a 
whole, these findings underscore the mutually 
reinforcing nature of medical overuse, agricul-
tural practices, and the environment as they con-
tribute to the rising threat of antimicrobial 
resistance. These trends indicate the need for 
broader interventions and regulation of antimi-
crobial use in addition to a continued commit-
ment to vaccine development and distribution.

Conclusion
Emerging neuroinfectious diseases, of which we 
discuss arboviral diseases, fungal meningitis, and 
antimicrobial-resistant infections, present sub-
stantial challenges for which global health systems 

are inadequately prepared, underscoring the 
necessity to improve preventative frameworks for 
infectious diseases. Though we present a limited 
subset of neuroinvasive infections, the discussed 
trends are applicable to an even broader range of 
neuroinfectious diseases, including severe para-
sitic infections such as cerebral malaria and neu-
rocysticercosis that are increasing in prevalence 
with climate change and global movement of 
populations.156,157 Addressing such emerging 
threats must involve strengthening local public 
health systems for infectious disease monitoring 
and treatment, a commitment to equitable thera-
peutic and vaccine development, and prevention 
of environmental degradation.

Global infectious disease infrastructure has his-
torically focused on preventing spread of “tropi-
cal” pathogens into HICs in service of health 
security rather than improving systems of care 
and disease monitoring to address pathogen 
endemicity locally.158 Pandemic preparedness, 
however, requires an economically inefficient 
process centered on diffuse distribution of infra-
structure and investment in surveillance capacity 
that may never be utilized on a broader global 
scale.159 This underscores the reality that while 
any individual pathogen has a low risk of inciting 
an epidemic or pandemic, the aggregate risk 
across all emerging pathogens is quite high.160 An 
increased dedication to developing laboratory 
and clinical infrastructure in diverse global con-
texts recognizes that policies of disease contain-
ment are insufficient to halt the spread of emerging 
pathogens in a globalized society.

Similarly, vaccine development often favors eco-
nomic incentives over social value, placing a dis-
proportionate emphasis on addressing diseases 
that impact HICs.161 Rather than relying on good-
will from private companies responsive to market 
forces, open science collaborations between gov-
ernments, researchers, and philanthropic organi-
zations may contribute to the development of 
therapeutics that anticipate disease threats.162 
Importantly, such approaches allow for central 
decision making that encourages cooperation 
between diverse governments and private compa-
nies, as well as creating sharable knowledge that 
can be scaled through investments in local pro-
duction capacity and public health networks.163

Lastly, curtailing the emergence of neuroinfec-
tious diseases requires an urgent commitment to 
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preventing further environmental degradation and 
climate change. Exploitation of wild habitats 
brings humans into contact with novel vectors that 
transmit previously un-encountered diseases.164 A 
“One Health” framework, which recognizes the 
necessity to combine multi-disciplinary approaches 
spanning ecology, veterinary science, laboratory 
science, epidemiology, and agriculture to mitigate 
the threat of zoonotic diseases, is essential to con-
fronting these emerging threats.165,166

As a whole, addressing the emergence of neuroin-
fectious diseases requires investment in global 
public health infrastructure that is collaborative 
and centered on a holistic understanding of path-
ogen emergence and spread. In addition to 
improved disease surveillance must be sustained 
investment in novel therapeutics made widely 
available in LMICs through support of local pro-
duction capacity and facilitatory trade agreements 
that recognize the interconnected nature of global 
health.
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