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Abstract: Proper treatment and disposal of industrial pollutants of all kinds are a global issue that
presents significant techno-economical challenges. The presence of pollutants such as heavy metal
ions (HMIs) and organic dyes (ODs) in wastewater is considered a significant problem owing to their
carcinogenic and toxic nature. Additionally, industrial gaseous pollutants (GPs) are considered to
be harmful to human health and may cause various environmental issues such as global warming,
acid rain, smog and air pollution, etc. Conductive polymer-based nanomaterials have gained
significant interest in recent years, compared with ceramics and metal-based nanomaterials. The
objective of this review is to provide detailed insights into different conductive polymers (CPs)
and their nanocomposites that are used as adsorbents for environmental remediation applications.
The dominant types of CPs that are being used as adsorbent materials include polyaniline (PANI),
polypyrrole (Ppy), and polythiophene (PTh). The various adsorption mechanisms proposed for
the removal of ODs, HMIs, and other GPs by the different CPs are presented, together with their
maximum adsorption capacities, experimental conditions, adsorption, and kinetic models reported.

Keywords: conductive polymers; nanocomposites; adsorption; environmental remediation; heavy
metal ions; organic dyes; gaseous pollutants

1. Introduction

Industrialization, human development, and socio-economic activities are known to
have led to the destruction and deterioration of the environment and have significantly
affected human health. For example, the release of many different types of organic, in-
organic, and gaseous pollutants into the environment and their subsequent penetration
and accumulation in the food chain can be a significant threat to the environment and to
human health [1]. It is well known that quite a significant portion of diseases and deaths
are caused by consuming contaminated water and other polluted environmental issues
in developing countries [2]. Among the inorganic contaminants, heavy metal ions (HMIs)
are known to be the primary environmental contaminants [3]. The main sources of HMIs
are metal processing and finishing industries [4], battery and electroplating industries,
tanneries, glass and ceramic industries, as well as petroleum refining and mining indus-
tries [5,6]. Organic pollutants (OPs) vary in nature and have different environmental effects.
Some organic pollutants are considered more toxic and harmful, compared with others.
Organic dyes (ODs), primarily from textile industries, paper and pulp manufacturing,

Polymers 2021, 13, 3810. https://doi.org/10.3390/polym13213810 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2921-1314
https://orcid.org/0000-0002-4539-6753
https://orcid.org/0000-0002-3357-5922
https://orcid.org/0000-0002-9596-5205
https://orcid.org/0000-0002-6021-1411
https://orcid.org/0000-0002-1019-8677
https://doi.org/10.3390/polym13213810
https://doi.org/10.3390/polym13213810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13213810
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13213810?type=check_update&version=1


Polymers 2021, 13, 3810 2 of 23

leather processing, food processing, pharmaceutical, and paints and coatings industries,
are the main sources of contamination of wastewater [7,8]. Among gaseous pollutants
(GPs), carbon dioxide (CO2), also known as the greenhouse gas, is known to be associated
with many industries such as power plants [9], petrochemical industries, hydrogen, and
cement manufacturing plants [10], and is suspected to be the primary pollutant responsible
for ozone layer degradation and subsequently for global warming.

In order to minimize the number of such pollutants and to meet the environmental
standards and regulations, various treatment techniques have been reported in the litera-
ture, which are summarized in Figure 1. Among these, adsorption is known to be more
practical, adaptable, feasible, efficient, and environmentally friendly, compared with the
other available techniques.
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Figure 1. Various available treatment techniques for industrial pollutants.

Conductive polymers (CPs) are well known for their outstanding characteristics. CPs
consist of conjugated π-bonds and offer unique electrical, optical, and physical proper-
ties. Some of the most common types of conductive polymers are listed in Table 1 [11].
Conductive polymers and their nanocomposites have gained tremendous popularity in
recent years as being widely used in diverse fields of research and innovations. Their
potential use as biosensors [12,13], gas sensors [14], and corrosion inhibitors in different
environments [15–17], as well as in biomedical applications [18–21], or as adsorbents for the
adsorption of various environmental pollutants [22], is widely anticipated and frequently
reported in the literature.

There is no single and comprehensive review that is solely dedicated to the appli-
cations and utilization of conductive polymers for environmental remediation. The only
review article that provides deeper insights into the useful applications of conductive
polymers is presented by [22], which contains a section that deals with environmental
remediation but is not exclusive. Aside from this review article, another review by [23]
has highlighted the application of conductive polymers in water treatment. There are
various other reviews but are mostly concerned with specific conductive polymer and
its composites. The objective of the current review is to combine recent developments of
different conductive polymers (such as polypyrrole, polyaniline, and polythiophene) and
their nanocomposites in environmental remediation in one comprehensive article. This
review also sheds light on the various reported aspects of CPs as adsorbents for heavy
metal removal, maximum adsorption capacities, adsorption mechanisms, adsorption, and
kinetic models.
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Table 1. Some conductive polymers and their chemical structures, Adapted from Ref. [6].

Polymer Abbreviation Structure

Polythiophene PTh
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2. Conductive Polymers as Adsorbents

Conductive polymers and their nanocomposites as adsorbent materials have been
shown to be effective and efficient in environmental remediation applications. This is most
likely due to their interesting redox characteristics especially PANI [24], as well as other
physical and chemical properties. The sorption characteristics of these adsorbents strongly
depend on the solution pH, initial concentration, contact time, adsorbent dosage, and
temperature, as well as on the operating pressure in the case of gaseous pollutants removal.
Section 2.1 of this article deals with polyaniline and its composites adsorbents for heavy
metal ions, organic and pharmaceutical pollutants, organic dyes, and gaseous pollutants
removal. Section 2.2 is dedicated to polypyrrole and its composites for heavy metal ions,
organic dyes, and gaseous pollutants removal, while Section 2.3 deals with polythiophene
and other conductive polymers and their derivatives as adsorbents for environmental
remediation applications.

2.1. PANI and PANI-Based Composite Adsorbents for the Removal of Heavy Metal Ions (HMIs)

The various polyaniline-based adsorbents are discussed here, which as divided into
HMIs and OPs. Removal of various heavy metals ions and organic dyes by polyaniline
and its derivatives is presented in a recent review by [25]. Heavy metal ions (HMIs)
removed by polyaniline-based nanocomposites include the removal of Pb (II) ions by
polyaniline-modified multiwalled carbon nanotubes [26] under ambient conditions. It
was concluded that due to the high affinity of amine and imine functional groups of
PANI toward Pb (II) ions, the PANI modification significantly improved the adsorption
capacity. Polyaniline synthesized on jute fiber surfaces for Cr (VI) removal was reported
by [27]. At the optimum experimental conditions (pH 3 and temperature of 20 ◦C), a
maximum monolayer adsorption capacity of 62.9 mg/g was observed. It was reported
that the total chromium adsorption decreased with increasing temperature, suggesting
an exothermic nature of the chromium adsorption process. Additionally, utilization of
polyaniline-coated polyacrylonitrile fiber mats for Cr (VI) removal was reported by [28],
which concluded that PANI/PAN composite exhibited superior removal capabilities for
Cr (VI). The maximum adsorption capacity was observed to increase with increasing
temperature, which is suggestive of the endothermic nature of the adsorption process.
In another research, Cr (VI) removal by polyaniline-coated carbon fiber fabric, cellulose–
polyaniline composites was reported by [29]. They concluded that the introduction of PANI
to their substrates improved both the adsorption rates and adsorption capacities. They
reported that since the pseudo-second-order kinetic model fits well the experimental data,
the adsorption process is physical adsorption in nature. The use of PANI-based adsorbents
for the removal of Cr (VI) was extensively reported by [30].

The use of sodium alginate–polyaniline nanofibers for Cr (VI) ions adsorption was
reported by [31] and observed that electrostatic interactions between the sodium alginate–
polyaniline nanofibers and Cr (VI) were involved in the adsorption process. A maximum
adsorption capacity of 73.34 mg/g was deduced from the Langmuir isotherm plots at
30 ◦C and the pseudo-second-order model fitted well the experimental data. Further-
more, the removal of Hg (II) from aqueous media was reported by [32], using polyaniline
nanocomposite coated on rice husk ash. The removal of resorcinol from an aqueous solu-
tion was reported by [33], using SBA-15/polyaniline mesoporous composites. Polyaniline
nanofibers assembled on alginate microspheres are used for the removal of Pb (II) and Cu
(II) ions from aqueous media [34]. Cadmium metal ions Cd (II) removal from aqueous
solution was reported by [35], using polyaniline-coated sawdust and Pb (II) and Cd (II)
ions using polyaniline grafted chitosan [36]. The use of PANI–clay hybrid materials for
the removal of Cu (II) was reported by [37]. Additionally, removal of arsenic (III) ions by
magnetic polyaniline doped-strontium titanium nanocomposites adsorbent were reported
by [38]. The maximum adsorption capacity was found to be 67.11 mg/g from the Langmuir
isotherm model, and the nature of the adsorption process of arsenic (III) ions was found to
be exothermic and physisorption deduced from the thermodynamic studies. The various
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adsorption mechanisms proposed for heavy metal ions removal are shown in Figure 2a,b,
while a list of PANI and PANI-based adsorbents dealing with heavy metals ions removal
under different experimental conditions are tabulated in Table 2.
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Table 2. PANI-based adsorbents for the removal of HMIs PANI-based adsorbents for the removal of
HMIs.

Adsorbent Adsorbate pH Temperature
(◦C)

qmax
(mg/g) Ref.

PANI-JF Cr (VI) 3 40 62.89 [27]

PANI/CA composite Cu+2,
Pb+2 6 NA 67.95

251.44 [34]

PANI-PGC Pb+2

Cd+2 6 30 16.07
14.33 [36]

PANI/Clay Cu+2 6 25 22.77 [37]
PANI-PS Pb+2 2-6 NA NA [39]

PANI-Chi composite Cr (VI) 3 45 1.01 [40]
PANI-BC mat Cr (VI) 1-2 NA NA [41]
P-PANi-MMT Cu+2 5 NA 87 [42]

PANI-PVDF-HFP
nanofibrous Cr (VI) 4.5 NA 15.08 [43]

PANI and PANI-G10 Cr (VI) 6.5 30 136,
192 [44]

2.2. PANI and PANI-Based Composite Adsorbents for the Removal of Organic Dyes and Other
Organic Pollutants from Aqueous Environments

Polyaniline (PANI) and its derivatives possess significant detoxification characteris-
tics and have been exclusively reported in the literature. The utilization of polyaniline
nanoparticles as an adsorbent material for the removal of MB dye was reported by [45].
They reported that the synthesized material can be used as an efficient adsorbent for MB
removal from water. The pseudo-second-order kinetic model was reported to fit well
the experimental data. Moreover, they reported that using PANI nanoparticles and con-
ventional PANI. The researchers concluded that PANI nanoparticles are more efficient
adsorbents for MB, compared with conventional PANI powdered adsorbents, and found
that the pseudo-second-order kinetic model best described the experimental results.

In another research, the removal of reactive black 5 (RB-5) and reactive violet 4 (RV-
4) dyes was reported by [46], using PANI–starch nanocomposite. They reported high
removal efficiencies of 99% and 98% for RB-5 and RV-4, respectively. Toth isotherm
model was reported to best fit the equilibrium experimental data of both dyes. The
main adsorption interactions between the adsorbent and the MB molecules reported
are due to the availability of surplus hydrogen groups from the starch material. The
ionic interactions were further confirmed by FTIR and desorption studies. Cationic dye,
methylene blue (MB), and anionic dye, and Procion red (PR) removal from aqueous
solutions using acid and base treated polyaniline were reported by [47]. Their experimental
data were represented by the Langmuir isotherm equilibrium model. Furthermore, they
stated that the cationic dye was mainly removed by the base-treated PANI, while the anionic
dye was predominantly removed by the acid-treated PANI. The removal of an anionic dye,
Rose Bengal (RB) aand a cationic dye, methylene blue (MB), from aqueous solutions using
polyacid-doped polyaniline was reported by [48]. They reported maximum adsorption
capacities of 440.00 mg/g for RB and 466.5 mg/g for MB. The adsorption mechanism
reported involved π–π interactions and electrostatic interactions. The pseudo-second-
order kinetic model and Langmuir isotherm equilibrium model followed the adsorption
experimental data. In addition, the utilization of polyaniline in the form of nanoporous
hyper-crosslinked polyaniline (HCPANI) for the removal of two types of dyes—cationic
dye, crystal violet (CV) and anionic dye, methyl orange (MO)—was reported by [49]. The
reported maximum adsorption capacities for the two dyes were 245 mg/g and 220 mg/g
for CV and MO, respectively. The main proposed interactions involved in the adsorption
process of CV and MO dyes include π–π interactions, hydrogen bonging, acid–Lewis-based
interactions, as well as electrostatic interactions.
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Adsorption of various organic pollutants from aqueous and non-aqueous sources was
reported by [50], using highly porous carbons obtained by the pyrolysis of polyaniline
conductive polymer. High adsorption capacities were reported for various pollutants inves-
tigated. The reported mechanisms are mainly due to hydrogen bonding, in addition to π–π
interactions and/or hydrophobic interactions between the adsorbent (polyaniline-derived
carbons, PDC-700, polyaniline-derived carbon activated at 700 ºC) and the adsorbates
investigated. The adsorbent was tested for the successful removal of diethyl phthalate
from an aqueous solution and for the removal of 4,6-dimethyldibenzothiophene from a
model fuel. Various adsorption interactions between the adsorbent and adsorbate are
reported including hydrophobic interactions, π–π interactions, electrostatic interactions,
hydrogen bonding, and acid–base interactions. Again, the very high adsorption capacity of
the prepared adsorbent material for different organic pollutants is mostly due to the high
porosity, high specific surface area, and presence of various functional groups.

Polyaniline-based nanocomposites are being increasingly used for the removal of
organic pollutants and organic dyes. These include the work of [51] for the removal of MB
dye from wastewater using polyaniline zirconium (VI) silicophosphate nanocomposites.
The nature of the adsorption behavior of this composite was found to be spontaneous.
The adsorption of MB on the reported adsorbent was reported to follow a second-order
kinetic model, and the experimental data were best fitted by the Freundlich isotherm
model. A maximum adsorption capacity of 12 mg/g was deduced from the Langmuir
isotherm model fitting to the experimental data. Furthermore, methyl orange removal by
polyaniline/MWCNTs/Fe3O4 composites [52]. Another important paper concerned with
the removaland decolorization, of Remazol effluent includes the work of [53], who reported
the use of bacterial extracellular polysaccharides–polyaniline composites. Adsorption of
brilliant green (BG) was reported by [54], using polyaniline/silver nanocomposites. In an-
other paper, the removal of basic blue dye was reported [55], using polyaniline/magnetite
(Fe3O4) nanocomposites. Removal of another organic material such as tetracycline hy-
drochloride was reported by [56], using polypyrrole coated iron-doped titania-based hy-
drogel. Utilization of polyaniline-based adsorbents for the removal of dyes from water and
wastewater was reported in detail in the review of [57]; some of the proposed mechanisms
for MB removal by PANI are shown in Figure 3. Decolorization of Acid Blue 29 (an azo
dye) was reported by [58] by utilizing PANI–ZnO–ZrO2 composite as a photocatalyst in
UV photocatalytic reactor. They reported that the composite showed better decolorization
of the dye, compared with PANI alone.

In another research article, Rhodamine G6 (Rh-G6) was photocatalytically degraded by
polyaniline–zinc sulfide (PANI–ZnS) nanocomposite with a removal efficiency of about 80%,
as reported by [59]. Photodegradation of MB and MG dyes by PANI–ZnO nanocomposite
was reported by [60], in which the degradation was conducted under natural sunlight
and under UV radiation. They reported high removal efficiencies for both dyes under
natural sunlight exposure of 5 h. In addition, the authors of [61] studied the removal of
MB from an aqueous solution using PANI–ZrO2 nanocomposite. The effects of various
process parameters on the adsorption characteristics were reported. The dye removal
efficiency was found to increase with increasing contact time and operating temperature.
The reported maximum adsorption capacity for the PANI-modified ZrO2 was found to
be 77.55 mg/g. Further, photodegradation of MB was reported by [62], using polyaniline–
zirconium silicophosphate (PANI–ZSP). The reported nanocomposite initially adsorbed
the MB molecules on its surface active sites and then degraded the MB upon exposure to
visible light. After two hours of exposure to visible light, a degradation efficiency of 82%
was attained.
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Organic pollutants other than organic dyes also require treatment before being dis-
charged into the aquatic environment. The use of PANI and its derivatives have been
extensively used as adsorbents for organic pollutants removal. For example, the removal
of tannic acid from wastewater was reported by [63], using synthesized polyaniline. They
reported that the Langmuir isotherm and pseudo-second-order kinetic models fitted well
with the experimental data. A very high maximum adsorption capacity was observed at
a high ionic strength of 2 moles per liter of NaCl solution. The nature of adsorption of
tannic acid over the synthesized PANI was mainly suggested to be chemisorptions. The
initial solution pH was reported to have a significant effect on the TA adsorption on PANI.
The adsorbent–adsorbate interactions were mainly due to hydrogen bonding, electrostatic
attraction, π–π interactions, as well as a weak Van der Waals force. A more comprehensive
list of various ODs and OPs removal by PANI and PANI-based adsorbents under various
experimental conditions is provided in Table 3 below.

Table 3. PANI-based adsorbents for the removal of ODs and other organic pollutants.

Adsorbent Adsorbate pH Temperature
(◦C)

qmax
(mg/g) Ref.

PANI-SBA-15 resorcinol 3 25 128 [33]

HCPANI MO,
CV

3,
11 27 220,

245 [49]

PANI-ZSP MB 1 85 12 [51]
PANI-MWCNTs-
Fe3O4 magnetic

composite

MO
CR 4 Room temp. 446.25,

417.38 [52]

Fe3O4 and
PANI-Fe3O4

BB-3
8.5,
12,
10

30
8.5,
6,
9

[55]

PANI-AC MO 6.5 25 285 [64]
PANI-AC Direct Red 23 3.0 45 109.89 [65]
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Table 3. Cont.

Adsorbent Adsorbate pH Temperature
(◦C)

qmax
(mg/g) Ref.

PANI and PANI/AL DG 1 20 0.911,
8.13 [66]

PANI-Chi
CR,

CBB,
RBBR

3 26
322.58,
357.14,
303.03

[67]

PANI-MMT-Fe3O4 MB 6.3 Room temp. 184.48 [68]
PANI/CPL MO 4 Room temp. 333.33 [69]

PANI, Fe3O4, and
PANI-Fe3O4

AB-40 3, 6, 6 30
130.5,
264.9,
216.9

[70]

PANI-Fe3O4 MG 7 25 4.82 [71]
PANI-HGL MB 6.5 45 71.2 [72]
PANI-LC RB-5 2.0 Room Temp. 312 [73]
PANI-LC CR 4.29 45 1672.5 [74]

PANI-NFs/SD ARG 2.0 35 212.97 [75]
PANI-FeCl3 RB-5 6 45 434.7 [76]

PANI-NiFe2O4 MG 7 N/A 4.09 [77]
PANI-NiFe2O4 ARS 4 8.6 30 186 [78]

PANI-Ny-6 MO 1 N/A 370 [79]
PANI-ZnFe2O4 RH-B 2 Room tem. 229 [80]

PANI and PANI-Based Composite Adsorbents for the Removal of Gaseous Pollutants

Utilization of PANI-derived porous and nitrogen-doped carbon materials with very
high specific surface area for CO2 uptake was reported by [81]. This study focused on
the adsorption of various gases such as N, CO2, and CH4 over the prepared material and
reported selective adsorption of CO2, compared with N and CH4, and relatively high cap-
ture capacity for the synthesized adsorbent for CO2 uptake. The nature of adsorption was
reported to be physisorption or weak chemisorption. Removal of ammonia gas by PANI–
TiO2 as photocatalyst was reported by [82] under visible light and under UV radiation.
They reported that the removal efficiency decreased as the reaction time increased.

Moreover, CO2 reduction to alcohol by polyaniline film was reported by [83]; their
proposed reaction mechanisms are presented in Figure 4. Removal of various volatile
organic compounds (VOCs) by various forms of polyaniline was reported by [84]. They
reported that the main mechanisms which are at play in the removal of VOCs are the π–π
interactions between PANI backbone and the unsaturated hydrocarbons, which resulted
in higher removal of unsaturated (C=C) bonds present in the target analytes. As for the
saturated hydrocarbon-based VOCs, the main interactions are weak hydrogen bonding and
weak Van der walls forces between PANI and the saturated molecules owing to the lack of
available π electrons. Overall, the type of PANI (EB or ES), surface area, morphology, and
the type of doping agent (dopant) can significantly affect the VOC–PANI interactions and
the removal performance. Adsorption of a flue gas NO2 by polyaniline–clay nanocomposite
was reported by [85]. They reportedly prepared polyaniline composites with three different
clays—namely, attapulgite (ATP), vermiculite (VEM), and diatomite (DIM), and concluded
that the PANI–ATP composite revealed the high adsorption capacity for NO2 removal.
Surface morphologies of some PANI-based adsorbents are presented in Figure 5.
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2.3. Polypyrrole-Based Nanocomposites as Adsorbents
2.3.1. HMIs Removal by Ppy and Ppy-Based Composite Adsorbents

Hexavalent chromium removal by exfoliated polypyrrole–organically modified MMT
clay nanocomposites was reported by [94]. The researcher reported that the kinetic data
fitted well the PSO kinetic model, while the equilibrium data were best fitted by the
Langmuir model. Additionally, they concluded that an increase in maximum adsorption
capacity from 112 to 209 mg/g at temperatures 19 to 45 ◦C. Polypyrrole-functionalized
chitin was used for Cr (VI) removal by [95], who reported that the Freundlich isotherm
model fitted well the experimental data. The reported maximum adsorption capacities
ranged from approximately 29 to 35 at 30–50 ◦C temperature. The adsorption process was
reported to be spontaneous and endothermic. Cr (VI) by polypyrrole-wrapped MWCNTs
nanocomposites was reported by [96], who found a maximum adsorption capacity of
294 mg/g. They also reported good fitting of the experimental data by the Langmuir model
and the spontaneous and endothermic nature of adsorption for Cr (VI) removal. Threonine-
doped polypyrrole nanocomposites for Cr (VI) removal were reported by [97]. Additionally,
the removal of Cr (VI) from wastewater was reported by [98], using polypyrrole/2,5-
diaminobenzene sulfonic acid composite and by glycine doped polypyrrole composite [99].

Uranium (VI) ions removal by polypyrrole was investigated by [100] in a batch
system and reported that the Freundlich isotherm model was in good agreement with their
experimental data. A maximum adsorption capacity of 87.72 mg/g was deduced from the
Langmuir isotherm model and the pseudo-second-order kinetic model showed a better
correlation. They also reported the endothermic and spontaneous nature of the adsorption
process for uranium (VI) ions by exploring the thermodynamic data of their work. The
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use of polypyrrole for the removal of copper ions from aqueous solutions was reported
by [101], who stated that the Langmuir isotherm model fitted well the experimental
data. They also concluded that the available amine functional groups for ion exchange
in polypyrrole made it a good adsorbent. The removal of Cr (VI) from aqueous solutions
using bamboo-like polypyrrole nanotubes was reported by [102], who observed higher
adsorption performance for their synthesized nanotubes, compared with conventional
polypyrrole adsorbents for Cr (VI) removal.

In another paper, removal of Cr (VI) from aqueous solution was reported [103], using
polypyrrole/monodisperse latex spheres and also by using polypyrrole/calcium rectorite
composite [104]. Further, the removal of Cr (VI) and Cu (II) metal ions from aqueous media
was reported by [105], using polypyrrole–maghemite magnetic nanocomposites. The
removal of another heavy metal Hg (II) ions by polypyrrole-functionalized CoFe2O4@SiO2
was reported by [106]. Adsorption of heavy metal Pb (II) ions in polypyrrole–bentonite
nanocomposites [107] and in polypyrrole–Fe3O4 nanosized magnetic adsorbents were
also reported [108]. The removal of cadmium Cd (II) ions from wastewater was reported
by [109], using polypyrrole–TiO2 nanocomposites. A detailed review on the utilization
bio-composites coated by polypyrrole was reported by [110], while another study pointed
to microbial fuel cells, coupled with Fenton oxidation [111], for the removal of heavy
metal ions from wastewater. Polypyrrole-coated sawdust of dryobalanops aromatic for
the adsorption of cadmium-109 isotopes was reported by [112]. The removal of arsenic
from wastewater was reported by [113], using polypyrrole composites with bentonite and
activated carbon. Some of the proposed adsorption mechanisms for Cr (VI) removal by
polypyrrole-modified magnetic nanocomposites are demonstrated in Figure 6. In addition,
some HMIs removal by polypyrrole-modified adsorbents are listed in Table 4.
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Table 4. Ppy-based adsorbents for the removal of HMIs.

Adsorbent Adsorbate pH Temperature
(◦C)

qmax
(mg/g) Ref.

Ppy-PANI Cr (VI) 2 25 227 [115]
Ppy-oMMT NC Cr (VI) 2 25 209.6 [94]

Ppy-Chitin Cr (VI) 2 50 35.22 [95]
Ppy/Fe3O4 and
Ppy/oMWCNTs

NC
Cr (VI) 2 45,

25
243.9,
294 [96]

Ppy/DABSA Cr (VI) 2 25 303 [98]
Ppy-gly Cr (VI) 2 45 232.55 [99]

Ppy/MLS Cr (VI) 2 25 343.64 [103]
Ppy/Ca-REC Cr (VI) 1.5 45 833.33 [104]

Ppy-Fe3O4 Hg2+ 2.5 55 173.16 [108]
Ppy–BOFS NC phosphate 2 45 9.13 [116]

Ppy-GSi NC Cr (VI) 2 25 429.2 [117]

2.3.2. Removal of Organic Pollutants and Organic Dyes by Ppy and Ppy-Based
Composite Adsorbents

Different organic pollutants including organic dyes may present significant threats
to the environment and to human health. However, their removal and remediation from
wastewater were reported by numerous researchers. These include, for example, the re-
moval of MB from aqueous solution using polypyrrole-coated cotton fabrics [118] and
polypyrrole–TiO2 composites [119], as well as the removal of Congo red by molecularly
imprinted polypyrrole-coated magnetic TiO2 nanoparticles. Removal of naphthol green B
from aqueous solution was reported by [120] using polypyrrole/Attapulgite composites.
The removal of acidic dye namely Congo red by various polypyrrole-based composite
adsorbents was reported by [121]. The adsorption behavior of various anionic and cationic
organic dyes was reported by [122] by using polypyrrole–SBA-15 nanocomposites. The
removal of another dye, atrazine, by nylon–polypyrrole core shells nanofibers mat was
reported by [123]. A well-detailed review for the utilization of polypyrrole-based com-
posite was reported by [124] for the removal of acid dyes. Polypyrrole nanofibers with
hierarchical structure for the removal of acid red G (azo dye) were reported by [125].
They reported a maximum adsorption capacity of 121.95 mg/g for their investigated dye.
Further, Ppy–MWCNT nanocomposite was used as an adsorbent for the removal of a
non-steroid anti-inflammatory drug (potassium diclofenac) from an aqueous solution [126].
They reported that the modification of MWCNT by Ppy has significantly improved the max-
imum adsorption capacity and that the thermodynamic parameters suggested endothermic
and favorable adsorption. Further, polypyrrole-based adsorbent—namely, polypyrrole-
functionalized Calotropis gigantea fibers are being successfully used for the removal of three
fluoroquinolone antibiotics from wastewater, as reported by [127]. The prepared adsorbent
exhibited superior adsorption capacities for the investigated antibiotics. Further, they
reported that the main adsorption mechanism may be hydrophobic interactions, electro-
static interactions, ion exchange, π–π interactions, and hydrogen bonding. Figure 7 shows
some of the proposed adsorption mechanisms for organic dye removal by polypyrrole.
Adsorption of another organic compound, 4-nitrophenol, by polypyrrole–bentonite clay
nanocomposite was reported by [128]. A maximum adsorption capacity of 96 mg/g of ad-
sorbent was reportedly deduced from the Langmuir isotherm model. The thermodynamic
parameters suggested an exothermic adsorption process. In another important work, the
simultaneous removal of various polycarboxy–benzoic acids by polypyrrole–nut shells of
argan (Ppy–NA) was reported by [129]. They reported relatively high adsorption capacity
of the prepared adsorbent material for all acids. They reported that the adsorption process
is spontaneous and endothermic in nature. Furthermore, the removal of some organic dyes
by conductive polymers is listed in Table 5.
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Figure 7. π–π interactions and hydrogen bonding between organic dye methyl orange and Ppy.
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Table 5. Ppy-based adsorbents for the removal of ODs.

Adsorbent Adsorbate pH Temperature
(◦C)

qmax
(mg/g) Ref.

Ppy-PANI NF CR 4 35 270.27 [131]
Ppy NF ARG 2 25 121.95 [125]
Ppy-CF MB 12 Room Temp. 6.0 [118]

Ppy/TiO2 MB 13 35 298.50 [119]
Ppy-Attapulgite-

ZVI NG-B 2 45 253.9 [120]

Ppy-Chi-LS CR 2 50 30.12 [121]

Ppy-SBA-15 NC MB
MO

4.5,
6.5 20 58.82,

41.66 [122]

Ppy-PA6 NFM atrazine 7 70 14.8 [123]
Ppy-SD AO-10 3 45 256.41 [124]

Ppy-BNT NC 4-
nitrophenol N/A 25 96.15 [128]

Ppy-α Cellulose RR-120 2 25 96.1 [132]
Ppy-Chi-Fe3O4 AG-25 N/A Room temp. 32.754 [133]

Ppy-CF MB 10 25 3.30 [134]
Ppy/SD MB 2 Room temp. 34.36 [135]

2.3.3. Gaseous Pollutants Removal by Ppy and Ppy-Based Composite Adsorbents

Removal of gaseous pollutants by Ppy and Ppy-based composite adsorbents is rela-
tively scarce in the literature. However, adsorption of CO2 on porous rodlike polypyrrole
structure was reported by [136], who concluded that the maximum CO2 uptake was
173.885 mL/g at 195K for Ppy synthesized without any surfactant.

2.4. Polythiophene and Other Conductive Polymer Nanocomposites as Adsorbents

Polythiophenes and their derivatives are rarely used as adsorbents for the removal
of potentially hazardous pollutants. However, the environmental remediation of Cr (III)
using polythiophenes-based adsorbent with a maximum adsorption capacity of 85.79 mg/g
was reported by [137]. The removal of organic dye methylene blue using polythiophene-
modified adsorbents was reported by [138], with relatively high adsorption capacities. The
experimental data were reported to be best described by the pseudo-second-order kinetic
model, while the thermodynamic parameters reportedly suggested a spontaneous and
endothermic nature of the adsorption process. As a photocatalyst, polythiophene-based
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nanocomposites were reported for the removal of MB and MO by [139], under visible
LED and natural sunlight. The prepared nanocomposite was reported to have excellent
photocatalytic and adsorption activity, while the prepared material can be easily separated
from the solution after equilibrium by the use of an external magnet. Photodegradation
of MB was also reported by [140], using polythiophene-doped SrTiO3 nanocomposite,
and reported better catalytic activity for the prepared nanocomposite, compared with the
starting materials, i.e., polythiophene and SrTiO3. In another study, removal of arsenic
ions by sawdust, modified by the three well-known CPs—namely, PANI–SD, Ppy–SD, and
PTh–SD, was reported by [141]. The study concluded that PTh–SD adsorbent showed
the highest adsorption capacity, compared with unmodified SD, PANI–SD, and Ppy–
SD samples. The exact adsorption mechanism was clearly stated, but three possible
reactions were proposed that include chemical oxidation, anion exchange, and chelation
processes. Furthermore, it was reported by [142] that Cd (II) can be efficiently removed
by polythiophene nanocomposites. Likewise, the use of polythiophene as an adsorbent
material was reported by [143] for the removal of toxic As (III). In the reported adsorption
process, the As ions become attached to π electrons at the backbone of the polymer, leading
to much stronger interactions between S and As atoms.

Pollutants Removal by Combined Conductive Polymers

The use of combined conductive polymers for pollutants removal has been reported
by various researchers. For example, PANI–Ppy nanofibers for the removal of Cr (VI) were
reported by [115]. Similarly, the use of PANI–Ppy copolymer nanofibers for the removal of
cobalt ions Co (II) from aqueous solutions was reported by [144]. They emphasized the
positive role of temperature on the adsorption process and reported 99.68% removal effi-
ciency for a 100 mg/L Co (II) concentration at the optimum operating conditions. Similarly,
the removal of Congo red (CR) from aqueous solutions using PANI–Ppy nanofibers was
reported by [131] in a batch adsorption model, indicating higher removal efficiencies for
CR at low solution pH. They also reported good fitting of the Langmuir isotherm equilib-
rium model and pseudo-second-order kinetic model to their experimental data. A higher
adsorption capacity was observed for PANI nanofibers (270.27 mg/g), compared with
Ppy nanofibers (222.22 mg/g). Further utilization of conductive polymers as adsorbents
for nitrates from wastewater was reported by [145], using polyaniline and polypyrrole as
adsorbents. They reported that the Langmuir isotherm model fitted well the experimental
data and that the adsorption process followed the pseudo-second-order kinetic model. The
nature of the adsorption of nitrates on PANI and Ppy was spontaneous. However, higher
adsorption capacities for nitrates were observed by PANI, compared with Ppy. The removal
of Congo red was reported for PANI and Ppy adsorbents in another paper by [146], who
observed that removal efficiencies increased with increasing contact time and adsorbent
dosage. They reported good fitting of the Langmuir equilibrium isotherm and pseudo-
second-order kinetic models with their experimental data. In another research article,
methylene blue (MB) removal using polyaniline and polypyrrole macro-nanoparticles was
reported [147]. The reported maximum adsorption capacity for the synthesized nanoparti-
cles was 19.2 mg/g of MB/g of polymer. Additionally, a detailed review on the utilization
of conducting polymers as adsorbents for the removal of textile dyes was reported by [57].
Various surface morphologies possessed by polypyrrole-modified adsorbents are presented
in Figure 8 below.
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Figure 8. Some representative SEM images of Ppy and Ppy-based composite materials. (a) Magnetic
Fe3O4@Arg-Ppy nanocomposite. Reprinted with permission from Ref. [148]. Copyright 2018 Elsevier.
(b) Ppy-Fe3O4/rGO composite. Reprinted with permission from Ref. [149]. Copyright 2014 Elsevier.
(c) Ppy-Nutshell of Argan composite. Reprinted with permission from Ref. [129]. Copyright 2016 Elsevier.
(d) Ppy-Bacterial Cellulose Fiber composite. Reprinted with permission from Ref. [150]. Copyright 2021
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Springer Nature. (e) Ppy-mixed oxide nanocomposite. Reproduced from Ref. [151]. Copyright
2018 Royal Society of Chemistry. (f) Ppy-TiO2 nanocomposite. Reprinted with permission from
Ref. [152]. Copyright 2012 Elsevier. (g) Ppy-Magnetic Corncomb Biochar composite. Reprinted with
permission from Ref. [153]. Copyright 2018 Elsevier. (h) Fe3O4-TiO2-Ppy nanocomposite. Reprinted
with permission from Ref. [154]. Copyright 2016 Springer Nature.

3. Conclusions

Conductive polymers and their composites are known to be efficient adsorbents for
various types of pollutants and contaminants. This is mostly due to their interesting redox
characteristics and the presence of N, S, P, and O elements in their chemical structure. The
most predominant reported mechanisms for organic dyes removal are π–π interactions,
hydrogen bonding, hydrophobic interactions, acid–base interactions, and electrostatic
interactions. As for the heavy metal ions removal, the most common mechanisms are
electrostatic attraction, ion exchange, chelation, and reduction. Among the heavy metals,
removal of Cr (VI) is the most widely studied contaminant, while among the organic
dyes, methylene blue is reportedly the most widely studied pollutant. Overall, it may be
concluded that modification by conductive polymers of various types of potential adsor-
bent materials leads to significant improvements in the adsorption rates and maximum
adsorption capacities of the unmodified adsorbents. Among the conductive polymers,
polyaniline and polypyrrole have been extensively studied as potential adsorption en-
hancers (leading to significantly high maximum adsorption capacities), compared with
polythiophenes. Hence, polythiophenes and their derivates may present opportunities for
further exploration and research.
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