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Abstract
Feature selection has gained its importance due to the voluminous nature of the data. Owing to the computational complexity 
of wrapper approaches, the poor performance of filtering techniques, and the classifier dependency of embedded approaches, 
hybrid approaches are more commonly used in feature selection. Hybrid approaches use filtering metrics to reduce the com-
putational complexity of wrapper algorithms and are proved to yield better feature subset. Though filtering metrics select 
the features based on their significance, most of them are unstable and biased towards the metric used. Moreover, the choice 
of filtering metrics depends largely on the distribution of data and data types. Biomedical datasets contain features with 
different distribution and types adding to the complexity in the choice of filtering metric. We address this problem by pro-
posing a stable filtering method based on rank aggregation in hybrid feature selection model with Improved Squirrel search 
algorithm for biomedical datasets. Our proposed model is compared with other well-known and state-of-the-art methods 
and the results prove that our model exhibited superior performance in terms of classification accuracy and computational 
time. The robustness of our proposed model is proved by conducting experiments on nine biomedical datasets and with 
three different classifiers.

Keywords Hybrid feature selection · Biomedical data classification · Linguistic fuzzy modeling · Rank aggregation

1 Introduction

A huge amount of data is generated in biomedical datasets 
and one of its biggest challenges is its volume. The term 
‘Volume’ and ‘Value’ of data are always not directly propor-
tional. Hence, there is a need to understand the value of the 
data in the preprocessing step and discard the features that 
do not add any value to it. Dimensionality reduction is the 
process of reducing the dimensional space of datasets by fea-
ture selection or feature extraction techniques. While feature 
selection identifies the features that do not contribute to the 
classification and discard them, feature extraction transforms 
the data in high dimensional space into low dimensional 

space. Feature selection is generally preferred over feature 
extraction as it does not alter the data and hence offers better 
interpretability. Feature extraction loses the relation with the 
original features and also suffers from computational com-
plexity despite resulting in irrelevant and redundant features 
(Senawi et al. 2017). These techniques are preferred when 
only discrimination is required (Jain et al. 2000). Hence, 
feature extraction may not be a good choice for biomedical 
datasets when interpretation is required.

Feature selection techniques are broadly classified into 
three categories viz., Filter approaches, Wrapper approaches, 
and embedded approaches. Filtering uses statistical metrics 
like Information Gain (IG), entropy, consistency-based 
measures, and correlation metrics to evaluate the features. 
Wrapper approaches use induction algorithms to select 
good feature subsets based on the accuracy of the classifier 
used (Kohavi and John 1997) while embedded approaches 
learn features during the construction of the model. Hybrid 
approaches are also developed where filtering metrics are 
used initially followed by wrapper or embedded approaches. 
Different feature selection techniques and their drawbacks 
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are discussed in Shardlow (2016) and Guyon and Elisseeff 
(2003). High dimensional datasets like genomic datasets are 
quite common in biomedical datasets. Learning model for 
such high dimensional datasets has to be constructed care-
fully as they are more prone to overfitting. Feature selection 
approaches such as wrapper approaches suffer from com-
putational complexity. It involves more subset evaluation 
by a repeated combination of features, and checking for the 
accuracy of the classifier. Embedded approaches are biased 
towards the learning algorithm and lack generalization 
capability. Lot of research works help to reduce the compu-
tational burden of the wrapper and embedded approaches 
through heuristic and optimal search algorithms. Yet, these 
approaches are still considered to be computationally expen-
sive for high dimensional biomedical datasets. Filtering 
approaches score well in terms of computational and statisti-
cal scalability (Inza et al. 2007). They are independent of the 
learning algorithm used. The result of filtering approaches 
can be used for different mining algorithms. Yet, filtering 
techniques are based on specific statistical measures they 
use and hence are biased towards the metric they use. They 
are also not proved to yield better feature subset and hence 
affect the classification accuracy when used in the learn-
ing model. Moreover, the choice of right filtering metric 
acts as a stand alone problem. Both classification accuracy 
and computational complexity are important for learning 
models of biomedical datasets. Hence, hybrid approaches 
that use filtering metrics before the wrapper approaches are 
preferred more commonly in biomedical datasets as both 
the computational complexity and classification accuracy 
are managed effectively.

As discussed, hybrid approaches use filtering techniques 
to derive the initial subset that is fed as input to the wrapper 
approaches. Filtering techniques are classified into univari-
ate and multivariate methods. Filtering approaches can also 
be classified into feature weighing and feature subset selec-
tion approaches. Univariate methods consider the relevancy 
information but fail to consider the dependency among the 
features. Multivariate methods consider dependencies but 
are computationally slow and hence less scalable than uni-
variate methods (Canedo et al. 2013). Few commonly used 
univariate methods include IG, Gain Ratio (GR), Mutual 
Information (MI), Symmetric Uncertainty (SU), relief, cor-
relation, chi-square, and Fisher Score (FS). Few commonly 
used multivariate methods include Minimum Redundancy 
Maximum Relevance (mRmR), correlation-based Feature 
Selection (CFS), Fast Correlation-Based Filter (FCBF), and 
feature selection based on clustering. These methods can 
further be categorized into information-based, distance-
based, consistency-based and correlation-based filtering 
approaches depending on the statistical measures used. 

Feature weighing approaches rank the features based on the 
statistical measure (e.g., IG) whereas feature subset selec-
tion filtering approaches evaluate the subset of features and 
obtain the best subset based on the statistical measure (e.g., 
CFS).

Though filtering approaches reduce the complexity in 
high dimensional biomedical datasets, they suffer from sta-
bility as they are based on the specific metric used. Also, 
most of the univariate filtering approaches fail to consider 
redundancy information among the features as discussed 
earlier. Moreover, they are sensitive to different variations 
in data and the distribution of training data especially in 
high dimensional space (Yang et al. 2012) such as genomic 
datasets. The use of multivariate methods is also compu-
tationally expensive in hybrid techniques. It is difficult to 
choose the best filtering method for a particular problem 
and dataset. This problem is called selection trouble. There 
is no solution than trying with all the methods and apply the 
best (Waad et al. 2014). Hence, to ensure the stability of the 
filtering technique and to relieve the user from the burden 
on the choice of the right filtering metric, rank aggregation 
approaches with univariate filters are used before wrapper 
algorithms in hybrid feature selection techniques. Rank 
aggregation methods take advantage of individual selec-
tors, overcome their weakness, and also introduce diversity. 
Although several rank aggregation approaches are used, our 
method performs rank aggregation using fuzzy systems that 
are flexible and handles uncertainty. Our model also deals 
with both relevancy and redundancy information. Hence, our 
work proposes a Fuzzy-Based Rank Aggregation (FBRA) 
filter before using wrapper algorithm, Improved Squirrel 
Search Algorithm (ISSA) for feature selection in biomedi-
cal datasets. ISSA is proved to be one of the best optimi-
zation algorithms when compared with other well-known 
algorithms (Jain et al. 2019) and hence our model uses ISSA. 
The major contributions of our model are as follows:

• A hybrid feature selection model is proposed using rank 
aggregation based on fuzzy techniques and Improved 
Squirrel search optimization algorithm. The filtering met-
rics we use in our rank aggregation model are selected 
based on different measures, such as correlation, distance 
and information theory. Redundancy and relevancy are 
also considered. There is no specific weighing among the 
individual methods used.

• The proposed model uses an efficient algorithm ISSA 
that solves the problem of early convergence to a local 
optimum.

• The proposed model is tested on biomedical datasets of 
different volumes with three different classifiers and is 
proved to be robust.
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• Extensive experimentation is performed by comparing 
our proposed model with other different rank aggrega-
tion approaches, univariate filtering metrics and different 
optimization algorithms. Our proposed model exhibits 
superior performance in terms of classification accuracy 
and computational time.

The rest of the paper is organized as follows: Related work 
is discussed in Sect. 2. Section 3 gives a summary about the 
methods used in our model. Section 4 explains our proposed 
model H-FBRA+ISSA. Section 5 demonstrates the experi-
mental framework and discusses the results. Section 6 dis-
cusses the limitations and scope for future work and Sect. 7 
winds up with the conclusion.

2  Related work

Hybrid feature selection approaches are proved to improve 
the classification accuracy as discussed earlier and are the 
focus of our research. There are few recent works that pro-
pose hybrid feature selection approaches. Few hybrid fea-
ture selection approaches are also proposed exclusively for 
biomedical datasets. MI filtering with Genetic Algorithm 
(GA) is proposed in Hoque et al. (2014) whereas MI with 
Particle swarm optimization (PSO) is proposed in Han and 
Ren 2015. mRmR with Artificial Neural Networks (ANN) is 
proposed for brain tumor classification in Huda et al. (2016). 
mRmR with Artificial Bee Colony (ABC) algorithm is pro-
posed for cancer classification in Alshamlan et al. (2015). 
SU with harmony search algorithm is proposed for micro-
array data classification in Shreem et al. (2016). IG with 
fuzzy rough sets and GA is proposed for cancer microarray 
data classification in Chinnaswamy and Srinivasan (2017) 
whereas IG with Binary Differential Evolution (BDE) is 
proposed for microarray data in Apolloni et al. (2016). A 
hybrid approach that uses CFS filtering with iterative binary 
PSO is proposed in Jain et al. (2018). Different filtering met-
rics are used before different optimization algorithms. CFS 
with sequential search algorithm is proposed for breast can-
cer, diabetes and hepatitis data classification in Tomar and 
Agarwal (2015). The correlation coefficient with PSO is pro-
posed for microarray data classification in Chinnaswamy and 
Srinivasan (2016). CFS with improved BPSO is proposed 
for cancer classification in Jain et al. (2018). FS with Ant 
Colony Optimization (ACO) is proposed for microarray data 
classification in Sharbaf et al. (2016).

Though these methods identify the feature subset, they 
are biased towards a single metric. Few metrics are based 
on correlation, few based on relevancy information, and few 
on the discriminative capability of the feature. Different 

biomedical datasets possess different characteristics and not 
all the metrics are expected to perform well for all kinds of 
biomedical datasets as discussed earlier. Indeed, the major 
problem with these single metrics is the overestimation of a 
feature’s significance in spite of the fact that each statistical 
measure suffers from its own drawback. For example, MI 
is found to overestimate a feature’s significance, especially 
when a feature is correlated with one or a subset of features, 
but completely independent from the rest (Bennasar et al. 
2015). Filtering metrics such as IG is simple, but it assumes 
independency between the features, which is not always the 
case (Bennasar et al. 2015). Technique such as CFS is mul-
tivariate approach and is computationally complex.

To overcome this drawback of the individual filtering 
approaches, rank aggregation approaches are proposed. 
Rank aggregation approaches are used to induce diversity 
and make use of the advantages of the individual approaches. 
They also avoid the overestimation of features. But, rank 
aggregation is itself a stand-alone problem owing to the fact 
that different filtering metrics may give disjoint ranks to the 
same features (Waad et al. 2014). The common aggregation 
methods include mean, median, highest rank, lowest rank, 
weighed aggregation, and voting. Simple methods, such as 
mean and median (Wang et al. 2019a) aggregation, find the 
mean value and the median value of all the individual filter-
ing metrics for a particular feature and assigns it as the final 
feature weight or rank for that respective feature. Though 
simple, they suffer from drawbacks, such as tied feature 
ranking and disjoint ranking (Waad et al. 2014). Approaches, 
such as weighed aggregation, highest rank, and lowest rank, 
are again biased towards a specific filtering metric for a par-
ticular feature. Simple voting (Bolón-Canedo et al. 2012; 
Abut et al. 2019) is an efficient method but its performance 
is based on the filtering metrics used and hence may yield 
biased results. Other aggregation methods, such as Borda 
and robust rank aggregation, (Najdi et al. 2016) are used, 
but they are again based on the mean and performance of 
other measures and are not proved to yield good results. An 
aggregation method, MeLif, based on linear combination 
of individual filtering metrics is proposed in (Smetannikov 
et al. 2016) and parameters of the classifier are tuned accord-
ingly. But this method is classifier-dependent.

There are few other research works performed for rank 
aggregation. Five filtering metrics are merged in (Bolon-
Canedo et al. 2014) using different classifiers. The results 
of the individual filters are combined by integrating them 
one by one and checking the accuracy of the classifiers. 
Though the results are stable, this method is computationally 
expensive, especially with high dimensional datasets such as 
microarray datasets as different subsets of features have to be 
tested on different classifiers. A distributed feature selection 
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that computes the relevancy using ReliefF, FS and IG and 
redundancy using distance, correlation, and CS is proposed 
in (Ebrahimpour and Eftekhari 2018). Both the relevancy 
and redundancy are represented as clusters and the final sub-
set is chosen based on the intersection of the clusters. Both 
homogenous and heterogeneous ensemble approaches are 
proposed in (Pardo et al. 2017). The homogenous ensemble 
approach uses the same filtering metric in different training 
data and heterogeneous ensemble approach uses different 
filtering metrics on the same training data. While the for-
mer method is biased towards the metric used, the latter 
method takes care of diversity. Five ranking methods Reli-
efF, mRmR, IG, SVM rank, and ANN rank are used and the 
results are combined using six combination methods mini-
mum, median, mean, geometric mean, Stuart, SVM rank, 
and Robust Rank Aggregation (RRA). The downsides of the 
minimum, median, and mean are discussed earlier whereas 
the other methods used in this work, mRmR, SVM rank, and 
NN rank suffer from computational complexity with a large 
number of features. An ensemble feature selection method 
using GR, IG, ReliefF and CS is proposed in (Hoque et al. 
2018). The results are aggregated using greedy search tech-
nique. This method of aggregation is again computationally 
expensive with a large number of features despite the fact 
that the results of the experiments conducted on this method 
are not strong and the benefits are not obvious. Multiple 
filters combined with fusion approach are used in (Bonilla-
Huerta et al. 2015) to select the initial subset of genes for 
GA feature selection approach. A new ensemble feature 
selection approach based on Sort Aggregation (SA) is pro-
posed in (Wang et al. 2019a) and a new ensemble technique 
Majority Voting Feature Selection (MVFS) is proposed in 
(Abut et al. 2019). SA method uses three-feature ranking 
methods—Maximum information coefficient, XGBoost and 
chi-square. Arithmetic and geometric means are used for 
sorting the results. MVFS uses three-feature ranking meth-
ods—Relief-F, mRmR and Maximum Likelihood Feature 
Selection (MLFS). It uses majority voting or correlation 
score or assigns priority to a particular ranking method to 
obtain the final feature rank.

The major drawback with these aggregation filtering 
approaches is: few of them use univariate methods and 
aggregate them without considering the dependency infor-
mation while few other methods use techniques like greedy 
search, GA or clustering that are computationally expensive 
with high dimensional datasets. Few methods also suffer 
from disjoint ranking and tied ranking problems. Biomedi-
cal datasets are voluminous with many lakhs of patient’s 
observations measuring many thousands of their information 

especially when genetic information is recorded. Moreo-
ver, different information would be recorded for different 
purposes. For example, the prediction of cancer requires 
different information when compared with the informa-
tion required for the prediction of respiratory disease. The 
changes are over legislation too. Few features are categorical 
whereas few others are continuous. Hence, the aggregation 
method used for such datasets should be unbiased, com-
putationally efficient and should not suffer from problems, 
such as disjoint ranking and tied ranking. To cope with this 
need, we propose the idea of aggregating filtering metrics 
using fuzzy systems that are flexible and extensible (Tal 
and Muntean 2012). Moreover, the use of fuzzy systems 
for rank aggregation is also not computationally complex. 
Hence, a structure-free dynamic aggregation approach can 
be established with fuzzy systems. Indeed, fuzzy systems are 
well suited for imprecise data and represent knowledge with 
uncertainty (Nguyen et al. 2018). In spite of the underlying 
fact that several aggregation approaches are proposed, very 
few works are carried out using fuzzy systems for aggrega-
tion. Our work incorporates the idea of using fuzzy system 
for rank aggregation. This, in turn, is fed as input to the 
wrapper algorithm ISSA. Squirrel Search Algorithm (SSA) 
is a recently proposed algorithm (Jain et al. 2019) and ISSA 
is proposed in (Zheng and Luo 2019) that improves the 
global convergence capability. SSA is proved to be the best 
when compared with several different optimization algo-
rithms (Jain et al. 2019) and hence is used in our proposed 
hybrid model with rank aggregation (FBRA). It has been 
observed that this hybrid approach exhibits superior perfor-
mance in terms of classification accuracy, dimensionality 
reduction and computational time.

3  Methods

The proposed model uses ranking metrics, a linguistic fuzzy 
system for rank aggregation and ISSA for feature selection. 
This section reviews the important concepts of them.

In biomedical data classification, let ‘X’ represent the 
dataset with ‘n’ observations and ‘m’ features with a class 
label ‘C’ ∈ C = {C1,C2,…Cl}. ‘l’ takes the value of 2 in 
case of binary classification and > 2 in case of multi-classi-
fication. Let Xi ∈ X represent the ith observation of ‘X’. Our 
aim is to find a subspace of ‘m’ features,‘S’, that contributes 
more to the target class ‘C’. Let ‘F’ represent the feature set 
F = {F1,F2,…Fm} and ‘S’ represent the subset of features 
S = {S1, S2,… Sk} with ‘k’ < ‘m’.
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3.1  Ranking metrics

As discussed earlier, there are different feature ranking met-
rics each with its own strengths and weakness. For example, 
MI is the most commonly used ranking metric. This is due 
to the fact that it is a good information-based measure as 
it does not assume linearity between the variables and can 
work with both categorical and numerical variables (Wang 
et al. 2015). Yet, MI calculates redundancy by estimating 
the MI of the feature with the selected subset but forgets 
to measure the MI between the feature and the class label 
which may affect the model accuracy (Bennasar et al. 2015). 
Maximization of minimum criteria-based feature selection 
using MI is also found to be unstable (Bennasar et al. 2015). 
ReliefF is attractive as it has low bias and can capture local 
dependencies among the features that other methods miss. 
It is also stable but high stability does not always imply high 
accuracy in classification. On the other hand, methods like 
consistency-based and correlations based yield good perfor-
mance but are not stable (Bolón-Canedo et al. 2012). Other 
metrics, such as IG (Bolón-Canedo et al. 2015), Entropy and 
Fisher score are also used. IG, as discussed earlier is simple 
but it assumes independency between the features which is 
not always true (Bennasar et al. 2015). Correlated features, 
on the other hand, are redundant and fail to provide mutual 
information that helps in data mining tasks (Wang et al. 
2015). Few novel metrics are also proposed. For example, 
a novel feature ranking metric, maximum relevancy maxi-
mum distance is proposed for bioinformatics data classifi-
cation (Zou et al. 2016). But this method does not consider 
the discriminative power of the features. Chen et al. (2018) 
uses Subspace clustering for feature weighting. Yet, it suffers 
from the downside that the clustering results depend largely 
on the initial cluster centers and other parameters. Univari-
ate filtering feature selection approaches MI, ReliefF, and 
autocorrelation are compared with multivariate approach 
CFS in (Koprinska et al. 2015) for electricity load forecast-
ing. The results state that there is no significant difference in 
accuracy. Yet, this result cannot be generalized as their work 
focusses only on electricity load dataset.

Our model uses three different categories of metrics, Cor-
relation-Based (CB), Distance-Based (DB) and Information 
theory-Based (IB) measures. The metrics we use for our 
proposed model are correlation, neighborhood-based qual-
ity of information, rough MI and component co-occurrence 
information. Though it has its own limitations, correlation 
is found to be one of the best metrics in identifying the rela-
tionship between the features and the class label. It measures 

the dependency between the features that help to identify 
both the relevant and redundant features (Hsu and Hsieh 
2010). Feature-class correlation and Feature-feature corre-
lation help to identify the important features. Few recent 
works using correlation filtering in feature selection include 
(Dahiya et al. 2016; Hsu and Hsieh 2010; Low et al. 2016; 
Kim and Chung 2017; Zou et al. 2016; Xu et al. 2016; Sen-
awi et al. 2017). Low et al. (2016), Kim and Chung (2017), 
Zou et al. (2016), Xu et al. (2016) and Senawi et al. (2017) 
are tested on biomedical datasets. Most of the correlation 
methods are designed to work on a particular data type. 
As biomedical dataset consists of different data types, our 
model computes the correlation between the nominal and 
continuous data types as (Senawi et al. 2017)

where Fa ∈ F , E[var(FaC)] is the expected value of condi-
tional variance that represents the average variability within 
outcomes. The correlation between nominal variables is 
computed using the chi-squared test.

Our second metric, neighborhood-based quality of 
information is a new metric proposed by Liu et al. (2017). 
Unlike other distance-based metrics that calculate the dis-
tance between the features and then rank the features, this 
metric calculates the discriminative ability of a feature. The 
concept of maximum nearest neighbor is introduced by cal-
culating the maximum nearest neighbor entropy, conditional 
entropy and joint entropy. Any two samples having distance 
less than the maximum nearest neighbor and belonging to 
the same class are consistent, otherwise they are inconsist-
ent. Hence, two samples belong to different classes if there 
exists a feature that can differentiate the maximum nearest 
neighbors of these two samples. Thus, a formula is derived 
for the quality of a feature. This metric is tested with many 
filtering metrics in different classifiers and is proved to be 
one of the best metrics. Few recent works using this metric 
in their experiments include (Liu et al. 2018; Zheng et al. 
2019; Suo et al. 2019).

The neighborhood-based quality of a feature Fa ∈ F 
where c ∈ C and X[c]� = X − X[c] , is given by (Liu et al. 
2017)

where

(1)CB(Fa,C) =

(
1 −

E(var(Fa|C))
1

2

var(Fa)

)

(2)Q(Fa,C) =
MH�(Fa|c)

count�(Fa,X[c]
�)

∗ MH�(Fa)
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and count�(Fa,X[c]
�) is the number of observations that can be 

distinguished from sample Xi by Fa , �(Xi) is the maximum 
nearest neighbor of Xi over feature space F given by

where d(x) = max(�(x,NM(x)), �(x,NH(x))) . NM(x) is called 
the nearest miss and depicts the nearest observation that 
belongs to different class of x, NH(x) is called the nearest 
hit that depicts the nearest observation that belongs to the 
same class of x. �(x,NM(x)) and �(x,NH(x)) are the distance 
between x and its nearest observation that belongs to the 
different class and the same class, respectively.

Our third metric is MI. Though MI has its own limita-
tions, it is robust to noise and is not limited to linear depend-
encies. On the other hand, rough sets theory, introduced by 
Pawlak (1982), handles imprecision and uncertainty. The 
rough set concept is introduced into MI to handle the uncer-
tainty of knowledge that cannot be handled by Shannon’s 
entropy(Shannon 1948), one of the commonly used metric. 
Moreover, rough sets are known for reducing the redundancy 
by preserving the discrimination power of the dataset. Few 
works using rough set concepts with information meas-
ures include (Zeng et al. 2014; Maji and Pal 2009; Foitong 
et al. 2009; Yang et al. 2014; Qian and Liang 2008). Rough 
sets concept used with MI for feature selection is found to 
improve the cancer classification accuracy (Xu et al. 2009).

The rough MI between two features Fa,Fb ∈ F is given 
by Zeng et al. (2014)

where [Xi]Fa
 represents the equivalence class of Xi with 

respect to the feature Fa, [Xi]Fb
 represents the equivalence 

class of Xi with respect to feature Fb and ‘U’ represents 
union operation.

Our fourth metric, the Component Cooccurrence Feature 
Information (CCFI) is proposed by Wang and Feng (2018). 
It overcomes the disadvantages of MI and other similarity 
measuring metrics, such as Cosine Similarity (CS) and Jac-
card Similarity (JS). MI does not normalize the output val-
ues and it fails to handle the case when the probability of 

(3)MH�(Fa|c) = −
1

n

n∑
i=1

log
∣∣ �FaUC(Xi)

∣∣

∣∣ �C(Xi)
∣∣

(4)MH�(Fa)
= −

1

n

n∑
i=1

log
∣∣ �Fa(Xi)

n

(5)𝜂(Xi) = {X�
i
|𝛿F(Xi,X

�
i
) <= d(Xi),Xi ∈ X}

(6)RI(Fa,Fb) =
1

n

n∑
i=1

log
n ∣ [Xi]FaUFb

∣

∣ [Xi]Fa
∣∣ [Xi]Fb

∣

the component values of both the features is zero. CS and 
JS ignore the fact that two features with different component 
values on each dimension may be highly relevant. The CCFI 
overcomes these drawbacks by taking into account the con-
ditional occurring probabilities of two feature components 
than considering the vector similarity information. Recent 
work using CCFI includes (Wang and Feng 2019). CCFI 
between two features Fa,Fb ∈ F is given by Wang and Feng 
(2018)

where Fac and Fbc represent the possible values of Fa and Fb , 
respectively; p(Fac ∣ Fbc) represents the conditional prob-
ability that Fac occurs when Fbc exists; p(Fbc|Fac) represents 
the conditional probability that Fbc occurs when Fac exists; 
p(Fac,Fbc) is the feature component-based normalization 
coefficient which represents the probability that Fac and Fbc 
exist together in the dataset.

where n(Fac) represents the number of observations in which 
Fac exists; n(Fbc) represents the number of observations in 
which Fbc exists; n(Fbc,Fac) denotes the number of observa-
tions in which Fac and Fbc exists together.

3.2  Linguistic fuzzy modeling

Fuzzy rule-based systems are extensions of classical rule-
based systems with their antecedents and consequents com-
posed of fuzzy logic statements (Fernandez et al. 2017). 
It finds its application in uncertain and imprecision prob-
lems. Fuzzy Rule-Based Classification Systems (FRBCS) 
is composed of the inference system and knowledge base. 
The knowledge base is composed of membership functions 
of fuzzy partitions associated with the input features. The 
rule base is composed of fuzzy rules (del Río et al. 2015). 
Fuzzy rules are of the following form.

(7)
CCFI(Fa,Fb) =

∑
Fbc∈�,Fac∈�

(p(Fac|Fbc) ∗

p(Fbc|Fac) ∗ p(Fac,Fbc))

(8)p(Fac|Fbc) =
n(Fac,Fbc)

n(Fbc)

(9)p(Fbc|Fac) =
n(Fbc,Fac)

n(Fac)

(10)p(Fac,Fbc) =
n(Fbc,Fac)

n
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where x1, x2, ..xn are the inputs, Rj is the jth rule, A1
j
 , Aj2 ..... 

An
j
 are the linguistic labels of the fuzzy sets. The IF part 

constitutes the antecedent, THEN part constitutes the con-
sequent and RWj is the rule weight of rule Rj.

The rule weights are computed for each rule and the win-
ner rule is determined to derive the final class. There are 
different ways for computing rule weight and the winner 
rule is the one with the maximum weight. One of the com-
monly used methods for computing rule weight is penalized 
certainty factor.

There are several methods for fuzzification and defuzzifi-
cation. Few common fuzzification methods include infer-
ence, intuition, rank-ordering, using neural networks, using 
GAs, and deduction. Few common defuzzification methods 
include weighted average, centroid, the center of sums, and 
min–max. Linguistic labels are used to represent and catego-
rize the membership function. A linguistic fuzzy concept is 
introduced in Zadeh (1973). Linguistic fuzzy systems are 
simple and efficient rank aggregation approaches.

3.3  Squirrel search algorithm

The squirrel search algorithm is a novel nature-inspired 
optimization algorithm developed in Jain et al. (2019) and 
is proved to yield high convergence rate when compared 
with other swarm intelligence optimization algorithms, 
such as PSO, ABC, Bat Algorithm (BA), and FireFly (FF) 
algorithm. This algorithm imitates the dynamic behavior in 
locomotion of squirrels called gliding. The flying squirrels 
in the forest are assigned random initial location (random 
solutions) using uniform distribution. The user-defined fit-
ness function corresponds to the fitness of location for each 
flying squirrel. The fitness value represents the optimal 
food source, normal food source or no food source (qual-
ity of solutions). Depending on the fitness value, few flying 
squirrels move towards the normal and optimal food source 
(Exploration). Predator presence probability is also consid-
ered during this behavior (Exploitation). Flying squirrels 

(11)

RuleRj ∶ IF x1 is A1
j

AND

x2 is A2
j
.................

AND xn is An
j

THEN Class = Cj

with RWj

(12)RWj =

∑
xp�Cj

�Aj(xp) −
∑

xp∉�Cj
�Aj(xp)∑m

p=1
�Aj(xp)

from normal food source move towards optimal food source 
using the following equation (Jain et al. 2019)

where FSat are the flying squirrels on acorn nut tree (normal 
food source), FSt+1

at
 is the new location of the squirrels, dg 

is the random gliding distance, R1 is the random number in 
the range of [0,1], FSht is the location of the flying squirrel 
that reached the hickory nut tree (optimal food source) and 
t denotes the current iteration. The balance between explo-
ration and exploitation is achieved with the help of gliding 
constant Gc in the mathematical model. Gc is considered 
as 1.9.

Flying squirrels from no food source move towards the 
normal food source using the following equation (Jain et al. 
2019)

where FSnt are the flying squirrels on normal tree (no food 
source) and R2 is the random number in the range of [0,1]

Flying squirrels from no food source move towards the 
optimal food source using the following equation (Jain et al. 
2019)

where R3 is the random number in the range of [0,1]. Preda-
tor presence probability Pdp is 0.1 in all cases.

The gliding distance is calculated using the formula

where hg is the loss in height after gliding (approximately 
8m—corresponds to its original paper (Jain et al. 2019)). 
and Φ is the glide angle.

Another concept, seasonal monitoring change is also 
introduced to maintain the balance between the exploita-
tion and exploration capability of the algorithm apart from 
the gliding constant. This concept is based on the fact that 
seasonal changes and the presence of a predator can affect 
the locomotion path of the flying squirrels. This behavior is 
modeled using

(13)FSt+1
at

=

{
FSt

at
+ dgGc(FS

t
ht
− FSt

at
), R1 ≥ pdp

Random location, otherwise.

(14)FSt+1
nt

=

{
FSt

nt
+ dgGc(FS

t
at
− FSt

nt
), R2 ≥ pdp

Random location, otherwise.

(15)FSt+1
nt

=

{
FSt

nt
+ dgGc(FS

t
ht
− FSt

nt
), R3 ≥ pdp

Random location, otherwise.

(16)dg =

(
hg

tanΦ

)

(17)St
c
=

√√√√ d∑
k=1

(FSt
at,k

− FSht,k)
2
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where Sc is the seasonal constant and t = 1, 2, 3. The seasonal 
monitoring condition is checked if St

c
< Smin where Smin is 

the minimum value of seasonal constant and is calculated as

where t and tm are the current and maximum iteration val-
ues, respectively. The value Smin affects the exploration and 
exploitation capabilities.

Exploration capability is further improved by randomly 
relocating few flying squirrels that have not explored the 

(18)Smin =
10E−6

(365)t∕(tm∕2.5)

optimal food source but still survive. It is modeled using 
the equation

where Levy(n) explores the search space efficiently. FSL and 
FSU are lower and upper bounds, respectively, of ith flying 
squirrel in jth dimension.

Function tolerance, maximum execution time or the 
maximum number of iterations is considered as the stop-
ping criterion for the algorithm. Algorithm 1 depicts the 
algorithm for SSA. 

(19)FSnew
nt

= FSL + Levy(n) × (FSU − FSL)
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An improved SSA is introduced in Zheng and Luo (2019). 
The pseudocode of ISSA is shown in Algorithm 2. 

SSA’s global convergence capability is improved in the 
following ways.



 Network Modeling Analysis in Health Informatics and Bioinformatics (2021) 10:39

1 3

39 Page 10 of 29

First, to enhance the exploitation capability of the algo-
rithm, an adaptive predator presence probability is adopted 
as follows (Zheng and Luo 2019):

where Pdpmax and Pdpmin are the maximum and minimum 
predator presence probability, respectively.

Second, a normal cloud model generator is used instead 
of uniformly distributed random functions to reproduce the 
new location of the flying squirrels adopting the fuzziness in 
the foraging behavior of the squirrels. Hence, the Eqs. (13), 
(14) and (15) are replaced as follows:

(20)
Pdp = (Pdpmax − Pdpmin) × (1 − Iter∕Itermax)

10

+ Pdpmin

(21)FSnew
at

=

{
FSold

at
+ dgGc(FS

old
ht

− FSold
at
), R1 ≥ pdp

Cx(FS
old
at
,En,He), otherwise.

(22)FSnew
nt

=

{
FSold

nt
+ dgGc(FS

old
at

− FSold
nt
), R2 ≥ pdp

Cx(FS
old
nt
,En,He), otherwise.

(23)FSnew
nt

=

{
FSold

nt
+ dgGc(FS

old
ht

− FSold
nt
), R3 ≥ pdp

Cx(FS
old
nt
,En,He), otherwise.

where En is the Entropy that represents the uncertainty 
measurement of a qualitative concept and He is the Hyper 
Entropy and is the uncertain degree of entropy En.

Third, in order to not deviate from the optimal path, a 
comparison between the successive positions is introduced. 
The flying squirrels update them with the new position only 
when its fitness value is better than the previous position. 
This is adopted as follows:

Finally, to enhance the dimensional search and to prevent 
the negative effect caused in one dimension because of the 
changes incorporated in other dimensions, solutions are 
generated based on individual dimensions. This behavior is 
adopted as follows:

Few recent algorithms that use SSA include Basu (2019), 
Wang et al. (2019b, c) and Hu et al. (2019).

(24)FSi =

{
FSnew

i
iff new

i
< f old

i

FSold
i
, otherwise.

(25)FSnew
best,j

= Cx(FS
old
best,j

,En,He), j = 1, 2… , n

Fig. 1  Graphical abstract of H-FBRA+ISSA
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4  Proposed methodology

The proposed model H-FBRA + ISSA is explained. The 
graphical abstract of our proposed model is shown in Fig. 1.

4.1  Definitions

Definition 1 (Relevant feature): A feature Fa ∈ F is said to 
be ‘relevant’ to the class label C if it provides some new 
information on class C.

Definition 2 (Redundant feature): A feature Fa ∈ F is said 
to be ‘redundant’ if it does not provide any new information 
on class C.

Definition 3 (Highly ranked features): A feature Fa is clas-
sified as a highly ranked feature if the feature as a single 
feature and in combination with other features gives more 
information about the class label C.

Definition 4 (Moderately ranked features): A feature Fa is 
classified as a moderately ranked feature if the feature may 
give more information about the class label C when com-
bined with other features.

Definition 5 (Low ranked features): A feature Fa is classified 
as a low ranked feature if the feature does not give informa-
tion about the class label C either as a single feature or when 
combined with other features. �, � are constants.

4.2  Computing relevancy information

The normalization of the dataset is done initially. The dataset 
is normalized with mean 0 and standard deviation 1 to avoid 
the influence of high-value features. FBRA computes the 
relevancy information of a feature with the class label using 
the three measures CB, DB and IB as discussed in Sect. 3. 
We have chosen the filtering metrics based on different cri-
teria to ensure diversity.

FBRA computes the CB(Fa,C) measure using Eq. (1). 
FBRA computes the DB(Fa,C) using Eq.  (2). Hence, 
DB(Fa,C) is given by

(26)I(F,C) > I(F�,C) where lF� = {F − Fa}

(27)I(F,C) = I(F�,C) where F� = {F − Fa}

(28)Fa ∈ HR if I(Fa,C) > 𝜆

(29)Fa ∈ MR if I(Fa,C) < 𝜆 and > 𝜃

(30)Fa ∈ LR if I(Fa,C) < 𝜃

(31)DB(Fa,C) = Q(Fa,C)

FBRA computes IB(Fa,C) by calculating the rough MI 
and component co-occurrence information for each feature 
using Eqs. (6) and (7), respectively. An average of both these 
measures is calculated for each feature as

Now, each feature has three relevancy information 
CB(Fa), DB(Fa), IBFa) based on correlation, distance and 
information-theoretic measures, respectively.

4.3  Computing redundancy information

Generally, redundancy is calculated by measuring the MI 
between the candidate features and features within the 
selected subset without considering the class label. Some-
times certain features are identified as more significant but 
it may be highly correlated with few features and may be 
completely discarded. Yet, it may be completely independent 
of the remaining features and thus contributes to the clas-
sification accuracy. Our approach addresses this problem by 
calculating the redundancy information of a feature with all 
other features and computing the average. In this way, we are 
considering the global redundancy as we consider the redun-
dancy of each feature with all features and not with another 
single feature. Our approach computes the redundancy 
information of a particular feature using the three meas-
ures—correlation-based, distance-based and information 
theoretic-based. The correlation between continuous features 
is computed using Pearson‘s correlation and between nomi-
nal variables is computed using chi-square test. The correla-
tion between nominal and categorical variables is computed 
using Eq. (1). The correlation is calculated for each feature 
with the rest of the features. The average correlation redun-
dancy information of a feature Fa is computed as

The redundancy information of a feature Fa based on dis-
tance-based measure is computed using Eq. (2) as described 
in the previous section. The neighborhood quality of feature 
is calculated for each feature with all the other features. The 
final redundancy information based on distance measure is 
computed as

The information-based redundancy information of a feature 
Fa is calculated using Eqs. (6) and (7), respectively. The final 
redundancy measure based on information theory-based 
approaches is computed as

(32)IB(Fa,C) =
RI(Fa,C) + CCRI(Fa,C)

2

(33)CBR(Fa) =

n∑
b=1

CB(Fa,Fb)

n
and Fb ≠ Fa

(34)DBR(Fa) =

n∑
b=1

Q(Fa,Fb)

n
and Fb ≠ Fa
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Now, each feature has three redundancy information 
CBR(Fa), DBR(Fa), IBR(Fa) based on correlation, distance 
and information-theoretic measures, respectively.

4.4  Rank aggregation using fuzzy linguistic 
modeling

The algorithm of FBRA is given in algorithm 3. The main 
idea behind this work is to rank the features by combin-
ing different metrics to avoid bias and induce diversity. A 
particular filtering technique constraints the optimal search 
space due to the representational power of a particular fea-
ture. But aggregation technique avoids this problem by 
combining the results of different filtering techniques. The 
individual filtering method leads to local optimal subsets but 
rank aggregation feature selection approximates the optimal 
ranking of features (Waad et al. 2014). 

(35)IBR(Fa) =

n∑
b=1

RI(Fa,Fb)+CCRI(Fa,Fb)

2

n
and Fb ≠ Fa

As discussed in the earlier sections, most of the exist-
ing aggregation methods suffer from problems, such as tied 
ranking and disjoint ranking, whereas few others suffer from 
computational complexity. Hence, we propose fuzzy rule-
based system for aggregation. It overcomes these problems 
as it uses defuzzification to calculate the weight. Besides, 
fuzzy rule-based system is very flexible and the rules can 
be extended or updated easily. For example, if the user 
wishes to give more importance to the information theory-
based metrics than the correlation-based and distance-based 
metrics, the rule base can be updated easily. This flexibil-
ity opens the scope for different variations of our proposed 
model. Moreover, the fuzzy rule-based systems involve 
human reasoning and decision-making. This helps to provide 
specific solutions to the different types of problems. In our 
feature selection problem, this opens the scope to integrate 
or modify the rule base of our system according to the rec-
ommendations from the domain knowledge experts. Fuzzy 
aggregation model does not require any parameter tuning 
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too. The aggregation problem in feature selection involves 
uncertainty in ranking the input features based on different 
metrics. Fuzzy rule-based system can handle this uncer-
tainty well. Indeed, in our aggregation problem, the data 
to be combined are also of lower dimension and hence the 
number of rules to be generated is also less. These reasons 
motivate us to use fuzzy rule-based system for aggregation 
of the different ranking metrics.

The rank for each feature is generated according to the 
fired fuzzy rule. Initially, the relevancy and redundancy 
information is combined to obtain the feature weight based 
on each filtering measure. A feature with more relevant 
information and less redundant information is considered 
to be important. Hence, the feature weight value based on 
correlation measure, distance measure and information-
theoretic measure for each feature is calculated as

where � and � represent the weight assigned to relevancy 
information and redundancy information, respectively, in 
calculating the feature weight.

A rank matrix is formulated with the three different 
weights for each feature. The rank matrix is normalized. The 

(36)FWCB(Fa) =�(CB(Fa)) + �(CBR(Fa))

(37)FWDB(Fa) =�(DB(Fa)) + �(DBR(Fa))

(38)FWIB(Fa) =�(IB(Fa)) + �(IBR(Fa))

three weights form the input fuzzy sets. The data distribution 
of the inputs is considered to define linguistic labels Low 
(L), Medium (M) and High (H) for each input. A total of 
33 = 27 fuzzy rules corresponding to each input variable and 
linguistic label values are generated. The weights of each 
feature are fed as input to the fuzzy inference system. The 
fuzzy rules are weighed and a rule with maximum weight is 
fired. Since it is a normal aggregation with few values, we 
use simple techniques like triangular membership function 
for fuzzification and centroid method for defuzzification. 
Fuzzy rule generation is also simple by computing member-
ship values and obtains the grade of the uncertainty of the 
rule. Other methods include using decision tree, neuro-fuzzy 
or rough set technique to generate rules. Other membership 
functions include GA, Self-Organizing Map (SOM) and few 
other techniques but are not required in our case owing to its 
simplicity. The triangular membership function is given by

One of the fuzzy systems used in our proposed model is 
shown in Fig. 2. As stated above, we use triangular member-
ship function for fuzzification.The other two popular meth-
ods used for fuzzication in linear problems are trapezoidal 

(39)𝜇a(x) =

⎧
⎪⎪⎨⎪⎪⎩

0, x ≤ a
x−a

m−a
, a < x ≤ m

b−x

b−m
, m < x < b

0, x ≥ b

Fig. 2  Sample fuzzy system–triangular membership function
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and guassian while non-linear problems employ few other 
membership functions, such as Generalized bell, TT-shaped 
and S-shaped membership functions. Generally, triangular 
membership functions are tried as the start function for each 
problem as they are straight lines. This property makes it 
simple to implement. The necessity to use advanced mem-
bership functions is avoided when triangular membership 
function yields satisfactory solution to the problem. While 
trapezoidal membership functions represent fuzzy intervals, 
triangular membership functions represent fuzzy numbers. 
Hence, triangular membership functions are highly preferred 
for simple problems. Moreover, the triangular membership 
function is easier for taking parameter values than trap-
ezoidal or gaussian (Rahim et al. 2017). Also, triangular 
membership function is found to take less memory size for 

variables and program size than the other membership func-
tions (Princy and Dhenakaran 2016). These reasons motivate 
us to use triangular membership function for fuzzification.

The output is then defuzzified using the centroid method. 
It is given by

where c(z) is the degree of membership of the aggregated 
fuzzy set for the output z.

Figure 3 shows few sample defuzzification of features 
in our proposed model. As stated above, we use centroid 
method for defuzzification. The most commonly used 
defuzzification methods include middle of maximum, largest 

(40)Z∗ =
∫ �c(z)zdz

∫ �c(z)dz

Fig. 3  Sample defuzzification of the features in our proposed model–centroid method
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of maximum, and smallest of maximum, centroid and bisec-
tor (center of area). The bisector method divides the fuzzy 
region into regions of equal area and this line is used for 
defuzzification. The centroid method is the center of gravity 
point of the fuzzy region. The middle of maximum, largest 
of maximum and smallest of maximum returns the middle 
point, largest point and smallest point, respectively, of the 
maximum region. Centroids are more generous and cheap as 
they limit the defuzzified value. For example, when the out-
put fuzzy set covers a range between 10 and 40, the defuzzi-
fied value is between 15 and 35 when centroid is used. The 
middle of maximum, smallest of maximum or the largest 
of maximum does not impose such limits and the defuzzi-
fied value can fall more than 35 or less than 15 which may 
yield poorer results in certain problems. The bisector line in 
the center of area method is found to yield approximately 
the same output as the centroid method (Uraon and Kumar 
2016). Hence, there is no major performance difference 
between these two methods and either of them can be the 
choice. Besides, centroid method is found to be sensitive to 
all rules and hence incurs a smooth change when compared 
with the other defuzzification methods. It is also compu-
tationally fast as it involves simple operations (Saletic and 
Popovic 2006). Owing to these reasons, we chose centroid 
method for defuzzification.

The output variable final rank is assigned to one of the 
three linguistic labels Low (L), Medium (M) and High (H). 
Features that belong to L categories form the low-rank fea-
tures. Features belonging to M category form the moderately 

ranked features and the features belonging to H categories 
form the highly ranked features.

4.5  Hybrid FBRA + ISSA algorithm

The algorithm of hybrid FBRA + ISSA is depicted in algo-
rithm 4. Hybrid feature selection approaches as discussed 
in earlier sections combine filter and wrapper feature selec-
tion approaches. The initial subset of features is selected 
based on the filter approaches. The final subset of features is 
selected by identifying the subset of features that maximizes 
the optimizing function. The optimizing function is usually 
a function that maximizes the accuracy of a classifier. No 
single optimization algorithm is found to be effective for all 
the problems and hence different algorithms or improve-
ments in existing algorithms are proposed (Jain et al. 2019). 
ISSA algorithm is used as the wrapper algorithm in our pro-
posed model owing to its advantages discussed in the previ-
ous section. The initial subset of features is selected using 
the Fuzzy-Based Rank Aggregation (FBRA) technique. The 
result from FBRA is fed as input to the ISSA algorithm. The 
initial set of solutions is formed by including the high-rank 
features and then selecting different combinations from the 
moderate-rank features. The low-rank features are discarded 
completely. This decreases the computational time by reduc-
ing the feature space. Moreover, the bias towards the specific 
metric is avoided as our proposed model FBRA ranks fea-
tures by combining different metrics that aid in the selection 
of the best feature subset. 
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5  Experimental framework

5.1  Dataset description

Nine biomedical datasets are considered for experimentation 
out of which five datasets are high dimensional. To study 
the behavior of our model in low-dimensional datasets and 
for a better understanding of our model, the experiments 
are conducted on four low-dimensional datasets too. Table 1 
shows the descriptive summary of each dataset. It includes 
number of observations, number of features and number of 
classes and the source of each dataset. These datasets are 
binary or multiclass biomedical classification tasks and are 
appropriate to show the effectiveness of our model.

The first dataset is part of RNA seq PANCAN dataset 
(Fiorini 2016). This dataset contains the gene expression of 
patients with different types of tumors extracted randomly. 
The different type of tumors include Breast invasive Carci-
noma (BRCA), Kidney Renal clear cell Carcinoma (KIRC), 
Colon Adenocarcinoma (COAD), Lung Adenocarcinoma 
(LUAD) and Prostate Adenocarcinoma (PRAD). The focus 
is on classifying the samples into five different classes (type 
of tumors) based on the gene expressions.

The second dataset, Cancer gene represents the gene 
expression levels corresponding to Acute Myeloid Leukemia 
(AML) and Acute Lymphoblastic Leukemia (ALL) (Golub 
et al. 1999). The tissue samples are collected from Bone 
Marrow and Peripheral Blood. The focus is on classifying 
the samples by monitoring gene expression into one of the 
two classes AML or ALL.

The third dataset, Lymphoma represents the gene expres-
sion of Diffuse Large B-Cell Lymphoma (DLBCL) patients 
(Alizadeh et al. 2000). The variability in the tumor is to be 
identified by classifying them into different classes. Hence, 
the focus is on classification of the different B-cell groups. 
The different stages of B-cell determines the survival 
chances of the patient. Thus this classification helps to deter-
mine the survival chances of the patient with Lymphoma.

The fourth dataset, Colon represents the gene expression 
consisting of samples both from healthy persons and colon 

cancer affected patients (Alon et al. 1999). It consists of 
two thousand genes. The focus is on classifying the normal 
persons and the colon cancer affected patients based on their 
gene expression.

The fifth dataset, microRNAs represent the microRNA 
expression profiling to detect breast cancer (Matamala et al. 
2015). Proper classification helps to discriminate breast can-
cer and the intrinsic molecular subtypes. The focus is on 
classifying the normal and breast cancer tissues. This helps 
to treat the cancer at an earlier stage.

The sixth dataset, Chronic kidney is collected from 
patients in India. Around twenty four features of them such 
as their age, blood pressure, albumin, sugar, wc cells count, 
sodium, potassium, hypertension are recorded. The focus 
is on classifying the normal and the chronic kidney disease 
affected patients based on these features. The seventh data-
set, Spine is collected in an Orthopaedic center in France. 
Around twelve features of patients such as pelvic tilt, pel-
vic incidence, sacral scope are recorded. The focus is on 
classifying them into normal or abnormal based on these 
features. The eighth dataset, heart contains thirteen features 
of patients such as age, fasting blood sugar, resting blood 
pressure and chest pain type. These features help to iden-
tify the presence or absence of heart disease in the patients. 
Hence, the focus is on classifying them into two classes 
corresponding to the presence or absence of heart disease. 
The ninth dataset, cancer describes the characteristics of cell 
nuclei in the breast. Around thirty one features such as cell 
radius, texture, concavity, fractal dimension, smoothness are 
recorded. The focus is on classifying if the cancer type is 
benign or malignant based on these features. Further details 
about these datasets and sources can be obtained from the 
public data repository mentioned in Table 1 corresponding 
to the each dataset.

5.2  Parameter setting

The main parameters of ISSA algorithm include maximum 
number of iteration Imax , the population size Ps , the num-
ber of decision variables n, the maximum predator presence 

Table 1  Dataset description

Dataset no Dataset Source Rows Features Classes Feature types Sample proportion

1 Pancan UCI repository 801 20531 5 Continuous 17–18–18–10–37%
2 Cancer Gene Kaggle 72 7129 2 Continuous 65–35%
3 Lymphoma llmpp.nih.gov 96 4026 9 Continuous 10–11–48–9–2–2–6–4–6%
4 Colon Kaggle 62 2000 2 Continuous 65–35%
5 MicroRNAs Kaggle 133 1928 2 Continuous 92–8%
6 Chronic kidney UCI repository 400 24 2 Mixed 62–38%
7 Spine disease Kaggle 310 12 2 Continuous 68–32%
8 Heart disease UCI repository 270 13 2 Mixed 55–45%
9 Cancer disease Kaggle 569 31 2 Continuous 37–63%
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Fig. 4  Weight matrix of the datasets based on the three different measures—information, correlation, and distance
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probability Pdp(max) , the minimum predator presence prob-
ability Pdp(min) , the scaling factor Sf  , the gliding constant 
Gc , and the upper and lower bounds for decision variable FSu 
and FSl . The initial values are set according to the original 
literature (Zheng and Luo 2019). Imax to 100,000, Ps to 50, 
Pdp(max) to 0.1,Pdp(min) to 0.001,Sf  to 18 and Gc to 1.9. 
The parameters � and � in the Eqs. 36, 37 and 38 are deter-
mined empirically and the best value obtained is 0.6, 0.4 
after trying with different values in the range [0.3,0.8]. The 
classifiers used in our experimentation include Support Vec-
tor Machine (SVM), Random Forest (RF) and Deep Neural 
Networks (DNN). A radial basis kernel with degree 3 or a 
polynomial kernel is used in SVM. As our datasets are not 
linearly separable, we tried with radial basis kernel function 
as it is the first and preferred choice for non-linear data sepa-
ration. While it yields satisfactory performance for most of 
the datasets, the performance of it is not satisfactory for few 
datasets used in our experimentation. Hence, we tried with 
polynomial kernel for these datasets and obtain satisfactory 
performance. The optimal values of the model parameters 
C, ∈ are determined using the grid search technique. In case 
of random forest, the less number of trees increases vari-
ance and the more number of trees increases computational 
burden. In our datasets, though the features are more, the 
number of rows is relatively lesser and there is not much 
significant difference with respect to the number of rows 
among the different datasets considered in our experimenta-
tion. Hence, 50 trees are grown in RF and it yields satisfac-
tory performance. Deep learning classification is executed 
with Keras on top of TensorFlow. Adaboost is used to opti-
mize the network weights and rectifier is used as the acti-
vation function. The DNN parameters are determined by 
randomizedsearchcv as gridsearch is expensive with DNN. 
A 10-fold Cross-validation is used in all the classifiers. GA, 
PSO and Whale Optimization Algorithm (WOA) are used 
in our experiments for comparison. The parameters of these 
algorithms are set according to Nagarajan and Babu (2019). 
The population size is set between 60 and 100 in GA and 

PSO. The acceleration factors of PSO is set to 2.025 and the 
inertia weight is set to 0.625. The crossover and mutation 
ratios are set to 0.9 and 0.1 in GA. The parameter values of 
GA and PSO are determined by sensitivity analysis. The 
value of a is decreased from 2 to 0 over iterations in WOA 
as per the original literature (Mirjalili and Lewis 2016).

5.3  Results and discussion

The datasets are standardized to have a mean equal to zero 
and standard deviation equal to one. This is done to avoid 
the influence of high-value features. The relevancy and 
redundancy information for the features is computed using 
metrics based on three different measures—correlation, dis-
tance and information as discussed in Sect. 4. The weights 
of the features for these three measures are calculated using 
Eqs. 36, 37 and 38 respectively. Though the experimental 
results are shown for all the nine datasets, for illustrative 
purposes, we are showing the results of our proposed rank 
aggregation approach FBRA only on two datasets—2 and 7 
(one high dimensional and one low dimensional).

A sample plot of the weight matrix for datasets 2 and 
7 based on the three measures used in FBRA is shown in 
Fig. 4. For example, consider Fig. 4a that corresponds to 
dataset 2. Most of the features have the information based 
measure value between 0.4 and 0.8. The density value for 
a correlation-based measure is high between 0.5 to 0.7. 
Most of the features have a distance based measure value 
between 0.4 and 1. Few features have the value 0 for the 
information-based measure, correlation and distance-based 
measure indicating that they don‘t contribute to the clas-
sification. In Fig. 4b, that corresponds to dataset 7, five fea-
tures—degree spon, pelvic incidence, lumbar angle, sacral 
scope and pelvic radius are found to have high value with 
respect to information-based measure. Apart from these five 
features, pelvic tilt is also found to have high value when the 
correlation-based measure is considered. But with respect 

Fig. 5  Final Feature ranking by FBRA
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to dependence based measure, features such as cervical tilt 
is also found to have high value.

The linguistic labels are defined for the input and out-
put variables and the fuzzy system is constructed for rank 
aggregation. The final feature weights are computed with 
this fuzzy system. A sample plot of the final weight of the 
features is shown in Fig. 5 for datasets 2 and 7. For example, 
consider Fig. 5a which corresponds to dataset 2. As seen in 
Fig. 5a , each feature is found to have different values based 
on the three different measures. But with rank aggregation 
using linguistic fuzzy system, the final rank of the features is 
derived as shown in Fig. 5a. Figure 5b shows the final rank 
derived for dataset 7.

The selected features can be biologically interpreted. For 
dataset2 as displayed in Fig. 5a, the contributing features are 
identified and finally twenty five genes such as gene 4847 
(Zyxin), 804 (Macmarcks), 1882 (CST3 Cystatin C), 6855 
(TCF3 Transcription factor 3) are selected by FBRA as the 

high rank and moderate rank features. Hence, these genes 
play a major role in determining the type as AML or ALL. 
For dataset 7 as displayed in Fig. 5b, five features—feature 7, 
1, 3, 5, 2 that corresponds to degree spon, pelvic incidence, 
lumbar angle, pelvic rad and pelvic tilt are selected by FBRA 
as high rank features. Three features thoracic slope, sacral 
scope, cervical tilt are selected as moderate rank features by 
FBRA. The remaining four features are classified as low rank 
features by FBRA and can be ignored. The high rank features 
with different combinations of moderate rank features can be 
tried with the optimization algorithms for feature selection.

Similarly for dataset 1, forty two genes such as TTN, 
RPS20, RPLP2, TRBC2, RPSA, RPS11, RPL11, RPS16 are 
selected as high and moderate rank features. For dataset 4, 
around eighteen genes such as 704 (Human tyrosine kinase 
(HTK) mRNA, complete cds), 581 (CALGIZZARIN), 267 
(Human Cysteine-Rich Protein (CRP) gene), 1873 (Human 
MXI1 mRNA, complete cds.), 377 (H.sapiens mRNA for 

Table 2  Comparison of H-FBRA + ISSA with Individual filtering metrics—SVM

The bold values represent the best solution corresponding to the evaluated metric

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

FS 81 [38] 83.95 [20] 75.58 [19] 87.2 [17] 84.48 [16] 87.83 [14] 75.59 [8] 78.48 [7] 82.8 [16]
CHS 82 [40] 82.78 [22] 74.86 [21] 86.84 [19] 83.76 [15] 87.38 [10] 74.06 [6] 78.21 [8] 82.35 [17]
ReliefF 83.2 [39] 83.77 [27] 75.4 [18] 85.76 [22] 85.2 [17] 86.3 [15] 74.69 [4] 79.74 [10] 83.43 [20]
IG 84.2 [37] 85.84 [27] 74.32 [18] 88.1 [20] 84.75 [18] 87.02 [9] 75.5 [5] 76.68 [8] 86.04 [17]
MRMR 85 [38] 85.66 [26] 75.58 [16] 87.65 [18] 85.29 [19] 89 [8] 75.77 [7] 79.74 [9] 85.86 [16]
CFS 81.9 [40] 85.39 [21] 75.49 [17] 88.1 [19] 84.3 [17] 89.7 [9] 74.78 [8] 78.66 [10] 84.15 [15]
MRMD 84.2 [35] 85.94 [18] 76.3 [20] 85.85 [20] 85.56 [16] 88.28 [12] 73.89 [4] 80.01 [12] 84.78 [17]
SFR 83.7 [42] 85.48 [17] 75.85 [18] 87.47 [22] 84.48 [17] 87.47 [17] 75.5 [5] 79.56 [9] 83.79 [15]
NQF 85.1 [35] 84.49 [19] 74.86 [17] 86.66 [20] 85.2 [15] 88.19 [12] 73.79 [6] 74.88 [7] 82.62 [14]
CCI 84 [40] 86.02 [15] 75.31 [16] 87.65 [19] 83.4 [14] 86.84 [11] 75.77 [7] 78.75 [9] 83.34 [17]
RMI 85 [39] 85.48 [17] 75.85 [18] 86.84 [17] 84.75 [13] 87.29 [8] 74.78 [7] 79.47 [8] 84.33 [16]
FBRA 86.85 [42] 88.2 [25] 78.3 [17] 89.1 [18] 88.56 [13] 90 [15] 77.4 [8] 80.1 [8] 86.31 [17]

Table 3  Comparison of H-FBRA + ISSA with Individual filtering metrics—RF

The bold values represent the best solution corresponding to the evaluated metric

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

FS 82.5 [38] 84.58 [20] 73.87 [19] 86.39 [17] 83.58 [16] 86.48 [14] 72.8 [8] 78.66 [7] 88.83 [16]
CHS 83 [40] 83.59 [22] 74.68 [21] 87.38 [19] 84.3 [15] 87.47 [10] 74.87 [6] 79.11 [8] 84.78 [17]
ReliefF 83.5 [39] 84.94 [27] 73.6 [18] 85.85 [22] 84.39 [17] 85.4 [15] 73.52 [4] 80.19 [10] 88.02 [20]
IG 84.2 [37] 85.66 [27] 74.14 [18] 86.39 [20] 83.67 [18] 86.66 [9] 74.69 [5] 78.57 [8] 86.85 [17]
MRMR 85.1 [38] 85.93 [26] 74.86 [16] 87.2 [18] 83.49 [19] 87.83 [8] 75.41 [7] 80.1 [9] 87.39 [16]
CFS 83.1 [40] 85.48 [21] 74.59 [17] 86.84 [19] 84.3 [17] 87.65 [9] 76.22 [8] 79.65 [10] 85.86 [15]
MRMD 84.8 [35] 85.21 [18] 74.05 [20] 85.85 [20] 84.57 [16] 85.58 [12] 74.6 [4] 80.64 [12] 86.58 [17]
SFR 84.1 [42] 85.48 [17] 74.59 [18] 86.39 [22] 84.3 [17] 87.29 [17] 72.89 [5] 80.1 [9] 86.49 [15]
NQF 85.9 [35] 84.85 [19] 74.87 [17] 85.76 [20] 83.76 [15] 87.47 [12] 74.06 [6] 78.66 [7] 87.57 [14]
CCI 84.1 [40] 86.02 [15] 74.86 [16] 86.48 [19] 84.48 [14] 88.1 [11] 74.6 [7] 78.84 [9] 88.47 [17]
RMI 85 [39] 85.48 [17] 75.31 [18] 87.2 [17] 84.12 [13] 87.29 [8] 75.5 [7] 80.28 [8] 89.28 [16]
FBRA 86.85 [42] 88.2 [25] 78.3 [17] 88.38 [18] 88.2 [13] 89.1 [15] 77.4 [8] 81.81 [8] 90 [17]
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GCAP-II/uroguanylin precursor) are classified as high and 
moderate rank features by FBRA. For dataset 5, thirteen 
miRNAs such as miR-505-5p, miR-125b-5p, miR-21-5p, 
and miR-96-5p are classified as high and moderate rank 
features for the classification task. For dataset 3, seventeen 
genes such as 203, 1963, 1760, 3353, 2395 are selected as 
high and moderate rank features by FBRA. Inspite of several 
endeavors, we were unable to get the biological interpreta-
tion of these genes (dataset 3) from the literatures available. 
Therefore explanations about these genes are not provided 
in this paper. For dataset 6, fifteen features such as haemo-
globin, red blood cell count, hypertension, albumin, blood 
glucose random are classified as high and moderate rank 
features. For dataset 8, seven features such as age, fasting 
blood sugar, Trestbps, Cholestrol are classified as high and 
moderate rank features. For dataset 9, seventeen features 
such as perimeter-largest-worst, radius-largest-worst, con-
cave-points-mean, texture-mean are classified as high and 
moderate rank features. Thus FBRA helps to reduce the 
dimension of each dataset to a greater extent by choosing 
the contributing features. More information about the final 
subset of features selected by our proposed model after using 
FBRA as the initial filtering is discussed in the subsequent 
sections.

5.3.1  Comparison with individual filtering metrics

The first set of experimentation compares the performance 
of our proposed rank aggregation approach FBRA with 
eleven other approaches on nine datasets. The proposed 
FBRA is compared with six well-known filtering metrics—
FS, Chi-Square (CHS), ReliefF, IG, mRmR and CFS. It is 
also compared with five novel filtering metrics—Maximal 
Relevance Maximal Distance (MRMD) (Zou et al. 2016), 
Subspace clustering Feature weighing (SFR) (Chen et al. 
2018), Neighborhood-based Quality of Feature (NQF) (Liu 
et al. 2017), Component Cooccurrence Information (CCI) 
(Wang and Feng 2018) and Rough Mutual Information 
(RMI) (Zeng et al. 2014). The subset of features selected 
by each metric is used as input to the classifier. The perfor-
mance is evaluated on the basis of the number of features 
selected and the classification accuracy. We used Kneedle 
algorithm proposed in Satopaa et al. (2011) that uses the 
concept of ‘elbow” point in the cost-benefit curves, to deter-
mine the optimal number of features and provides a satis-
factory trade-off between selected number of features and 
classification accuracy with individual metric approaches. 
The classification accuracy achieved by FBRA and other 
individual filtering metrics is shown in Tables 2, 3 and 4. 

Table 4  Comparison of H-FBRA + ISSA with Individual filtering metrics–DNN

The bold values represent the best solution corresponding to the evaluated metric.

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

FS 83 [38] 83.66 [20] 77.38 [19] 87.83 [17] 83.2 [16] 81.8 [14] 71.27 [8] 73.89 [7] 80.19 [16]
CHS 84.1 [40] 82.58 [22] 76.57 [21] 87.74 [19] 82.38 [15] 82.07 [10] 67.58 [6] 75.78 [8] 80.91 [17]
ReliefF 84.1 [39] 84.02 [27] 77.38 [18] 86.48 [22] 84.2 [17] 83.6 [15] 70.46 [4] 78.48 [10] 81.09 [20]
IG 84.8 [37] 85.15 [27] 76.66 [18] 87.83 [20] 84.14 [18] 82.88 [9] 72.17 [5] 77.67 [8] 82.17 [17]
MRMR 85.3 [38] 85.38 [26] 78.64 [16] 87.11 [18] 83.56 [19] 84.86 [8] 71.63 [7] 78.3 [9] 81.81 [16]
CFS 84.6 [40] 84.2 [21] 77.65 [17] 87.2 [19] 84.2 [17] 85.4 [9] 70.91 [8] 76.77 [10] 81 [15]
MRMD 85 [35] 85.03 [18] 78.46 [20] 86.57 [20] 82.74 [16] 84.59 [12] 71.18 [4] 77.58 [12] 80.91 [17]
SFR 84.7 [42] 84.66 [17] 77.74 [18] 87.56 [22] 84.2 [17] 83.6 [17] 70.19 [5] 76.86 [9] 78.48 [15]
NQF 86 [35] 84.12 [19] 78.55 [17] 86.84 [20] 85.1 [15] 84.23 [12] 69.74 [6] 78.3 [7] 80.28 [14]
CCI 85 [40] 85.92 [15] 78.46 [16] 87.38 [19] 83.1 [14] 82.79 [11] 70.46 [7] 77.58 [9] 81.18 [17]
RMI 86 [39] 84.38 [17] 77.56 [18] 87.29 [17] 83.75 [13] 84.5 [8] 67.85 [7] 76.86 [8] 81.45 [16]
FBRA 87.03 [42] 87.92 [25] 81.09 [17] 89.1 [18] 87.82 [13] 86.04 [15] 73.8 [8] 79.2 [8] 82.35 [17]

Table 5  Comparison of H-FBRA + ISSA with other aggregation approaches—SVM

The bold values represent the best solution corresponding to the evaluated metric

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

Borda 84 [38] 84.9 [29] 76.2 [21] 87 [23] 85.1 [16] 87 [15] 73 [10] 79 [10] 85.6 [20]
RRA 84.9 [38] 85.6 [28] 76 [26] 87.8 [21] 84.3 [19] 87.6 [17] 72 [9] 80[12] 86.1 [18]
SA 85 [38] 86.1 [26] 77 [19] 87.2 20] 86 [15] 88.1 [19] 76 [8] 79.3 [9] 84 [19]
MVFS 85.5 [38] 87.3 [27] 77.8 [20] 88 [21] 8 7[14] 89 [17] 74 [6] 80[8] 86 [18]
FBRA 86.85 [38] 88.2 [25] 78.3 [17] 89.1 [18] 88.56 [13] 90 [15] 77.4 [8] 80.1 [7] 86.3 [17]
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The number of features selected by each metric is specified 
in the brackets against the classification accuracy.

Tables 2, 3 and 4 show that FBRA performs better than 
the other approaches used for experimentation in terms of 
classification accuracy. The results are very supportive, 
especially in high dimensional datasets. Since there is huge 
amount of diversity in high dimensional datasets, rank aggre-
gation approach FBRA performs much better than individual 
approaches. The difference in classification accuracy is not 
very high with FBRA in low dimensional datasets. Yet, FBRA 
exhibits superior performance than individual approaches in 
these datasets too. There is no specific individual approach 
that performed well or poorly in all the datasets. For example, 
mRmR exhibits superior performance in dataset 1 whereas 
CCI exhibits superior performance in dataset 2. There is an 
overlap in the performance of different individual approaches. 
The reason for this was discussed in earlier sections. Depend-
ing on the nature of the features in each dataset, different met-
rics perform well on different datasets. But FBRA exhibits 
exceptional performance in all the datasets as it considers 
several metrics for ranking the features.

Tables 2, 3 and 4 show the number of features selected 
by each approach. The feature dimensionality is reduced to 
a greater extent by filtering techniques. Though individual 
approaches select lesser number of features than our pro-
posed approach in most of the datasets, the best classifica-
tion accuracy is achieved by FBRA. The reason for the indi-
vidual approaches to select lesser number of features than 
FBRA is obvious. FBRA is an aggregation technique and the 
aggregation techniques usually end up with more number 

of features than individual measures as they combine many 
metrics to induce diversity. Yet, there is a significant reduc-
tion in the number of features and they perform well in terms 
of classification accuracy. It is observed that there are vari-
ations in the classification accuracy among the three classi-
fiers. This happens as different classifiers perform well on 
different datasets due to several reasons such as nature of 
the data types, number of features, and parameters for the 
classifiers Discussion on the performance of the classifiers 
is outside the purview of this paper. Though there are differ-
ences in the performance of the classifiers, it is clear that our 
method improves the classification accuracy in all the classi-
fiers. Irrespective of the best classifier for each dataset, our 
experiments prove that FBRA yields the best classification 
accuracy with the best classifier in each dataset by reduc-
ing the dimensionality to a greater extent. This is possibly 
due to the diversity in the selection of filtering metrics by 
rank aggregation. While other approaches might have missed 
out some contributing features based on their metric used, 
FBRA selects the contributing features effectively due to the 
rank aggregation.

5.3.2  Comparison with other rank aggregation approaches

The next set of experiments compares our proposed rank 
aggregation method FBRA with other rank aggregation 
approaches. FBRA is compared with four rank aggregation 
approaches—Borda, RRA (Kolde et al. 2012) and the two 
recently proposed aggregation approaches viz. ensemble 
feature selection using SA (Wang et al. 2019a) and MVFS 

Table 6  Comparison of H-FBRA + ISSA with other aggregation approaches—F

The bold values represent the best solution corresponding to the evaluated metric

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

Borda 84 [38] 86 [29] 75.9 [21] 85.8 [23] 87 [16] 87 [15] 73 [10] 80 [10] 88.2 [20]
RRA 85.5 [38] 87.1 [28] 76.5 [26] 86.3 [21] 85.4 [19] 86 [17] 72.4 [9] 80.5 [12] 89 [18]
SA 85 [38] 86.9 [26] 77 [19] 87 [20] 86.3 [15] 88.1[19] 76.2 [8] 81 [9] 86.3 [19]
MVFS 86 [38] 87.6 [27] 7 8[20] 87.4 [21] 87.1 [14] 88.4 [17] 74 [6] 81.5 [8] 89.4 [18]
FBRA 86.85 [38] 88.2 [25] 78.3 [17] 88.38 [18] 88.2 [13] 89.1 [15] 77.4 [8] 81.81 [8] 90[17]

Table 7  Comparison of H-FBRA + ISSA with other aggregation approaches—DNN

The bold values represent the best solution corresponding to the evaluated metric

Approaches DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9

Borda 85 [38] 87.19 [29] 78.5 [21] 87.4 [23] 86.6 [16] 85 [15] 71 [10] 79 [10] 80 [20]
RRA 85.6 [38] 87.18 [28] 79 [26] 88 [21] 87.1 [19] 84.4 [17] 68 [9] 78.4 [12] 82 [18]
SA 85.9 [38] 87.6 [26] 78.9 [19] 87.9 [20] 87.19 [15] 85.3 [19] 69 [8] 79 [9] 81.3 [19]
MVFS 86 [38] 86.9 [27] 80 [20] 88.1 [21] 87.5 [14] 85.1 [17] 70 [6] 79.2 [8] 82 [18]
FBRA 87.03 [38] 87.9 2[25] 81.09 [17] 89.1 [18] 87.82 [13] 86.04 [15] 73.8 [8] 79.2 [8] 82.35 [17]
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(Abut et al. 2019). Borda aggregation method outputs the 
rank based on the mean position of each feature in differ-
ent ranking methods (Najdi et al. 2016). RRA compares the 
results of different ranking methods with randomly gener-
ated ranking list. It compares the rank of each feature in 
different ranking methods and creates a rank order list where 
features are ranked based on the dominance of their ranks in 
rank order. A brief summary of Wang et al. (2019a) and Abut 
et al. (2019) are discussed in the earlier sections. Satopaa 
et al. (2011) is used to determine the cut off in selecting the 
optimal number of features for the rank aggregation methods 
used. The classification accuracy achieved by FBRA and 
other approaches used for comparison is shown in Tables 5, 
6, and 7. The number of features selected by the rank aggre-
gation approaches is mentioned in the brackets. It is evident 
from Tables 5, 6 and 7 that most of the rank aggregation 
approaches perform better than the individual approaches in 
terms of classification accuracy though not in terms of lesser 
number of features selected. Yet, there are some exceptions 
to this conclusion. For example, IG and mRmR perform bet-
ter than the rank aggregation approach SA for dataset 9. 
MRMD exhibits superior performance than Borda and RRA 
for dataset 7. Low dimensional datasets such as dataset 7 

and 9 don‘t induce much diversity in ranking the features 
by different metrics and hence rank aggregation approaches 
are not performing exceptionally well for these datasets. 
Indeed, this happens in high dimensional datasets too. For 
example, in dataset 1, NQF exhibits superior performance in 
terms of classification accuracy when compared with rank 
aggregation approaches Borda, RRA and SA. Yet, FBRA 
exhibits superior performance than all the individual and 
rank aggregation approaches. This happens because when 
the number of features is more, redundancy and relevancy 
play a major role and since individual filtering approaches 
are based on specific metrics, the best feature set is not iden-
tified properly. Many of the rank aggregation approaches 
also fail to consider redundancy and relevancy information 
during aggregation. But, the consideration of redundancy 
and relevancy information of the features in our model led 
to improved classification accuracy especially with high 
dimensional datasets. Moreover, the use of fuzzy systems 
for aggregation helps to rank the features efficiently in our 
proposed model by handling uncertainty in the ranks. From 
Tables 5, 6 and 7 it is clear that FBRA exhibits superior 
performance in terms of both classification accuracy and the 
number of features selected when compared with the other 

Fig. 6  Classification accuracy of optimization algorithms on different classifiers
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rank aggregation approaches. But, the performance differ-
ence among the rank aggregation approaches deteriorates as 
the number of features decreases. For example, in dataset 8, 
MVFS performs equally well as FBRA for DNN classifier 
though FBRA exhibits superior performance than MVFS for 
RF which is the best classifier for this dataset. It is also evi-
dent from the Tables 5, 6 and 7 that MVFS is the second-best 
performer next to FBRA in terms of classification accuracy. 

This is because, though MVFS ranks the features based on 
majority voting, it calculates correlation score when there 
is a tie. The performance of SA also improves with low 
dimensional datasets. Borda and RRA perform equally well 
but their classification accuracy is comparatively lesser than 
other approaches. The poor performance of Borda owes to 
its dependency on all the feature ranking methods used from 
best to worst. RRA, SA and MVFS work on the basis of 

Fig. 7  Number of features selected by optimization algorithms on different classifiers

Table 8  Comparison of 
H-FBRA + ISSA with state-of-
the-art methods—classification 
accuracy

The bold values represent the best solution corresponding to the evaluated metric

Dataset Jain et al. (2018) Apolloni et al. 
(2016)

Bonilla-Huerta 
et al. (2015)

H-FBRA + ISSA Original 
number of 
features

1 94 [47] 95 [67] 97[94] 98.9 [35] 20531
2 99.3 [5] 96 [9] 95.8 [11] 100 [10] 7129
3 99.4 [3] 100 [2] 100 [24] 100 [2] 4026
4 98.7 [7] 93.8 [3] 99 [9] 100 [8] 2000
5 94 [8] 97[9] 98 [7] 99.3 [10] 1928
6 99 [11] 99.2 [9] 100 [12] 100 [10] 24
7 91 [6] 90 [5] 92 [8] 94 [6] 12
8 87 [5] 90 [9] 89.1 [6] 93 [7] 13
9 92.4 [12] 95.6 [15] 100 [19] 100 [14] 31
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the position of ranks in each feature subset. FBRA exhibits 
superior performance as global redundancy is considered 
and the use of linguistic fuzzy model handles uncertainty 
efficiently in ranking the features. Moreover, FBRA discards 
the low-rank features completely leading to lesser number of 
features than other rank aggregation approaches that work 
based on cutting rule technique.

5.3.3  Comparison with other optimization algorithms

To evaluate the performance of our hybrid model 
H-FBRA+ISSA, we conducted an experiment to compare 
H-FBRA + ISSA with few other well-known optimization 
algorithms. GA, PSO, and WOA are used along with FBRA 
to build the hybrid approaches. The performance of these 
hybrid approaches is evaluated against the performance of 
H-FBRA+ISSA. The parameter settings for these algorithms 

are discussed in the previous section. The classification 
accuracy of different hybrid models on each classifier is 
shown in Fig. 6. From the Fig. 6, it is evident that the clas-
sification accuracy has improved in all the datasets when 
hybrid models are used. The dimension of the datasets is 
also reduced to a greater extent especially with high dimen-
sional datasets. This is expected in hybrid models as high-
quality features selected by the filtering or rank aggregation 
of filters are fed to the wrapper algorithm to yield the best 
classification accuracy with minimum number of features. It 
is evident from Fig. 6 that H-FBRA + ISSA exhibits supe-
rior performance against other hybrid models on DNN clas-
sifier except for dataset 7. FBRA+WOA exhibits superior 
performance than H-FBRA + ISSA for dataset 7. But RF is 
the best classifier for dataset 7 and H-FBRA + ISSA is the 
second-best performer in RF for this dataset. Dataset 7 is 
very low dimensional dataset with only 12 features and the 
difference in the use optimization algorithms is not expected 
to have a huge impact on it. FBRA+PSO also yields good 
results in this dataset. The classification accuracy achieved 
by FBRA+GA and FBRA+PSO is lesser when compared 
with FBRA + ISSA for all the other datasets. This is because 
of few specific characteristics of ISSA in its working prin-
ciple. ISSA uses three different strategies to update its solu-
tions. Moreover, ISSA uses behaviorally inspired random 
variations using gliding distance. The concept of predator 
presence probability improves the exploration capability of 
ISSA. The seasonal conditioning concept in ISSA also pre-
vents it from converging into local optimal solution which 
is not present in other optimization algorithms (Jain et al. 
2019). WOA is the second-best performer in most of the 
cases and is also found to perform equally well with ISSA 
but when the dimensions increase, ISSA performs better 

Table 9  Comparison of average execution time in seconds

Dataset Jain et al. 
(2018)

Apol-
loni et al. 
(2016)

Bonilla-
Huerta et al. 
(2015)

H-FBRA + ISSA

1 5900 4200 3900 1058
2 208 195 177 121
3 347 280 217 201
4 102 95 67 32
5 123 108 72 35
6 32 27 19 11
7 16 13 9 8
8 18 11 8 6
9 31 21 16 13

Table 10  Subset of features selected by H-FBRA + ISSA

Dataset no Dataset Subset of features

1 Pancan ZNF193, SF3A3, UBE2Z, G0, AGTPBP1, B4GALT3, RIPPLY1, DLGAP3, LOC399815, MAK16, NDUFS6, 
LPIN2, MBOAT2, ADRA1B, RNF185, ARL2BP, RIPPLY 1, .

2 Cancer Gene 4847(Zyxin), 804(Macmarcks), 1882(CST3 Cystatin C), 6855(TCF3 Transcription factor 3) 6919(RNS2 Ribo-
nuclease 2),2348(ACADM Acyl-Coenzyme A dehydrogenase),461, 1962, 5552, 2131

3 Lymphoma 390,3066
4 Colon 377(H.sapiens mRNA for GCAP-II/uroguanylin precursor), 765, 590, 384, 266, 1058(H.sapiens a-L-fucosidase 

gene),1541, 1873(Human MXI1 mRNA, complete cds.)
5 MicroRNAs miR-505-5p, miR-125b-5p, miR-21-5p, miR-96-5p,miR-3613-3p,miR-4668-5p,miR-4516,miR-3656,miR-

4488,miR-5704
6 Chronic kidney Specific gravity, albumin, blood glucose random, potassium, haemoglobin, packed cell volume, red blood cell 

count, hypertension, serum creatinine, anaemia
7 Spine disease Degree spon, pelvic incidence, lumbar angle, pelvic rad and pelvic tilt, cervical tilt
8 Heart disease Age, fasting blood sugar, Trestbps, Cholestrol, Thal, Slope,Cp
9 Cancer disease Perimeter-largest-worst,area-largest-worst,smoothness-largest-worst,compactness-mean, concave-points-mean, 

texture-largest-worst, texture-mean, symmetry-mean, concavity-largest-worst, concavity-mean, fractal-dimen-
sion-largest-worst, perimeter-mean, radius-se, area-mean
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than WOA. This is due to the fact that the balance between 
the exploration and exploitation capability of ISSA is better 
than WOA thereby leading to faster convergence.

Figure 7 shows the number of features selected by the 
different hybrid models. Though H-FBRA + ISSA doesn‘t 
yield the best result with respect to a lesser number of fea-
tures for all the datasets, the dimensionality of the datasets 
is reduced to a greater extent by H-FBRA+ISSA. Moreo-
ver, the difference in the number of features selected by 
the different hybrid models is also very meager. Hence, 
H-FBRA + ISSA reduces the dimensionality to a greater 
extent with better classification accuracy.

5.3.4  Comparison with state‑of‑the‑art methods

Our proposed model H-FBRA + ISSA is compared with 
three state of the art methods to evaluate its performance—
a hybrid framework with multiple filters and embedded 
approach for efficient feature selection in microarray data 
(Bonilla-Huerta et al. 2015), two hybrid wrapper filter fea-
ture selection algorithms (Apolloni et al. 2016) and cor-
relation feature Selection based improved-Binary PSO for 
Gene Selection and Cancer Classification (Jain et al. 2018). 
Bonilla-Huerta et al. (2015) uses five statistical measures 
like sum square, within square, MI, signal to noise ratio, 
Wilcoxon test, T-statistic and then uses fusion method to 
combine and calculate the fusion score. The initial gene set 
is selected according to the fusion score and GA with Tabu 
search is used to improve the performance for feature selec-
tion with the initial gene subset. Apolloni et al. (2016) uses 
IG the ranking method and Binary differential evolution is 
used as a wrapper approach for feature selection. Jain et al. 
(2018) uses Multivariate filter technique Correlation-based 
feature selection to select the initial gene subset and an 
improved BPSO for gene optimization. Table 8 shows the 
results of our experimentation. The classification accuracy 
obtained by the best classifier for each dataset is considered. 
The table values represent the classification accuracy and 
the figures in the brackets indicate the number of features 
selected.

The best classification accuracy and the least number of 
features selected for each dataset are represented in bold. 
It is obvious that our method yields the best classification 
accuracy in comparison with the other state-of-the-art meth-
ods. In few datasets, such as datasets 3 and 7, other methods 
also perform equally well but the classification accuracy 
achieved by our proposed model is not lesser than these 
methods for these datasets too. The salient features of our 
proposed model help to yield better classification accuracy 
than other state-of-the-art methods. Bonilla-Huerta et al. 
(2015) achieves poorer results than our proposed model 
probably because redundancy and relevancy metrics are not 
considered by this model. Though Apolloni et al. (2016) 

uses hybrid approach, it yields poorer results than our model 
because no local search techniques are used to improve the 
exploitation capability in Apolloni et al. (2016). Moreover, 
it is biased towards the metric IG whereas our model uses a 
rank aggregation method to obtain the best quality features. 
Jain et al. (2018) is again biased towards the metric correla-
tion and hence failed to consider contributing features based 
on other metrics.

But our method is not the best in selecting the least num-
ber of features. Yet, it has reduced the dimensionality of the 
datasets to a greater extent which is evident from Table 8. 
The minimum dimensionality reduction achieved by our 
proposed model is for dataset 8 and the maximum is for 
dataset 3.

In Table 9, we have reported the average execution time 
(in seconds) for each of the models on nine datasets. It can 
be summarized that our proposed H-FBRA + ISSA model 
takes less execution time than the other models. This hap-
pens because our rank aggregation approach effectively 
reduces the dimension of the datasets as the low-rank fea-
tures are discarded completely. Hence, the search space in 
which our wrapper algorithm ISSA operates is lesser than 
the search space used by wrapper algorithms in other state-
of-the-art methods (Bonilla-Huerta et al. 2015; Apolloni 
et al. 2016) and Jain et al. (2018). This reduces the com-
putational time of our proposed model. Moreover, a proper 
balance between the exploitation and exploration capability 
of ISSA helps to converge faster. Thus our proposed model 
ensures faster and more reliable feature selection for clas-
sification process without increasing complexity.

Table 10 shows the subset of features selected for the dif-
ferent datasets by our proposed model. The complete sets of 
selected features are shown in the Table 10 for all the data-
sets except for dataset 1. As thirty-five features are selected 
for this dataset, we have shown around fifteen features in the 
table and the list continues. The biological interpretation is 
given for most of the genes and feature number is shown for 
the others.

Hence, our proposed model is a generalized feature selec-
tion model for different kinds of classification problems with 
biomedical datasets (e.g., prediction of the type of a dis-
ease like cancer, diagnose a disease using genomic dataset, 
etc.). The salient features of our proposed method include its 
capability to work with mixed feature types (e.g., categori-
cal, discrete, continuous) and also with different classifiers. 
Our model has also proved its performance with different 
state-of-the-art methods. Use of ISSA algorithm with an 
enhanced exploitation and exploration capability yields 
faster convergence rate when compared with other optimi-
zation algorithms.

Yet, as suggested by the reviewers, we like to extend this 
subsection by discussing our proposed model in comparison 
with few other state-of-the-art works. Many other research 
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works are also proposed with embedded approaches and 
neural networks for feature selection in high dimensional 
biomedical classification tasks. For instance, an embedded 
approach is proposed that uses binary coral reefs optimiza-
tion algorithm with simulated annealing to select the fea-
tures in high-dimensional biomedical datasets (Yan et al. 
2019). But this approach does not use any filtering metric 
to select the initial feature subset to be provided as input to 
the optimization algorithm. Hence, the optimization algo-
rithm is expected to search on the complete feature space 
that may incur high computational time than our proposed 
model. Another embedded approach that uses grasshopper 
optimization algorithm to select the best features and opti-
mize the parameters for SVM is proposed for biomedical 
datasets (Ibrahim et al. 2019). But this approach is tested 
only on two datasets—Iraq cancer patients dataset and Uni-
versity of California Irvine datasets. Moreover, it suffers 
from the same drawback of computational complexity as the 
search space will be very high especially in case of genomic 
datasets. Neural networks, specifically deep networks are 
proved to be one of the best classifier for high-dimensional 
biomedical classification tasks. Though deep neural net-
works perform in-built feature extraction and yield better 
classification accuracy, it suffers from the major drawback 
of transparency. As discussed in the earlier section of this 
paper, feature extraction is a black box technique where the 
selected features cannot be interpreted. Hence, deep neu-
ral networks suit well for image classification tasks where 
major interpretation is not required but for certain biomedi-
cal data classification tasks (such as classification of disease) 
which requires to identify the major contributing features, 
application of feature selection techniques like our pro-
posed model helps in better interpretation. It has also been 
proved that use of feature selection techniques before deep 
neural networks help to improve the classification perfor-
mance in bioinformatics (Chen et al. 2020). Hence, though 
deep neural networks perform well on feature abstraction, 
there is a scope for performance improvement using feature 
selection models. Few state of the works also use feature 
selection models with deep neural networks. For instance, a 
work is proposed that applies mRmR feature selection over 
the extracted features from DNN to improve the classifier’s 
accuracy in detection of lung cancer(Toğaçar et al. 2020). 
Another such work uses binary gray wolf optimization and 
binary particle swam optimization over the extracted fea-
tures from DNN to select the best feature subset for diagno-
sis of COVID-19 (Canayaz 2021). Our experimentation also 
uses our proposed feature selection model H-FBRA + ISSA 
on deep neural networks and the results show that DNN clas-
sifier yields good classification accuracy.

5.3.5  Evaluating and validating results

All the experiments on classifiers are performed using ten-
fold cross-validation to avoid overfitting (Kohavi 1995). The 
experiments are also repeated five times to avoid bias in the 
results and the average of the results is considered. Over-
sampling is performed in the imbalanced dataset, dataset 5 
to avoid bias. To compare the results statistically, a paired t 
test is performed at 95% confidence interval on classification 
accuracy. The results confirmed that our proposed model 
H-FBRA+ISSA outperforms other methods used for com-
parison. The experiments are implemented in R.

6  Limitations and scope for future work

The results depict that our proposed model is an efficient 
feature selection method for biological classification tasks. 
Nevertheless, there is more scope for future work in our 
proposed model. This work can be extended to high dimen-
sional data of different domains to study the generalization 
of the proposed model. The use of linguistic hedges to the 
fuzzy inference system can also be explored in the future. 
Our proposed model works exclusively on the specific data-
sets. In future, our proposed model can be integrated with 
Ontology for better biological interpretations. Different vari-
ations of our proposed model can be tried by updating or 
extending the rule base in fuzzy aggregation. This can be 
tried in accordance with the input from the domain experts.

The datasets we considered in our experimentation are 
exclusively used for classification tasks such as predicting 
the presence or absence of a disease, classifying the type of 
disease and classifying normal and abnormal tissues. Yet, 
our proposed model can be applied for drug-related classi-
fication tasks too. For example, our proposed model can be 
used to select the best features from a set of patient-related 
features (such as age, sex, blood pressure, cholestrol, sodium 
to potassium ratio) to predict the outcome of a drug in a 
particular patient. Our model can also be used to select the 
best features in predicting alcohol-abused patients (Kumari 
et al. 2018). The performance of our proposed model can 
be explored for such datasets and classification tasks in the 
future. Besides, this study can be extended further for drug 
discovery problems. For instance, tasks, such as detection of 
active components, prediction of drug-target protein inter-
actions, can be converted to classification task and our pro-
posed model can be applied on it to study their performance.

The parameters of the ISSA and SSA algorithms are set 
from the original literatures in our proposed model. Though 
our proposed model yields satisfactory performance, future 
studies can analyze the performance of the model with dif-
ferent parameter values.
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7  Conclusion

In this paper, we proposed a computationally efficient 
Hybrid model (H-FBRA + ISSA) for feature selection in 
biomedical data classification tasks. This model combines 
linguistic fuzzy rule-based rank aggregation and ISSA 
algorithm for efficient feature selection. FBRA aggregates 
ranks from different filtering metrics using linguistic fuzzy 
model and discards the least significant features. The subset 
of features selected by FBRA is fed as input to ISSA algo-
rithm. ISSA optimization algorithm selects the final subset 
of features that yields the best classification accuracy. We 
conducted extensive experiments on both high-dimensional 
and low-dimensional datasets with three different classifi-
ers. Our proposed model is compared with individual filter-
ing metrics, rank aggregation methods, other optimization 
algorithms and state-of-the-art methods. The experiments 
show that H-FBRA + ISSA outperforms other models in 
terms of classification accuracy and computational time. It is 
also proved to reduce the dimensionality to a greater extent. 
Thus, the proposed model could be an efficient feature selec-
tion technique for biomedical data classification.
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