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1  | INTRODUC TION

Metabolic syndrome refers to metabolic impairments such as insulin 
resistance, hyperglycaemia and dyslipidemia associated with obe-
sity and hypertension and increases cardiovascular morbidity and 

mortality.1 The latter is related to development of a progressive deteri-
oration of left ventricular (LV) diastolic function and vascular endothe-
lial function.2-4 Of note is that several studies have demonstrated the 
implication of mitochondrial dysfunction in metabolic syndrome-re-
lated cardiac diastolic5 as well as vascular endothelial dysfunctions.6
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Abstract
Introduction: Imeglimin, a glucose-lowering agent targeting mitochondrial bioener-
getics, decreases reactive oxygen species (ROS) overproduction and improves glu-
cose homeostasis. We investigated whether this is associated with protective effects 
on metabolic syndrome-related left ventricular (LV) and vascular dysfunctions.
Methods: We used Zucker fa/fa rats to assess the effects on LV function, LV tissue 
perfusion, LV oxidative stress and vascular function induced by imeglimin adminis-
tered orally for 9 or 90 days at a dose of 150 mg/kg twice daily.
Results: Compared to untreated animals, 9- and 90-day imeglimin treatment decreased LV 
end-diastolic pressure and LV end-diastolic pressure-volume relation, increased LV tissue 
perfusion and decreased LV ROS production. Simultaneously, imeglimin restored acetyl-
choline-mediated coronary relaxation and mesenteric flow-mediated dilation. One hour 
after imeglimin administration, when glucose plasma levels were not yet modified, imeg-
limin	reduced	LV	mitochondrial	ROS	production	and	improved	LV	function.	Ninety-day	
imeglimin treatment reduced related LV and kidney fibrosis and improved kidney function.
Conclusion: In	 a	 rat	model,	mimicking	Human	metabolic	 syndrome,	 imeglimin	 im-
mediately countered metabolic syndrome-related cardiac diastolic and vascular dys-
function	 by	 reducing	 oxidative	 stress/increased	 NO	 bioavailability	 and	 improving	
myocardial perfusion and after 90-day treatment myocardial and kidney structure, 
effects that are, at least in part, independent from glucose control.
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Imeglimin, a glucose-lowering agent targeting mitochondrial bio-
energetics, improves hyperinsulinemia, glucose tolerance and insulin 
sensitivity in experimental models of diabetes as well as in people 
with diabetes.7-10 Moreover, imeglimin decreases reactive oxygen 
species (ROS) overproduction and delays mitochondrial permeabil-
ity transition pore opening in endothelial cells, preventing cell death 
during oxidative stress due to hyperglycaemia.11	However,	there	is	a	
paucity of data to suggest whether these beneficial effects are asso-
ciated with a prevention of metabolic syndrome-related cardiovas-
cular dysfunctions.

Thus, the goal of the present study was to assess the imeglimin's 
effects on systemic and cardiac hemodynamics, cardiovascular func-
tion and morphological alterations in a rat model mimicking human 
metabolic syndrome-related cardiovascular dysfunctions,12-14 
1 hour, after imeglimin administration, as well as after a 9- and 90-
day treatment.

2  | METHODS AND MATERIAL S

2.1 | Animals and treatment

This study was performed in 12-week-old male Zucker fa/+ (lean) 
and Zucker fa/fa	rats	(Charles	River	Laboratory,	France).	Metabolic-
related cardiovascular dysfunctions and cardiac structure were 
assessed	after	a	90-day	treatment	period	(study	1).	However,	be-
cause ‘long-term’ structural effects can mask ‘short-term’ effects 
on cardiac/vascular function, effects of imeglimin on metabolic-re-
lated cardiovascular dysfunctions and cardiac structure were also 
assessed after a 9-day treatment period. This experimental design 
allowed the evaluation of the acute effects of imeglimin indepen-
dently of the potential beneficial effects induced by the improve-
ment of cardiac remodelling after chronic treatment (study 2).

Study 1: Zucker fa/fa rats were randomized at the age of 
12 weeks into two groups, either untreated (n = 15) or treated with 
imeglimin (n = 15; 150 mg/kg/d twice daily, gavage at 09:00 and 
18:00) for a 90-day period. Twelve untreated Zucker fa/+ animals 
were used as healthy controls. Study 2: Zucker fa/fa rats were ran-
domized at the age of 12 weeks into two groups, either untreated 
(n = 15) or treated with imeglimin (n = 15) at the same dose for a 
9-day	 period.	 Nine	 untreated	 Zucker	 fa/+ animals were used as 
healthy controls.

Since glycemic control is involved in effects induced by 9- and 90-
day imeglimin treatment,10-12 a third study evaluated the cardiovas-
cular effects of imeglimin as soon as 1 hour after a single imeglimin 
administration (150 mg/kg) in 13-week-old Zucker fa/fa rats, allowing 
evaluation of imeglimin effects independently of glycemic control.

2.2 | Investigated parameters

All	parameters	investigated	after	single	or	multiple	imeglimin	dose(s)	
were measured 1h after the last (or single) morning dose.

2.3 | Left ventricular function

2.3.1 | Echocardiography

Studies were performed in rats before and after 9, 30 and 90 days of 
treatment.	For	this	purpose,	rats	were	anesthetized	with	methohex-
ital, the chest shaved and echocardiograms were performed with a 
Vivid	7	ultrasound	echograph	equipped	with	an	M12L,	as	described	
previously.14 In brief, a two-dimensional short axis view of the LV 
was obtained at the level of the papillary muscle in order to record 
M-mode tracings. Left ventricular diameters were measured by the 
American	Society	of	Echocardiology	leading-edge	method.15 In ad-
dition, LV outflow velocity was measured by pulsed-wave Doppler, 
and cardiac output was calculated as CO = aortic VTI (velocity time 
interval) x [π x (LV outflow diameter/2)2] x heart rate.

2.3.2 | Left ventricular hemodynamics

Left ventricular hemodynamics were assessed 1 hour after a single imeg-
limin administration as well as after a 9- and a 90-day imeglimin treatment 
using LV pressure-volume curves, as previously described.14	Animals	were	
anesthetized with methohexital; a conductance-micromanometer cath-
eter (model SPR-819, Millar Instruments) was connected to a pressure-
conductance unit and advanced retrograde via the carotid artery into 
the LV. Left ventricular pressure-volume loops were recorded at baseline 
and during loading by gently occluding the abdominal aorta with a cot-
ton swab. Data were stored and analysed by using Millar conductance 
data	 acquisition/analysis	 software	 and	 the	 following	 parameters	were	
measured/calculated from the pressure-volume curves: LV end-systolic 
and end-diastolic pressures, LV end-systolic pressure-volume and end-
diastolic pressure-volume relations, and LV relaxation constant Tau.

2.4 | Myocardial perfusion

One hour after a single imeglimin administration as well as after a 
9- and a 90-day imeglimin treatment, myocardial perfusion was as-
sessed	in	methohexital-anesthetized	animals	using	a	Bruker	Biospec	
4.7	Tesla	MRI,	and	an	acquisition	T1	sequence	that	does	not	need	
contrast agent application, as previously described.16,17

2.5 | Exercise tolerance test

Exercise	capacity	was	determined	 in	randomly	selected	animals	of	
each group after the last imeglimin administration in the 90-day pro-
tocol	 (study	1).	The	animals	were	exercised	on	a	treadmill	 (Bioseb,	
Paris	France)	at	a	speed	of	2.4	m/min	at	a	5°	incline.	The	speed	was	
increased by 2.4 m/min every 1 minutes to a maximum speed of 14.4 
m/min.	Fatigue	was	considered	to	occur	when	a	rat	started	to	lower	
its	hindquarters	and	raise	its	snout,	resulting	in	a	significantly	altered	
gait and an inability to remain on the treadmill. When this degree of 
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fatigue was noted, the animal was taken off the treadmill, and run-
ning time was recorded.

2.6 | Oral glucose tolerance test

At	the	end	of	the	9-day	treatment	period,	rats	were	fasted	16	hours	
before	testing.	A	blood	sample	was	collected	from	the	tail	vein,	and	
blood	glucose	was	measured	with	a	glucometer	(StatStrip	Xpress,	Nova	
Biomedical)	before	the	OGTT.	The	OGTT	was	performed	by	oral	gav-
age of D-glucose 2 g/kg body weight, blood samples were collected 
from the tail vein, and glucose levels were measured for 2 hours.

2.7 | Vascular endothelial function

Coronary endothelial function was assessed, using a DMT wire myo-
graph (DMT, Denmark), as previously described.14	 Following	 the	LV	
function assessment, the heart was removed and placed in cold-oxy-
genated	Krebs	buffer.	A	1.5-	to	2-mm-long	segment	of	coronary	arter-
ies was dissected and mounted in a vessel myograph. Segments with 
an	internal	diameter	<170	µm	were	excluded	to	avoid	mechanical	en-
dothelial injury and unspecific dysfunction. Concentration-response 
curves to acetylcholine (10−8 to 3 x 10−5 mol/L) were performed 
in serotonin-precontracted segments (10-5	 mol/L).	 Endothelium-
independent relaxation to increasing concentrations of sodium 
nitroprusside (10−9 to 3 x 10−5 mol/L) was also obtained in serotonin-
precontracted arteries. Peripheral endothelial function.	At	the	end	of	9	
and 90 days of treatment, mesenteric artery dilatation was assessed, 
as previously described.18	After	assessment	of	the	hemodynamic	pa-
rameters, a third order mesenteric artery was isolated and transferred 
to	a	pressure	myograph	(DMT).	Arteries	were	preconstricted	by	the	
phenylephrine, and flow-mediated dilatation was assessed by increas-
ing stepwise intraluminal perfusate flow rate.

2.8 | Urinary biochemical assessment

After	 90	 days	 of	 treatment,	 randomly	 selected	 animals	 in	 each	
group were placed in metabolic cages for a 24-hour urine collection. 
Urinary creatinine-excretion and proteinuria were determined as in-
dicators of renal function.

2.9 | Kidney histology

Kidneys were harvested at the end of study 1. Masson's trichrome 
staining of paraffin-embedded kidney sections was used for semi-
quantitative	 scoring	 of	 glomerulosclerosis,	 tubular	 injury	 (necrosis	
and atrophy), interstitial inflammation and interstitial fibrosis, as pre-
viously described.19	A	minimum	of	20	glomeruli	(range:	20	to	30)	in	
each specimen were examined, and the severity of the lesion was 

graded from 0 to 4 and expressed as a percentage of number of the 
glomeruli examined.

2.10 | Cardiac histology

After	 hemodynamic	 assessment,	 the	 heart	 was	 harvested	 and	 LV	
weight was measured. Sirius red staining of paraffin-embedded LV 
sections was used for collagen determination using an image analysis 
system. Collagen density was calculated in the LV as the surface oc-
cupied by collagen divided by the surface of the image.20

Left ventricular ROS levels were evaluated after 1h, 9 and 90 days 
of treatment in LV homogenates by electron paramagnetic resonance 
spectroscopy using the spin probe 1-hydroxy-3-methoxycarbon-
yl-2,2,5,5-tetramethylpyrrolidine	(Noxygen),	as	previously	described.21 
Besides	‘overall’	LV	ROS	production,	LV	interfibrillar	and	LV	subsarco-
lemmal mitochondria ROS production were determined at 1 hour after 
a single imeglimin administration, as previously described.22

Plasma	nitrite	concentrations,	a	marker	of	nitric	oxide	(NO)	pro-
duction, were determined in plasma samples obtained after 1h, 9 
and 90 days of treatment, using tri-iodide based chemiluminescence, 
as previously described.23	The	NO	signal	was	quantified	using	a	ni-
tric	oxide	analyser	(NOA™	280,	Sievers	Instruments).

2.11 | Plasma biochemical

Plasma creatinine, glucose, insulin, total cholesterol and triglycerides 
levels were measured after 1h, 9 and 90 days of treatment, using the 
Catalyst	Analyzer	(IDEXX,	France).

2.12 | Statistical analysis

All	results	are	given	as	mean	±	SEM.
Left ventricular diastolic/systolic diameters and hemodynamic 

parameters were assessed as a primary endpoint, whereas all other 
parameters, that is the molecular mechanisms, were assessed as 
exploratory	 end-points.	 Based	 upon	 historical	 data	 obtained	with	
other drugs in Zucker fa/fa rats,14,18 we made a simulation for each 
parameter obtained in untreated animals to demonstrate a statistical 
significance (P < .05) with a minimal power of 80%. The minimal ex-
pected effect size or difference between untreated and treated was 
fixed to 10% and 30%, with the coefficient of variation to 2% and 
15% for echocardiographic and hemodynamic studies, respectively. 
For	all	significant	differences	concerning	primary	end-points,	a	pos-
teriori powers higher than 80% were also checked.

In order to evaluate the effect of metabolic syndrome, all param-
eters obtained in untreated Zucker fa/fa and lean rats were com-
pared by Student's unpaired two-tailed t test. In order to evaluate 
the effects of long- or short-term imeglimin, all parameters obtained 
1 hour, or 9- and 90-day treated Zucker fa/fa rats were compared 
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with age-matched untreated Zucker fa/fa using Student's unpaired 
two-tailed t test.

Before	 applying	 parametric	 tests	 as	 Student's	 unpaired	 two-
tailed t	test,	the	Gaussian	distribution	of	data	was	assessed	by	the	
Shapiro-Wilk test for normality and the Kolmogorov-Smirnov test, 
and graphically by Q-Q plot and normal probability plot.

3  | RESULTS

3.1 | Biological parameters

Body	weight	was	increased	in	13-	and	24-week-old	untreated	Zucker	
rats when compared to age-matched lean rats. While plasma glucose 
concentration was increased in 13-week-old Zucker rats, plasma in-
sulin, cholesterol and triglycerides concentrations were increased in 
24-week-old untreated Zucker rats compared to lean rats. Imeglimin 
did not modify body weight, plasma cholesterol, triglycerides or in-
sulin concentrations at any time, but reduced fasting plasma glucose 
after both 9 and 90 days of administration when compared to un-
treated Zucker rats (Table 1).

3.2 | Systemic hemodynamics

In 13 and 24-week-old untreated Zucker rats, systolic blood pressure 
was increased compared to age-matched lean rats, reaching statis-
tical significance after 90 days, while diastolic blood pressure and 
heart rate were not different when compared with age-matched lean 

rats.	Neither	 9-	 nor	 90-day	 imeglimin	 treatment	modified	 systolic	
and diastolic blood pressure or heart rate (Table 1).

3.3 | Left ventricular remodelling

Left ventricular diastolic and systolic diameters as well as LV frac-
tional shortening were similar in 12-week-old untreated Zucker rats 
compared to age-matched lean rats. Left ventricular diastolic and 
systolic diameters increased during ageing, resulting in a significant 
decrease in LV fractional shortening compared to age-matched lean 
rats after 90 days. Imeglimin slightly reduced LV diastolic and sys-
tolic diameters after 9, 30 and 90 days of treatment, reaching sta-
tistical significance after 30 days for LV diastolic diameter and after 
90 days for systolic diameter. Imeglimin also increased LV fractional 
shortening,	reaching	statistical	significance	after	90	days	(Figure	1).

3.4 | Left ventricular hemodynamics

Left ventricular end-systolic pressure was slightly increased in 13- 
and 24-week-old Zucker rats when compared to age-matched lean 
rats, and this increase was statistically significant only in 24-week-
old rats. Left ventricular end-systolic pressure-volume relationship 
was significantly increased in 13-week-old Zucker rats, while LV 
end-diastolic pressure, relaxation constant Tau, and LV end-diastolic 
pressure-volume relationship were all significantly increased in both 
13- and 24-week-old Zucker rats compared to age-matched lean ani-
mals	(Figure	2).

Group Time Lean

Zucker fa/fa

Untreated Imeglimin

Body	Weight	(g) D9 361	±	12 426	±	7* 421	±	16

D90 415	±	25 568	±	11* 545	±	13

Plasma glucose 
(mmol/L)

D9 4.98	±	0.17 8.19	±	0.47* 6.64	±	0.39† 

D90 7.17	±	0.61 6.73	±	0.25 5.50	±	0.31† 

Plasma insulin  
(Unit/mL)

D9 - 14.1	±	3.5 13.3	±	2.4

D90 1.27	±	0.53 4.88	±	0.59* 4.76	±	0.57

Plasma cholesterol 
(mmol/L)

D9 - 4.11	±	0.24 4.19	±	0.40

D90 2.85	±	0.12 5.66	±	0.23* 5.51	±	0.33

Plasma triglycerides 
(mMol/L)

D9 - 2.62	±	0.22 1.66	±	0.41

D90 0.96	±	0.12 5.02	±	0.31* 5.24	±	0.64

Systolic	Blood	Pressure	
(mm	Hg)

D9 130	±	6 143	±	5 146	±	4

D90 108	±	6 131	±	6* 125	±	5

Diastolic	Blood	
Pressure	(mm	Hg)

D9 102	±	4 101	±	5 106	±	2

D90 82	±	7 96	±	6 90	±	4

Heart	rate	(beats/min) D9 354	±	12 370	±	18 381	±	17

D90 343	±	9 345	±	13 340	±	14

*P < .05 vs Lean zucker fa/+. 
†P < .05 vs untreated Zucker fa/fa. 

TA B L E  1  Biology	and	systemic	
hemodynamics after 9 (D9) and 90 d (D90) 
imeglimin treatment
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Administration	of	imeglimin	for	9	and	90	days	modified	neither	LV	
end-systolic pressure nor LV end-systolic pressure-volume relation. The 
9-day imeglimin administration decreased LV end-diastolic pressure and 
LV end-diastolic pressure-volume relationship, reaching statistical sig-
nificance for the latter, without modifying LV Tau. The 90-day imeglimin 
treatment reduced LV end-diastolic pressure, LV end-diastolic pres-
sure-volume relationship and Tau, reaching statistical significance for 
LV	end-diastolic	pressure-volume	relationship	and	Tau	(Figure	2).

3.5 | Left ventricular remodelling and 
myocardial perfusion

While LV weight was similar between Zucker and lean rats at the age 
of 13 and 24 weeks, LV interstitial collagen density was significantly 
increased in the 24-week-old Zucker rats. Imeglimin did not modify 
LV weight at any time, but significantly reduced LV collagen density 
after	90	days	treatment.	Additionally,	myocardial	perfusion	was	de-
creased	in	both	13-	and	24-week-old	untreated	Zucker	rats.	Both	9-	
and 90-day imeglimin treatments significantly increased myocardial 
tissue perfusion (Table 2).

3.6 | Left ventricular oxidative stress

Left ventricular ROS production was increased, while plasma nitrite 
levels were decreased in 13- and 24-week-old untreated Zucker rats 
when	compared	to	age-matched	lean	rats.	Both	9-	and	90-day	imeg-
limin treatments decreased LV ROS production levels, reaching sta-
tistical significance after 9 days and increased plasma nitrite levels 
(Table 2).

3.7 | Coronary artery endothelium-
dependent relaxation

Imeglimin administration for 9 and 90 days prevented the impair-
ment in acetylcholine-induced relaxation of septal coronary artery 

observed	in	24-week-old	untreated	Zucker	rats	(Figure	3,	middle	and	
right panel). Moreover, 1 hour after a single imeglimin administration, 
endothelium-dependent relaxation was slightly improved compared 
to	age-matched	untreated	Zucker	rats	 (Figure	3,	 left	panel),	reach-
ing statistical significance at the concentrations of 10−7-3 x 10−6 M 
acetylcholine.

Coronary relaxation induced by sodium nitroprusside was identi-
cal in all groups (data not shown).

3.8 | Mesenteric endothelium-dependent dilatation

Imeglimin administered for 9 or 90 days prevented the impairment 
of flow-mediated dilation of mesenteric arteries when compared to 
time-matched untreated Zucker rats.	(Figure	4).

3.9 | Oral glucose tolerance test

Oral glucose tolerance was impaired in 13-week-old untreated 
Zucker rats when compared to age-matched lean rats. Imeglimin 
normalized	OGTT	after	9	days	of	treatment	(Figure	5).

3.10 | Kidney function

Albuminuria	 was	 significantly	 increased	 in	 24-week-old	 untreated	
Zucker rats compared to age-matched lean rats, while urinary vol-
ume and creatinuria were not modified. While imeglimin treatment 
for 90 days reduced albuminuria, there was no reduction in creatinu-
ria or urinary volume (Table 3).

3.11 | Kidney histology

Glomeruli	 and	 tubular	 injury	 scores,	 interstitial	 fibrosis,	 and	 in-
terstitial inflammation were increased in 24-week-old untreated 
Zucker rats compared to age-matched lean rats. Treatment with 

F I G U R E  1   Left ventricular (LV) 
diastolic diameter and systolic diameter 
as well as LV fractional shortening 
determined before and after 30 and 90 d 
in untreated Zucker fa/+ (open circles) and 
untreated Zucker fa/fa/ rats (filled circles) 
and after 9, 30 and 90 d in imeglimin-
treated Zucker fa/fa	(filled	triangles).	*:	
P<.05 vs untreated Zucker fa/+; †: P<.05 
vs untreated Zucker fa/fa
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imeglimin for 90 days significantly reduced interstitial fibrosis; 
while the glomerular injury score and interstitial inflammation were 
also reduced, the reduction did not reach statistical significance 
(Table 3).

3.12 | Exercise tolerance

Maximal	running	distance	was	438	±	2	m	in	24-week-old	 lean	ani-
mals	(n	=	4)	and	was	reduced	to	123	±	13	m	in	24-week-old	untreated	
Zucker	animals	(n	=	7).	90	days	of	treatment	with	imeglimin	resulted	
in	an	 increase	of	maximal	 running	distance	 to	161	±	19	m	 (n	=	5),	
without reaching statistical significance.

3.13 | Acute effects of imeglimin

As	 soon	 as	 1	 hour	 after	 imeglimin	 administration,	 plasma	 fasting	
glucose	 was	 not	 modified.	 However,	 there	 was	 an	 improvement	
in myocardial tissue perfusion, as well as LV diastolic function (as 
illustrated by the decreases in Tau and LV end-diastolic pressure-
volume relation and the small reduction in LV end-diastolic pressure) 
while LV end-systolic pressure-volume relation was not changed 
(Table 4). Moreover, this acute administration slightly improved 
coronary endothelium-dependent relaxation, compared to age-
matched	untreated	Zucker	rats	(Figure	3,	left	panel),	reaching	statis-
tical significance at concentrations of 10−8-3 x 10−7-M acetylcholine. 
Furthermore,	after	1	hour	of	imeglimin	administration,	there	was	a	

F I G U R E  2   Left ventricular (LV) 
end-systolic pressure, LV end-systolic 
pressure-volume relation, LV end-diastolic 
pressure, LV relaxation constant Tau and 
LV end-diastolic pressure-volume relation 
determined after 9 or 90 d in untreated 
Zucker fa/+ rats (white bars), as well as 
in untreated (black bars) and imeglimin-
treated	Zucker	fa/fa	(hatched	bars).	*:	
P<.05 vs untreated Zucker fa/+; †: P<.05 
vs untreated Zucker fa/fa
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Group Time Lean

Zucker fa/fa

Untreated Imeglimin

LV weight (g) D9 0.832	±	0.030 0.813	±	0.013 0.813	±	0.03

D90 1.017	±	0.048 1.048	±	0.034 1.126	±	0.042

LV collagen density (%) D9 2.26	±	0.21 3.48	±	0.48 3.33	±	0.22

D90 2.06	±	0.11 3.07	±	0.08* 2.52	±	0.20† 

LV collagen 
representative 
pictures at D90

 

LV myocardial perfusion 
(mL/min/g)

D9 6.31	±	0.31 4.88	±	0.26* 5.71	±	0.26† 

D90 6.16	±	0.26 4.28	±	0.35* 5.68	±	0.12† 

LV ROS production 
(AU/µg/h)

D9 32.25	±	0.90 39.51	±	1.77* 27.61	±	1.29† 

D90 26.69	±	3.06 40.96	±	3.29* 34.02	±	1.49

Plasma nitrite D9 407	±	20 270	±	27* 438	±	51† 

D90 450	±	43 292	±	26* 424	±	15† 

*P < .05 vs Lean Zucker fa/+. 
†P < .05 vs untreated Zucker fa/fa. 

TA B L E  2   LV remodelling, perfusion 
and ROS after 9 and 90 d of imeglimin 
treatment
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small reduction in LV ROS production, while ROS production was 
significantly decreased in an isolated subsarcolemma mitochondria 
population	(Table	4).	Finally,	the	acute	treatment	 increased	plasma	
nitrites.

4  | DISCUSSION

This study highlights that imeglimin, a new glucose-lowering agent 
targeting mitochondrial bioenergetics, improves metabolic syn-
drome-related cardiac and vascular dysfunctions. Importantly, these 
improvements of both cardiac and vascular functions are observed 
after 9- and 90-day treatment, as well as at 1 hour after imeglimin 
administration, when glycaemia was not yet modified but ROS pro-
duction was already reduced.

We choose the Zucker rats since this rat model of metabolic 
syndrome-related cardiovascular dysfunctions presents classical 
characteristics observed in human metabolic syndrome.2 Indeed, as 
already reported by others,24,25 we observed in 13- and 24-week-old 
Zucker rats obesity, hypertension, hyperlipidemia, hypercholestero-
laemia and impaired tolerance to glucose. Moreover, as previously 

reported by us and others, this was associated with LV diastolic dys-
function,14,26,27 as well as vascular dysfunctions, that is impairments 
of both coronary endothelium-dependent vasorelaxation12 and mes-
enteric endothelium-dependent vasodilatation,18 both characteris-
tic complications observed in diabetic patients.28,29

Our first major finding is that imeglimin improves both LV di-
astolic and vascular dysfunctions. The improvement of diastolic 
dysfunction was independent of modifications in systemic he-
modynamics since no major modification of blood pressure was 
observed, but clearly involved a decrease in oxidative stress. 
Moreover, this decrease in oxidative stress is independent of gly-
cemic control as evidenced by the fact that in 13-week-old Zucker 
rats 1 hour after imeglimin acute administration, plasma glucose 
level was not changed, whereas LV ROS production was already 
decreased. Interestingly, the decrease in LV oxidative stress prob-
ably results from a decrease in mitochondrial ROS production, 
as already shown in the liver mitochondria following imeglimin 
treatment,9 as the decrease in mitochondrial ROS production was 
more marked than in ‘whole’ LV tissue. Moreover, we cannot ex-
clude	 contribution	 of	 others	 ROS	 sources,	 such	 as	 NADPH	 oxi-
dase, in reducing ROS production after 9 or 90 days of imeglimin 

F I G U R E  3   Septal coronary relaxation 
induced by acetylcholine in imeglimin-
treated Zucker fa/fa rats (filled triangles) 
either 1 h after single administration 
(left), and after 9 (center) as well as 90-d 
treatment (right), and in age-matched 
untreated Zucker fa/fa rats (filled circles). 
Twenty-four wk-old untreated Zucker fa/+ 
(open circles) were used as healthy control 
*:	P<.05 vs Zucker fa/+ rats; †: P<.05 vs 
untreated Zucker fa/fa
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F I G U R E  4   Mesenteric artery flow-
mediated dilation in untreated (filled 
circles) and imeglimintreated Zucker fa/
fa (filled triangles), after 9 (left panel) and 
90 d (right panel). Twenty-four week-old 
untreated Zucker fa/+ (open circles) were 
used	as	healthy	control.	*:	P<.05 vs Zucker 
fa/+ rats; †: P<.05 vs untreated Zucker fa/
fa
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treatment, since reduction in ROS will reduce ROS-induced ROS 
production.30

This reduction in oxidative stress is also probably involved in 
the improvement of vascular function by imeglimin. Indeed, limit-
ing	 NO	 neutralization	 by	 reducing	 endothelial	 ROS	 overproduc-
tion	 increases	NO	bioavailability,	as	 illustrated	 in	our	study	by	the	
improvement	 in	 NO-mediated	 acetylcholine-induced	 coronary	
relaxation and flow-mediated mesenteric dilatation, as well as the 

increase in nitrite plasma level, altogether demonstrating a restored 
NO	bioavailability.31

Moreover,	 the	 reduction	 in	ROS/increase	 in	NO	bioavailability	
and the resulting improved coronary function probably contributes 
to the increase in myocardial perfusion. This likely limits the meta-
bolic syndrome induced hypoperfusion observed in this study and 
thus re-establishes LV tissue O2 supply. Such effect is beneficial as it 
reduces hypoxia-induced ROS production and thus probably inflam-
mation,32-34	and	as	a	consequence,	breaks	the	vicious	circle	of	ROS/
inflammation/ROS production.

Simultaneously with the improvement of coronary function, 
imeglimin also improves LV diastolic function. This likely results, 
at	least	in	part,	from	the	reduction	of	ROS	and	increase	in	NO	bio-
availability,	 as	 NO	 directly	 improves	 LV	 diastolic	 dysfunction	 by	
promoting Ca2+	handling	 through	protein	kinase	GMPc	dependent	
activation.35,36

The results obtained after acute (1 hour) imeglimin treatment 
demonstrate beneficial effects of imeglimin on both LV diastolic 
and coronary dysfunctions that are similar to those of chronic 
treatment. Whereas the acute and chronic effects share sev-
eral mechanisms, for example the reduction of ROS/increase in 
NO	 bioavailability,	 other	 additional	 mechanisms	 are	 involved	 in	
the ‘long-term’ effects of imeglimin. Indeed, in addition to direct 
beneficial effects of the reduction in oxidative stress on LV di-
astolic function, indirect effects due to chronic decreases in LV 
ROS production contribute to the cardiovascular protective effect 
of	 imeglimin.	 For	 example,	 reduced	oxidative	 stress	will	 limit	 LV	
collagen accumulation over the long term by reducing myocardial 
ROS-induced collagen synthesis.37

F I G U R E  5   Oral glucose tolerance test in untreated Zucker fa/+ 
(open circles) and Zucker fa/fa (filled circles) as well as in imeglimin-
treated Zucker fa/fa (filled triangles) 1 h after the last imeglimin 
administration	of	the	9-d	treatment	period.	*:	P<.05 vs Zucker fa/+ 
rats; †: P<.05 vs untreated Zucker fa/fa

0 30 60 90 120
4

6

8

10

)
M

m(
ai

m
aecyl

G

†
*

Time (min)

Oral glucose tolerance test
9 d

Group Lean

Zucker fa/fa

Untreated Imeglimin

Urinary volume (ml/24 h) 7.60	±	0.61 8.93	±	0.64 9.37	±	0.60

Creatiniuria (mg/24 h) 834	±	71 692	±	77 659	±	78

Albuminuria	(mg/24	h) 108	±	8 385	±	58* 251	±	27† 

Glomerular	injury	(AU) 0.19	±	0.09 2.10	±	0.56* 1.43	±	0.30

Glomerular	injury	
representative pictures 
at D90

Tubular	injury	(AU) 0.19	±	0.09 2.30	±	0.30* 2.43	±	0.23

Interstitial	fibrosis	(AU) 0.38	±	0.13 2.00	±	0.22* 1.50	±	0.11† 

Interstitial fibrosis 
representative pictures 
at D90

Interstitial inflammation 
(AU)

0.06	±	0.06 1.60	±	0.29* 1.14	±	0.18

*P < .05 vs Lean Zucker fa/+; 
†P < .05 vs untreated Zucker fa/fa 

TA B L E  3   Kidney structure and 
function after 90 d of imeglimin treatment
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In addition to direct limitation of oxidative stress, imeglimin 
might also prevent hyperglycaemia-related toxicity/ROS produc-
tion38 through a restoration in glucose tolerance and a reduction in 
plasma fasting glucose, thus participating in the sustained decrease 
in	oxidative	stress	and	increase	in	NO	bioavailability.

Interestingly, at the vascular level, the imeglimin-related in-
creased	 in	NO	bioavailability	 improved	coronary	function	and	also	
restored mesenteric artery flow-mediated dilation. Thus, imeglimin 
opposes the aggravation of vascular endothelium-dependent dys-
function observed during ageing in untreated Zucker rats,39 a vas-
cular effect already observed in humans with metabolic syndrome.40

In parallel to the improvement in peripheral artery endothelial 
function, we observed a decrease in albuminuria after 90 days of 
imeglimin administration. Moreover, interstitial fibrosis was de-
creased in kidney tubules, probably also resulting from a persistent 
reduction in oxidative/inflammatory status as observed in Zucker fa/
fa rats.37 Taken together, these preclinical results demonstrate that 
in addition to mitigating cardiac and vascular effects, a 90-day imeg-
limin treatment initiated ‘early’ also limits end-stage kidney damage, 
but whether this is solely related to imeglimin's glucose-lowering ef-
fect remains to be elucidated, and whether this renal protection oc-
curs in humans remains to be confirmed in prospective clinical trials.

Intolerance	 to	 physical	 exercise	 is	 a	 frequent	 phenome-
non observed in patients with diastolic dysfunction as well as in 

experimental models of metabolic syndrome41 and this excercise in-
tolerance was also observed in 24-week-old untreated Zucker rats. 
Despite the effect on cardiac function as well as on peripheral artery 
dilatation and thus the possible improvement of the metabolic syn-
drome-related impairment of skeletal muscle perfusion,42,43 imeg-
limin did not clearly improve exercise tolerance. Indeed, the 90-day 
imeglimin treatment increases running distance by 20% in obese 
Zucker fa/fa rats but without reaching statistical significance. This 
may be related to the fact that imeglimin did not modify body weight 
and that obesity probably remains the most important factor in ef-
fort intolerance in such a model.

4.1 | Study limitations

In this study, imeglimin was given as a single medication at the dose 
of 150 mg/kg bid as previously administered in others rodent mod-
els of diabetes,9,10 a dosing regimen known to control glycaemia. 
However,	it	may	be	that	another	dosing	regimen,	for	example	contin-
uous	administration,	will	be	more	effective.	Furthermore,	this	pre-
clinical study evaluated the effects of imeglimin as a mono-therapy, 
but patients with metabolic syndrome often receive several medica-
tions that each target a specific component of metabolic syndrome, 
such as antihypertensive drugs, statins and other glucose-lowering 
agents.	Further	investigation	to	the	effects	of	imeglimin	on	cardiac,	
vascular and renal functions when administered with other treat-
ments	of	metabolic	syndrome	needs	to	address	these	questions.

Moreover, in our experimental conditions, as already mentioned 
above, improvement of LV function and LV tissue perfusion has been 
observed 1 hour after imeglimin administration without a marked 
modification in glycaemia, suggesting that imeglimin's cardiac ef-
fects might be, at least in part, independent of glycemic control, but 
further investigation is needed to confirm this hypothesis.

5  | Conclusion

In an animal model of metabolic syndrome-related cardiomyopathy 
imeglimin, a glucose-lowering agent targeting mitochondrial bioen-
ergetics mitigates various clinically relevant parameters of end-or-
gan damage also observed in patients with metabolic syndrome, that 
is LV diastolic, vascular endothelial and renal dysfunctions, at least 
in part through a reduction in oxidative stress. While 2 Japanese on-
going clinical trials have proven imeglimin's efficacy and safety in 
Japanese patients with type-2 diabetes, either alone or in combi-
nation with classical antidiabetic treatment,42,43 new clinical studies 
are needed to test the possible beneficial effects of this compound 
on heart failure with preserved ejection fraction observed in type-2 
diabetes, as suggested recently.44
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TA B L E  4  Acute	effects	of	imeglimin	1	h	after	administration
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(mm	Hg)

3.57	±	0.35 2.80	±	0.43

LV relaxation constant Tau 
(msec)

7.89	±	0.18 7.03	±	0.24† 

LV end-diastolic pressure-
volume	relation	(mmHg/RVU)

3.38	±	0.18 1.90	±	0.07† 

LV myocardial tissue perfusion 
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