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A B S T R A C T The blue crab T fiber synapse, associated with the stretch receptor of 
the swimming leg, has a nonspiking presynaptic element that mediates tonic 
transmission. This synapse was isolated and a voltage clamp circuit was used to 
control the membrane potential at the release sites. The dependence of transmitter 
release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A 
power relationship of 2.7 was obtained between excitatory postsynaptic potential 
(EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, 
presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms 
pulse (conditioning pulse) between these test pulses potentiated the subsequent test 
EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and 
decayed with a single exponential time course. The decay time course remained 
invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude 
and decay time course of DAP were independent of the test pulse amplitudes. The 
magnitude of DAP was a function of conditioning pulse amplitudes. Large condi- 
tioning pulses activated large potentiations, whereas the decay time constants were 
not changed. The DAP is a Ca-dependent process. When the amplitude of 
conditioning pulses approached the Ca equilibrium potential, the magnitude of 
potentiation decreased. Repeated application of conditioning pulses, at 2-s inter- 
vals, did not produce additional potentiation beyond the level activated by the first 
conditioning pulse. Comparison of the conditioning EPSP waveforms activated 
repetitively indicated that potentiation lasted transiently, 100 ms, during a pro- 
longed release. Possible mechanisms of the potentiation are discussed in light of 
these new findings. 

I N T R O D U C T I O N  

Plasticity of  synaptic transmission has long been considered one of the important 
factors that underlie modifiable animal behavior (Eccles, 1964). The interest in the 
mechanism of synaptic transmission and its plasticity has a long history and much 
work has been devoted to it (for review, see Martin, 1977; Takeuchi, 1977; Llinas, 
1984; Augustine, Charlton, and Smith, 1987). Among the most extensively studied 
model systems are neuromuscular junctions (Katz, 1969) and the squid giant synapse 
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(Bloedel, Gage, Llinas, and Quastel, 1966; Katz and Miledi, 1967; Llinas, Steinberg, 
and Walton, 1981; Augustine, Charlton, and Smith, 1985). Each preparation has its 
advantages and disadvantages. The squid giant synapse allows the monitoring and 
controlling of presynaptic potentials directly and quantitative studies of Ca influx and 
transmitter release have been accomplished (Llinas et al., 1981; Llinas, Sugimori, and 
Simon, 1982; Augustine et al., 1985; Fogelson and Zucker, 1985; Simon and Llinas, 
1985; Llinas, Sugimori, and Silver, 1991). On the other hand, the neuromuscular 

junction exhibits a wider variety of plasticities than are present in the squid 
preparation (Del Castillo and Katz, 1954b; Mallart and Martin, 1967; Magleby and 
Zengel, 1982) as well as the possibility of observing quantal release directly (Fatt and 
Katz, 1952; Del Castillo and Katz, 1954a). However, the size of its presynaptic 
terminal makes the direct monitoring of membrane potential at the release sites quite 
difficult to achieve. Here, we demonstrate that in the crab T fiber synapse, where 
presynaptic recording is possible (Blight and Llinas, 1980), short-term plasticities 
that are similar to those of neuromuscular junctions can be obtained. 

The T fiber receptor of blue crab is a tonic synapse that mediates the stretch reflex 
of the swimming leg (Bush and Roberts, 1968). The input (stretch receptor activa- 
tion) and output (promotor nerve firing) relationship of the reflex has been studied 
extensively in Carcinus maenas (Cannone and Bush, 1980a). It was demonstrated that 
the afferent element of this reflex is a nonspiking sensory neuron (Bush and Roberts, 
1968). The nature of the synaptic function was initially unknown and a tonic release 
of transmitter or an electrotonic coupling was postulated to account for the behavior 
of this long-lasting and graded feedback control (Cannone and Bush, 1980b). Direct 
investigation of this synapse was initiated by Blight and Llinas (1980) in blue crabs, 
Callinectes sapiclus, where simultaneous pre- and postsynaptic recording was used to 
demonstrate the chemical and monosynaptic characteristics of this synapse. To study 
plasticities of this synapse, we further reduced this preparation such that a presynap- 
tic voltage clamp paradigm could be implemented. 

Nomenclatures that define various phases of short-term plasticities are mostly 
derived from studies of neuromuscular junctions (Martin, 1977; Magleby and Zengel, 
1982; Wojtowicz and Atwood, 1985). In general, enhanced synaptic transmission with 
a duration of several hundred milliseconds or less is called facilitation (Del Castillo 
and Katz, 1954b; Mallart and Martin, 1967). The enhanced release that lasts for tens 
to hundreds of seconds is called augmentation or potentiation (Feng, 1941; Liley, 
1956; Magleby and Zengel, 1982; Wojtowicz and Atwood, 1985). The underlying 
mechanisms for these plasticities have been initially attributed to presynaptic accu- 
mulation of free Ca in the synaptic terminal (Katz and Miledi, 1968; Rosenthal, 
1969). This hypothesis has been rigorously investigated with modeling and optical 
measurements of intracellular Ca in both squid giant synapse (Fogelson and Zucker, 
1985; Charlton, Smith, and Zucker, 1982) and neuromuscular junctions (Magleby 
and Zengel, 1975; Stockbridge and Moore, 1984; Delaney, Zucker, and Tank, 1989). 
The outcome of these studies provided some initial support for the role of residual 
Ca during facilitation in the squid giant synapse (Charlton et al., 1982; Zucker and 
Stockbridge, 1983; Fogelson and Zucker, 1985). However, recent Ca imaging and 
chelator injection studies in the squid giant synapse suggested otherwise (Adler, 
Augustine, Duffy, and Charlton, 1991; Swandulla, Hans, Zipser, and Augustine, 
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1991). Similar lack of  suppor t  for the residual Ca hypothesis was also shown for the 
posttetanic potentiat ion at neuromuscular  junct ions (Magleby and Zengel, 1975; 
Delaney et al., 1989). Fur thermore,  given the limited resolution o f  extracellular 
recordings o f  the presynaptic action potentials at the neuromuscular  junct ions 
(Zucker, 1974a) or  the long electrotonic distance between presynaptic intracellular 
recording site and the release sites (Wojtowicz and Atwood, 1984), it remains possible 
that small changes in the resting membrane  potential, action potential waveforms, 
and cable propert ies at the release sites may contribute to the potentiat ion (Augus- 
tine, 1990; however, see Zucker, 1974b). Our  goal in this repor t  is to study short- term 
plasticities under  local voltage control  so that membrane  potential at the release sites 
is directly controlled. In addition, direct voltage control  o f  the presynaptic terminal 
allowed us to change impulse durations and amplitudes systematically dur ing the 
expression of  plasticity and provided further  insight to the underlying mechanisms. 

M A T E R I A L S  AND M E T H O D S  

Animals 

Blue crab, Callinectes sapidus, was used for all the experiments. Adult females, with carapace 
width from 10 to 15 cm, were kept in recycled sea water (20-22°C) for up to 1 wk. 

Dissections 

The T fiber synapse we studied was associated with the fourth leg, the swimming leg, of the 
animal (Blight-and Llinas, 1980). Procedures of isolating the thoracic ganglion with the fourth 
leg stretch receptor were identical to that described by Blight and Llinas (1980). Briefly, the 
ganglion was isolated from the animal while artificial sea water was perfused through the sternal 
artery. After the ganglion was excised, the sheath overlying the dorsal surface was removed and 
the ganglion hemisected. The arterial perfusion was terminated at that point. The half- 
ganglion was more convenient for the desheathing of its ventral surface, a condition needed to 
improve visibility under transmitted light. The oral and cheliped ganglia were also removed to 
further reduce the size of the preparation. The sensory and promotor nerves that regulate the 
gain of the stretch receptor were isolated. A suction electrode recording (Fig. 1, Vmot) of the 
promotor nerve was maintained throughout the rest of the dissection to monitor the viability of 
the preparation. 

Three sensory afferents, S, T, and D fibers, were desheathed and separated (Bush, 1976; 
Blight and Llinas, 1980). These fibers were ligated individually by silk threads at a point 
~ 300--400 t~m from the edge of the ganglion. The T fiber was identified on the basis of its size 
and the pattern of promotor nerve firing triggered by the ligation. Indeed, the ligation 
invariably triggered a massive but transient release of transmitter, as indicated by bursts of 
activity recorded from the promotor nerve. The pattern of the bursts also helped the 
identification of individual sensory afferents (Blight and Llinas, 1980). The ends of the silk 
threads were anchored to Vaseline as a mechanical support for electrode penetrations. 

Electrophysiology 

The sucrose gap arrangement for current injection adopted in previous work (Blight and 
Llinas, 1980) was not used because we found it inadequate for voltage control at presynaptic 
terminal. Instead, the current injection was accomplished by penetrating the sensory fiber 
outside the ganglion with a microelectrode (Ipre. in Fig. 1). A voltage electrode (Vpre.) 
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FIGURE 1. Schematic drawing 
of the isolated T fiber synapse 
preparation. The dimensions of 
the T fiber and motor nerve are 
not drawn to scale and only one 
motoneuron soma and axon 
are illustrated. III and IV de- 
note third and fourth leg gan- 
glia, respectively. 

penetrated the T fiber inside the ganglion but was ~ 250-300 I~m peripheral to the site of 
transmitter release (Blight and Llinas, 1980). A third electrode penetrated the motoneuron 
dendrites near the synapse (Vpost.). This arrangement  enabled the generation of a presynaptic 
voltage step with a rise time of 300 p.s. (Fig. 2 A ). (Unfortunately, due to the geometry of the 
presynaptic fiber we found it difficult to interpret the significance of the clamp current.) In 
some experiments where the third electrode was inserted into the presynaptic terminal, the 
spatial decay of voltage between the voltage electrode and that inserted at the synaptic site was 
<20% for depolarizations > 100 mV (n = 4). An example is illustrated in Fig. 2A, where the 
spatial decay between the two electrodes is shown for 50-mV pulses. The ratio of the potential 
recorded at the synaptic site (Vb) to that of the presynaptic voltage electrode (Va) is plotted 
against the amplitude of Va (Fig. 2 B; for the electrode arrangements see Fig. 1). It is clear that 
in this example the spatial decay between the two locations was slightly more than 10% only at 
extremely large depolarizations, i.e., > 150 mV. This voltage decay is equivalent to a space 
constant of 1.4-1.8 mm, which falls in the lower end of the values reported previously (Roberts 
and Bush, 1971; Mirolli, 1979; Blight and Llinas, 1980). In most experiments illustrated in this 
paper, the voltage step speed was reduced from that shown in Fig. 2. The gain of the voltage 
clamp circuit was adjusted such that the "cross-talk" artifacts of the postsynaptic recordings 
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FIGURE 2. Example of presynaptic voltage clamp and spatial decay in the T fiber. (A) 
Simultaneous recordings at two locations in the T fiber, one at the edge of the ganglion (Va) 
and a second electrode at the synaptic site (Vb). The locations of Va and Vb correspond to the 
positions of Vpre. and Vpost. electrodes in Fig. 1, respectively. (B) The spatial decay of 
presynaptic voltage is relatively constant over a wide range of voltage steps. The data were 
obtained from the same experiment as that shown in A. The x-axis indicates the amplitude of 
the voltage steps, Va, from a holding potential of - 7 0  mV. 
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were minimized, but was still sufficient to eliminate the large after depolarizations sometimes 
observed under current clamp conditions (see Fig. 48 in Blight and Llinas, 1980, for example). 
In the remaining part of this paper, we refer to our voltage steps as "local voltage control" to 
avoid confusion with proper voltage clamp. All the data presented in this report were obtained 
with presynaptic voltage control except for those in Fig. 3, where constant current pulse 
injections were used to depolarize the T fiber. 

Postsynaptic recordings were obtained at the synaptic site, i.e., the dendrites of the 
motoneurons, to optimize the recording signals. Experiments were performed only when the 
postsynaptic cell was identified as a promotor neuron, judged by the corresponding action 
potentials recorded in the suction electrode. In addition, the recordings from the identified 
motoneurons invariably had a "synaptic delay," as measured from the beginning of the 
presynaptic command pulse, of < 3 ms, with a high gain presynaptic voltage control (Blight 
and Llinas, 1980). Tetrodotoxin was added to the bath after a promotoneuron was identified in 
order to block action potentials in the motoneurons and to minimize possible contribution of 
polysynaptic pathways. All the electrodes were filled with 1.5 M CsCI and 1.5 M TEACI. The 
resistance of current injection electrodes ranged from 10 to 20 Mf~, while that of presynaptic 
voltage and postsynaptic electrodes ranged from 25 to 35 Mf~. The perfusion solution was the 
same as that described before (mM: 435 NaCI, 8 KCI, 40 MgCI2, 10 CaCI2, 30 NaHCO3, 0.1 
K2HPO4, pH 7.4 under 95% 02 plus 5% CO2 bubbling). All the experiments were performed in 
10 mM Ca except in the studies of Ca dependence of transmitter release. When the Ca 
concentration was changed, it was compensated by an equal amount of magnesium. 

R E S U L T S  

Depolarization Release Coupling 

The  viability o f  the T fiber synapse after the extensive dissection was tested (Fig. 3) 
with a current  clamp mode  for presynaptic stimulation. The  presynaptic terminal was 
depolarized from a resting membrane  potential  o f  - 6 0  inV. Initially, the amplitudes 
o f  excitatory postsynaptic potential  (EPSP) genera ted  dur ing the pulses (on-response) 
increased with larger presynaptic depolarizations. This response decreased as the 
presynaptic voltage approached  Ca equilibrium potential, > +40  inV. The  "o f f '  
EPSP, which appeared  at the termination of  the depolarizing pulses, became 
detectable when the on-response was reduced by large pulses. 

The  i npu t -ou tpu t  relationship o f  this synapse is illustrated in Fig. 4 A, where the 
peaks o f  pre-  and postsynaptic potentials were plotted to provide a depolar iza t ion-  
release (D-R) coupl ing curve. Transmit ter  release started as the terminal was 
depolarized to - 4 0  mV and reached max imum at about  + 2 0  mV, close to the point  
where the off-response became detectable. The  potential  where maximal release 
occurs was more  positive than that repor ted  previously in this synapse (Blight and 
Llinas, 1980) and that o f  the squid giant synapse (Katz and Miledi, 1967; Llinas et al., 
1981). This can be partly attributed to the fact that the presynaptic voltage electrode 
was ~ 250-300  ~m from the synapse and there was a max imum o f  15% spatial decay 
(See Materials and Methods and Fig. 2). Given this decay, the peak of  the D-R 
coupl ing curve would shift to the left by 13 inV. It is impor tant  to note  that the 
morphological  studies o f  this synapse showed that the synaptic contacts between the 
T fiber and individual postsynaptic elements are < 50 ~m (Blight and Llinas, 1980). 
Therefore ,  the release sites associated with each postsynaptic neuron  are practically 
isopotential. Similar D-R coupl ing curves were obtained when the release was 
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FIGURE 3. Depolarization re- 
lease coupling of the T fiber 
synapse. The lower traces of 
each pair are presynaptic re- 
cordings (Pr) and the upper 
traces are postsynaptic record- 
ings (Pt). The presynaptic ter- 
minal was depolarized under 
current clamp. Small transients 
on the top of some EPSPs were 
action potentials of the moto- 
neuron. The variable ampli- 
tudes of these transients was 
the result of averaging; the 

number of traces averaged in each example varied from one to three. EPSP amplitudes of > 10 
mV are consistent with a dendritic (i.e., synaptic) recording site. The resting potential of 
presynaptic terminal was - 6 0  mV and that of motoneuron was - 5 0  inV. 

measu red  as the ra te  of  rise of  the  EPSP or  measu red  at the end  of  the  depo la r i z ing  
pulses. Data f rom eight  synapses are  shown in Fig. 4 B and  the D-R coupl ing  exhibi ts  
behavior  similar  to that  of  Fig. 4 A. 

Calcium Dependence of Transmitter Release 

To character ize  the Ca d e p e n d e n c e  of  the  T f iber  t ransmission,  D-R coupl ing  was 
s tudied at various ext racel lu lar  Ca concentra t ions .  Since the synapse is located at 
some d e p t h  f rom the surface o f  the thoracic gangl ion,  a diffusion bar r i e r  may restrict  
the rate  o f  ion exchange .  This  may account  for the long  t ime required ,  > 1 h, for 
EPSP ampl i t ude  to reach  a s teady level af ter  r educ ing  Ca concentra t ion .  By contrast ,  
a stable EPSP could be ob ta ined  faster, within 45 rain, when Ca concent ra t ion  in the 

20 

1.0. 

o_ 10 
0.5 

j . . / \  
-25 25 75 125 

V (mY) 

-75 -75 
^ - 2  . . . . , . , 

-25 25 75 125 

V (mV) 

A B 

FIGURE 4. Input-output relationship of the T fiber synapse. (A) A plot of EPSP peak 
amplitudes of on-response (open circles) against presynaptic peak amplitudes. Off-responses 
(filled circles) were plotted against the presynaptic amplitudes at the end of the pulses. The 
measurements were obtained from the same synapse shown in Fig. 3. (B) A composite D-R 
coupling curve measured from eight synapses, expressed in different symbols. The maximal 
EPSP recorded from each synapse was used to normalize the release. The curves in A and B 
were drawn by hand. 



LIN AND LLINAS Potentiation of the Crab T Fiber Synapse 51 

bath was increased. Therefore ,  we started all experiments  with low Ca, which could be 
achieved easily by arterial perfusion dur ing the early stages o f  the dissection. An 
example  o f  the pre- and postsynaptic potentials recorded under  four Ca concentra-  
tions, 2.5, 5, 10, and 40 mM, is illustrated in Fig. 5 A. The  presynaptic potential was 
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FIGURE 5. The dependence of transmitter release on extracellular Ca. (A) Superimposed 
traces of pre- and postsynaptic recordings. The extracellular Ca concentrations are 40, 10, 5, 
and 2.5 mM, respectively. The presynaptic terminal was voltage clamped to - 5  mV from a 
holding potential of - 7 0  mV. The lengths of time for which the ganglion was washed with each 
extracellular Ca concentration were: 2.5 mM, perfused through sternal artery; 5 mM, 35 min; 
10 mM, 35 min; 40 mM, 50 min. (B) Depolarization release coupling obtained under different 
Ca concentrations. Symbols and their corresponding Ca concentrations are as follows: 2.5 mM 
(open circles), 5 mM (open squares), 10 mM (open triangles), 40 mM (filled circles). (C) Double 
logarithmic plot of transmitter output against extracellular Ca concentration, using the EPSPs 
activated by preterminal depolarization to - 5  inV. The Ca dependence of EPSP amplitude 
(open circles) has a slope of 1, while the EPSP rate of rise (open squares) has a slope of 2.7. 

c lamped to - 5  mV (lower traces) and the ampli tudes o f  EPSP (upper  traces) 
increased by > 10-fold over the Ca concentrat ion range. The  complete D-R coupling 
curve obtained f rom the same synapse is shown in Fig. 5 B. 

When the amplitudes o f  the EPSP or  their rate of  rise were plotted against the 
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concentrat ion o f  Ca on a double-logari thmic g raph  (Fig. 5 C), the data fell on 
straight lines. T he  average slope was 1.22 for EPSP amplitudes (n = 4) and 2.6 for 
their rate o f  rise (n = 4). 

Depolarization-activated Potentiation 

The  main type o f  short- term plasticity we observed was depolarization-activated 
potentiat ion (DAP). The  DAP was typically activated by a pro longed presynaptic 
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FIGURE 6. Posttetanic potentiation activated by a prolonged conditioning pulse. (A) Strip 
chart recordings of pre- (lower trace) and postsynaptic (upper trace) potentials. Short test pulses 
were delivered at 0.5 Hz, which evoked constant EPSPs before the conditioning pulse (arrow). 
The EPSPs activated by the test pulse become much larger after the conditioning pulse. The 
same data are also shown in an expanded time scale for conditioning (B), control (C), and 
potentiated (D) responses. The control traces (C) were an average of 10 traces, while the 
potentiated traces (D) were superimposed. The presynaptic terminal was held at - 7 0  mV and 
local voltage control was used to produce depolarizations. (E) The decay of the DAP follows a 
single exponential time constant, 3.2 s. The data points were averaged from three trials. 

depolarization. The  protocol  is illustrated in Fig. 6 A, where test pulses of  5-ms 
durat ion were applied at 0.5 Hz (lower trace). These pulses activated EPSPs o f  
constant ampli tude (upper  trace) unde r  control conditions (see the beginning of  the 
traces in A ). After the insertion of  a 300-ms condit ioning pulse (arrow in Fig. 6 A ) the 
subsequent test pulses activated much larger EPSPs. The  pre- and postsynaptic 
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recordings obtained before (C) and after (D) the conditioning pulse (B) are also 
shown at an expanded time scale. The decay of the potentiation follows a single 
exponential time course (Fig. 6 E) with a time constant of 3.2 s in this example. The 
potentiation was quantified as: 

DAP(t) = [EPSPtest(t)/EPSPcnt] - 1 (1) 

where EPSPcnt is the mean amplitude before the conditioning pulse and EPSPtest(t) 
is the amplitude at time t. Time zero was when the conditioning pulse was 
terminated. Durations other than 300 ms for the conditioning pulse were also tested; 
longer durations produced some depression, while potentiation evoked by shorter 
ones was not as robust (data not shown). When DAP was studied with the presynaptic 
voltage control paradigm, the parameters such as resting membrane potential or the 
test pulse duration and amplitudes were strictly controlled during the decay phase of 
the potentiation, thereby eliminating the possible contributions of these factors. 

At the frog neuromuscular junction, the augmentation component is kinetically 
similar to the DAP reported here (Magleby and Zengel, 1982; also see Discussion). 
However, due to the possible presence of multiple components of potentiation in the 
T fiber synapse (data not shown), we prefer the more descriptive term depolarization- 
activated potentiation for our results. 

To  exclude possible artifacts associated with our protocol, several parameters were 
carefully examined. The first variable investigated was the effect of the test pulse 
amplitude. We found that the magnitude and time course of the potentiation were 
little affected by a wide range of test pulse amplitudes as long as the same 
conditioning pulse was used to activate potentiation. One such example is illustrated 
in Fig. 7, where test EPSP amplitudes ranging from 0.6 mV (upper traces in A ) to 9 
mV (lower trace in A) were potentiated to a similar extent. In fact, when the 
potentiation was normalized according to Eq. 1, their time courses of decay were 
superimposable (Fig. 7 B). Similar results were obtained in four other synapses. 
When test pulses approached maximal release level, DAP magnitude was only slightly 
reduced in its early phase of decay, while the later phase was indistinguishable from 
those obtained by smaller test pulses (data not shown). This was presumably because 
the release evoked by a large test pulse saturated during a large DAP. 

The same experiment is analyzed from a different point of view, namely, a 
depolarization release coupling plot for control and potentiated release. The evoked 
transmitter release before the conditioning pulse increased from 0.6 to 8.9 mV as the 
peak level of the test pulse was increased from - 2 9  to - 2 1  mV (open triangles in Fig. 
7 C). 2 s after termination of the constant conditioning pulse, the test pulses that 
activated EPSP ranged from 1.4 to 24.5 mV (open circles in Fig. 7 C). (The EPSPs 
measured 4 s after the conditioning pulses are plotted as open squares.) If the 
potentiation is normalized, its independence from test pulse amplitude is more 
apparent (Fig. 7 D). The potentiations measured at different time points after the 
conditioning pulse illustrated in Fig. 7 D are: 2 s (open circles), 4 s (open squares), 
and 8 s (filled triangles). This observation suggests that the potentiation occurred 
downstream from the Ca influx and all the release sites were potentiated to a similar 
level. The  variations of  test pulse amplitudes simply regulated the inward Ca current 
for the release while the extent of potentiation remained the same. 

The second issue is whether the 0.5-Hz test pulse frequency interfered with the 
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DAP t ime course or  magni tude .  A systematic study o f  the test pulse  frequencies 
revealed that  the  DAP magn i tude  and  t ime course r e m a i n e d  cons tant  at a test pulse  
f requency < 0.5 Hz. An example  is shown in Fig. 8, where  DAPs act ivated by the 
same cond i t ion ing  pulse were tes ted at three  di f ferent  test pulse  frequencies (Fig. 
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FIGURE 7. The potentiation is not sensitive to the test pulse amplitudes. (A) Three test pulse 
amplitudes were used to test DAP evoked by the same conditioning pulse. The smallest test 
pulse evoked control EPSPs of 0.6 mV (upper trace), whereas the largest one evoked control 
EPSPs of 9 mV (lower trace). In all three cases, a potentiation of similar magnitude and time 
course was obtained after the same conditioning pulse. The identical conditioning pulse was 
indicated by the same amplitude of conditioning EPSP (middle and lower traces). The  tip of the 
conditioning EPSP in the upper trace was truncated due to a higher amplification. The 
amplitudes of the test pulses used were 36 (upper trace), 40 (middle trace), and 44 mV (lower 
trace), respectively. The presynaptic holding potential was - 6 5  mV. (B) Normalized potentia- 
tion obtained from the same experiment. The symbols for each curve are indicated in A. The 
data for small and intermediate test pulses were the averages of two trials. (C) A depolarization 
release coupling plot before (open triangles), and 2 s (open circles) and 4 s (open squares) after a 
conditioning pulse. The x-axis indicates the peak level of test pulse depolarization. The 
holding potential of the preterminal is - 6 5  mV. (D) The magnitude of potentiation for each 
test pulse remained constant. Different symbols represent the magnitudes obtained at different 
times after the conditioning pulse: open circles, 2 s; open squares, 4 s; filled triangles, 8 s. 

8 A ). When  the po ten t i a t ed  EPSPs were normal ized  by thei r  control  ampl i tude ,  only 
the po ten t i a t ion  mon i to r ed  by the 1-Hz test pulse  (open circles) showed a slight 
accelera t ion o f  decay (Fig. 8 B). A combined  t ime cons tant  of  the  DAP decay, 
exc luding  the 1-Hz da ta  points ,  is 2.6 s. 
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The magnitude of DAP clearly depends on the amplitude of the conditioning 
pulse, such that the potentiation became larger as the amplitude of the conditioning 
pulse was increased (Fig. 9 A ). The  time course of  the potentiation remained a single 
exponential (Fig. 9 B). The correlation between the conditioning EPSP amplitudes 
and the magnitudes of DAP is illustrated in a double logarithmic graph (open circles 
in Fig. 9 C) and the data points followed a straight line with a slope of 0.6. In 
contrast, there is no apparent  correlation between the DAP decay time constants and 
conditioning EPSP amplitudes (open triangles in Fig. 9 C). The linear relationship 
between the conditioning EPSP amplitudes and DAP magnitudes on the double 
logarithmic graph was not a consistent finding; in three other experiments the data 
points plotted in linear scales were better described by either exponential or linear 
fits. 
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FIGURE 8. The potentiation is not sensitive to the frequencies of the test pulses. (A) Strip 
chart recordings from a promotoneuron dendrite. Test pulse frequencies of 0.5, 0.2, and 0.1 
Hz were used to monitor the DAP decay time course activated by the same conditioning pulse. 
The decay of DAP exhibits a similar time course. There is a slight increase of the control EPSP 
amplitude as the test pulse frequency is lowered. This is due to a frequency dependence of 
transmitter release. The identical conditioning pulse was verified by the constant amplitudes of 
conditioning EPSPs. (B) Plot of DAP time course obtained from the same experiment as in A. 
The frequencies illustrated are: 1 Hz (open circles), 0.5 Hz (open squares), 0.3 Hz (filled triangles), 
0.2 Hz (filled circles), 0.1 Hz (open triangles). The arrows indicate the time when the first pulse 
was applied after the termination of the conditioning pulse for 0.3-, 0.2-, and 0. l-Hz trials. 

Two possible potentiation-triggering mechanisms were considered: a Ca-depen- 
dent (Rosenthal, 1969) or a potential-dependent process (Parnas, Parnas, and Segel, 
1990). To  determine a possible role of membrane  potential in DAP, we triggered the 
potentiation with a conditioning pulse that approached the Ca equilibrium potential. 
Under  such conditions, the conditioning EPSP was reduced (lower pair of  traces in 
Fig. 10, B and C) and the magnitude of  potentiation was also decreased (upper pair 
of  traces in Fig. 10, B and C). The difference in the magnitude of potentiation is 
illustrated in the normalized plot in Fig. 10 D. The  reduction of DAP evoked by very 
large conditioning pulses indicated that Ca influx activated by conditioning pulse is 
the main factor that triggered potentiation. 
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FIGURE 9. The dependence of potentiation on the amplitude of conditioning pulses. (..4) With 
the same test pulse, larger conditioning pulses produce stronger potentiation. The peak levels 
of the conditioning pulses used to trigger the potentiations were -12,  -21,  and - 3 0  mV, 
respectively, activated from a holding potential of - 65  mV. (B) The potentiation normalized, 
according to Eq. 1, from the results shown in A. The magnitudes of potentiation at time zero 
are 13 (open squares), 6 (crosses), and 1.8 (open circles), while the corresponding time constants 
are 2.45, 2.82, and 3.08 s. The data points are denser than once every 2 s, as illustrated in A. 
This was achieved by repeating the same experiment but phase shifting the conditioning pulses 
relative to the test pulses. (C) Double logarithmic plot of the potentiation magnitude (open 
circles) and decay time constants (open triangles) against conditioning EPSP amplitudes. The 
DAP magnitude could be fitted with a straight line with a slope of 0.6. The dashed line is the 
best fit to the time constants. 

We further  examined whether  repetitive condit ioning pulse presentat ion could 
produce  an accumulation of  DAP. In the example  illustrated in Fig. 11, the 
condit ioning pulses were presented one, three, and five times. No  accumulation o f  
potentiat ion was detectable, suggesting that the potentiat ion is a saturable process for 
a given condit ioning pulse amplitude. Furthermore,  the decay time course of  DAP 
remained identical regardless of  the number  o f  condit ioning pulses (Fig. 11 D). The  
expected accumulation, based on a linear summation model  (Mallart and Martin, 
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FIGURE 10. Ca dependence of potentiation. CA) Potentiation produced by a small condition- 
ing pulse. The upper pair of traces were from a strip chart recorder to illustrate the magnitude 
and time course of the potentiation. The lower pair of traces were the pre- and postsynaptic 
recordings during the conditioning pulses at an expanded time scale. (B) Potentiation of larger 
magnitude was produced by a larger conditioning pulse. (C) If the conditioning pulse was 
depolarized to a level near the Ca equilibrium potential, conditioning EPSP as well as 
potentiation both became smaller. (D) The time course of potentiation obtained from the 
examples illustrated in A-C. Filled squares, A; open squares, B; crosses, C. 

1967), is also shown in the same plot to highlight the difference (Fig. 11 D). This 
observation was a consistent finding, in four synapses, over a wide range of  
potent iat ion magnitudes,  f rom 1 to 4. 

T he  waveform o f  the condi t ioning EPSP activated repetitively provides insight into 
the vesicular dynamics underlying the potentiation. We observed that the potentiated 
synaptic transmission only occurs transiently, for ~ 100 ms, at the beginning of  a 
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prolonged release. This is illustrated in Fig. 12 (upper traces), where the condition- 
ing pulses were applied six times. The potentiation is associated with an accelerated 
EPSP rising phase, but this initial surge of potentiated releases soon dissipates and 
the potentiated EPSPs become slightly smaller than the control. This is better 
illustrated as the difference between the potentiated and control EPSPs (Fig. 12, 
lower traces). The  potentiation was followed by a small depression, as if the former 
was generated at the expense of tonic release. 

A o 

., X.LLI<ll ll!J iJi l i LIL 04 

 [IIILLLIII[[L IllL ILt IllllIIItLLt 
10 s 

C 

j. blllllll.lll 

D 
3 '  

.¢.., 
t -  
eD 

0 
-I0 () 10 20 

Time (s) 

FIGURE 1 1. The potentiation does not accumulate if the conditioning pulses are applied 
repetitively. Potentiation activated by one (A), three (B), or five (C) conditioning pulses 
exhibited similar magnitude and rate of decay. (D) Plots of potentiation from A - C  illustrate that 
their magnitudes and decay time courses are superimposable. The continuous line was 
obtained by summing DAP, triggered by one conditioning pulse, five times to highlight the 
absence of accumulation. 

The time course of  the potentiated release depended on the amplitude of the 
conditioning pulse. A larger conditioning pulse triggered a larger but shorter 
potentiated release (Fig. 12B). It should be noted that the absence of DAP 
accumulation is also apparent  in this experiment,  as indicated by the superposition of 
the potentiated EPSP traces. 
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D I S C U S S I O N  

In this report  we present a new crab T fiber preparation where presynaptic 
membrane potential may be controlled by a voltage clamp circuit. The  presynaptic 
voltage control allowed us to analyze the depolarization-activated potentiation while 
manipulating the amplitude and duration of presynaptic voltage steps. The DAP 
exhibited the following characteristics: (a) The DAP is a Ca-dependent process. (b) 
The potentiation shows saturation when conditioning pulses are applied repetitively. 
(c) The degree of potentiation is independent of the test pulse amplitudes. (d) The 
potentiation is present transiently at the beginning of  a prolonged release. 

Although the DAP is Ca dependent,  the absence of  accumulation is inconsistent 
with the residual Ca hypothesis in its classical form (Katz and Miledi, 1968; 
Rosenthal, 1969). If residual free Ca is indeed the underlying cause of DAP, the 

A B 

150 ms 

FIGURE 12. Potentiated transmission only occurs transiently at the beginning of prolonged 
release. Conditioning EPSPs of two different amplitudes are shown in A and B (upper traces). 
The conditioning pulses were applied at 2-s intervals and repeated six times. The difference 
between the first and the average of the following five conditioning EPSPs is shown in the lower 
traces. The gain of the lower traces is twice that of the upper ones. 

repeated application of conditioning pulses during the falling phase of the DAP 
should result in additional potentiation. Furthermore, the absence of accumulation is 
true for different levels of DAP (Fig. 12). This observation rules out the possibility 
that the residual free Ca mediates the DAP but the absence of accumulation is due to 
a saturation of  the Ca-dependent release process. It would be necessary to propose a 
complicated buffering mechanism, which can buffer precisely the Ca influx intro- 
duced by repeated conditioning pulses, to account for our observations with the 
residual Ca hypothesis. 

Analogous arguments can be made to rule out a possible postsynaptic mechanism 
where the potentiation is due to the presence of residual transmitter molecules in the 
synaptic cleft (Magleby and TeiTar, 1975). Although the three-dimensional con- 
straints on the diffusion of transmitter molecules may be different from that of free 
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Ca in the presynaptic terminal (Simon and Llinas, 1985; Fogelson and Zucker, 1985; 
Bartol, Land, Salpeter, and Salpeter, 1991), the absence of accumulation cannot be 
accounted for by diffusion processes alone. Other mechanisms such as an upregula- 
tion of presynaptic Ca current are unlikely because apparent synaptic delay is not 
changed during DAP (unpublished observation). An enhancement of presynaptic Ca 
influx is expected to reduce the delay, a situation analogous to the change of 
apparent synaptic delay for presynaptic voltage steps when extracellular Ca concen- 
tration is changed (Llinas et al., 1981; Augustine and Charlton, 1986). An upregula- 
tion of postsynaptic receptor sensitivity remains possible and may be resolved by 
analyzing the amplitudes of unitary EPSPs. 

A possible explanation for the Ca dependence of DAP and its lack of accumulation 
is that the Ca influx activates a biochemical process that has a low affinity for Ca. As 
a result, the Ca-activated process becomes insignificant shortly after the termination 
of the conditioning pulse as the free Ca level drops rapidly after channel closing 
(Simon and Llinas, 1985). The next conditioning pulse applied 2 s later could 
achieve a similar Ca concentration and drive this process to a similar level. In 
addition, given the efficient intracellular Ca buffering and diffusion (Adler et al., 
1991; Llinas et al., 1991), the high Ca concentration requirement implies that the 
Ca-activated process must only happen within a limited submembranous area. To 
account for the dependence of DAP on the amplitudes of the conditioning pulse (Fig. 
9), one needs to further specify that the magnitude of potentiation is determined by 
the extent, spatial or chemical, to which the Ca influx drives the low affinity step. At 
present, it is not possible to identify molecular steps that mediate the DAP. A 
consistent view of visualizing our experimental results will be to assume that the Ca 
influx increases the availability of synaptic vesicles. 

The independence of the DAP from the test pulse amplitude indicated that the 
potentiation process occurred uniformly over the release area, perhaps due to a 
similar increase of vesicular availability for all release sites. Indeed, this spatially 
uniform potentiation is expected since the release sites for any given postsynaptic 
neuron are spatially restricted to a small fraction of the space constant of the T fiber 
(Blight and Llinas, 1980). As we changed the test pulse amplitudes, the Ca influx 
triggering release was varied. These Ca influxes, however, triggered release from the 
population of synaptic vesicles with the same level of enhanced availability. One 
would, therefore, expect that the magnitude of potentiation is independent of the 
test pulse amplitude. 

The transient nature of the potentiated release can also be explained from the 
vesicular mobilization point of view. It suggests that potentiation may be due to an 
increase of the synaptic vesicle availability and this increase may be limited to a 
subpopulation of vesicles. With a prolonged release, the potentiated vesicles are soon 
depleted and the sustained component of the synaptic potential results from the 
mobilization of a second population of synaptic vesicles that are not potentiated 
previously. The mobilization of synaptic vesicles during the tonic release may also 
underlie the DAP. It is conceivable that after the termination of the conditioning 
pulse, the transmitter release stops immediately while the mobilization process 
continues for a brief period. It may be this "latent" mobilization that is responsible 
for the increase of vesicle availability. Further experiments are needed to elucidate 
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the development of potentiation and/or  depression from the point of view of vesicle 
mobilization during the prolonged release. 

Possible Molecular Mechanisms of DAP 

Due to the Ca dependence and the proposed vesicular mobilization aspect of DAP, a 
reasonable candidate for the proposed biochemical processes is the phosphorylation 
of synapsin I molecules by calcium/calmodulin-dependent protein kinase II (CaM 
kinase II; Huttner, DeGennaro, and Greengard, 1981; Kennedy, McGuinness, and 
Greengard, 1983; Schiebler, Jahn, Doucet, Rotheim, and Greengard, 1986), which 
has been shown to modulate transmitter release (Llinas, McGuinness, Leonard, 
Sugimori, and Greengard, 1985; Llinas, Gruner, Sugimori, McGuinness, and Green- 
gard, 199 I). Phosphorylated synapsin I molecules dissociate themselves from synap- 
tic vesicles and increase their availability at the release sites (McGuinness, Brady, 
Gruner, Sugimori, Llinas, and Greengard, 1989) or release them from the synapsin- 
actin network (Bahler and Greengard, 1987; Benfenati, Voltorta, and Greengard, 
1991). 

To account for the behavior of DAP, it would be necessary to impose kinetic 
constraints on the CaM kinase II-synapsin I pathway. The single exponential decay 
of the DAP should reflect the decrease of the number of the freed vesicles, which may 
in turn be determined by the decline of CaM kinase II activity. In this case, the 
concentration of free vesicles at the release sites would be actively maintained by the 
enzyme. This is generally consistent with the observation that the decay time courses 
of the potentiation were not sensitive to the test pulse frequency. 

To account for the absence of accumulation of DAP with repeated conditioning 
pulses, the activation of CaM kinase II should have a low affinity to free Ca such that 
the residual free Ca shortly after the conditioning pulse would be too low to 
contribute to DAP. (The Ca affinity of calmodulin in vitro is known to be in the 
micromolar range [Klee, 1988].) Due to the efficient Ca buffering or pumping 
mechanisms in cells (Fogelson and Zucker, 1985; Simon and Llinas, 1985) or 
spatially limited distribution of the molecules involved, steps driven by CaM kinase II 
are likely to be restricted to the area near release sites (Llinas et al., 1991). The 
spatial limitation may account for the inference that only a subpopulation of synaptic 
vesicles can be potentiated. Once the decaged vesicles are depleted during a 
prolonged presynaptic depolarization (Fig. 12), the synapse would start to mobilize, 
or decage, a second line of vesicles. 

From a morphological point of view, this hypothesis seems attractive since in rat 
superior cervical ganglion tetanic stimulation has been shown to increase the density 
of synaptic vesicles near the release site (Quilliam and Tamarind, 1973), which could 
represent an accumulation of immediately releasable vesicles and result in potentia- 
tion triggered by subsequent test pulses (see also Llinas et al., 1991). In addition, the 
magnitude of potentiation observed in the T fiber synapse, 2-9, is in the same range 
as that of the squid giant synapse after CaM kinase II injection (Llinas et al., 1991). 
Although it remains to be demonstrated that such molecular machinery exists in crab 
T fiber synapse, studies from a wide variety of animals, vertebrate (Hackett, Cochran, 
Greenfield, Brosius, and Ueda, 1990; Nichols, Sihra, Czernik, Narin, and Greengard, 
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1990), molluscan (Llinas et al., 1991), and crustacean (Delaney, Yamagata, Tank, 
Greengard, and Llinas, 1990) support the general presence of such a mechanism. 

Comparison with the Plasticities Observed at the Neuromuscular Junctions of Frog 
and Crayfish 

In the frog neuromuscular junction, short-term plasticities are divided into four 
classes: F1 and F2 components of facilitation, augmentation, and potentiation 
(Magleby and Zengel, 1982). The DAP reported here is kinetically similar to the 
augmentation component in two important aspects. First, the time constant of decay 
is independent of the magnitudes of potentiation for both DAP and augmentation 
(Mallart and Martin, 1967; Zengel and Magleby, 1982). Second, the range of the 
decay time constants of the augmentation component, ~ 7 s (Magleby and Zengel, 
1982), is similar to that of DAP, 2-6 s. Further comparison of other kinetic properties 
is difficult because the 300-ms conditioning pulse used here is drastically different 
from action potential-based protocols used at neuromuscular junctions. Whether the 
two phenomena are identical or not remains unclear. If they are indeed mediated by 
the same mechanism, the prominence of the DAP in the T fiber synapse provides a 
unique opportunity to investigate its mechanism in isolation. 

Direct measurement of presynaptic free Ca concentration in crayfish neuromuscu- 
lar junction showed a linear relationship between the Ca level and the magnitude of 
posttetanic potentiation (PTP) (Delaney, Zucker, and Tank, 1989). The linear 
relationship implies that the free Ca, in the low micromolar to hundreds of 
nanomolar range, may dictate the decay of PTP. Although this Ca level may activate 
the CaM kinase II pathway under special conditions (Keller, Olwin, LaPorte, and 
Storm, 1982), a major inconsistency between this observation and our results is the 
lack of accumulation of DAP observed in the T fiber preparation. One would expect 
some accumulation if the potentiation time course were to be dictated by a residual 
Ca-activated process (Thomas, Surprenant, and Almers, 1990). In addition, a 
component equivalent to augmentation is also found in the crayfish neuromuscular 
junction (Zengel and Magleby, 1982; Bittner, 1989; Delaney, Regehr, and Tank, 
1991). The presence of well-differentiated components in the same preparation 
strongly suggests that they are mediated by different mechanisms. 
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