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Abstract

Neural circuit development requires that synapses be formed between appropriate neurons.

In addition, for a hierarchical network, successful development involves a sequencing of

developmental events. It has been suggested that one mechanism that helps speed up

development of proper connections is an early overproduction of synapses. Using a compu-

tational model of synapse development, such as adaptive synaptogenesis, it is possible to

study such overproduction and its role in speeding up development; it is also possible to

study other outcomes of synapse overproduction that are seemingly new to the literature.

With a fixed number of neurons, adaptive synaptogenesis can control the speed of synaptic

development in two ways: by altering the rate constants of the adaptive processes or by

altering the initial number of rapidly but non-selectively accrued synapses. Using either

mechanism, the simulations reveal that synapse overproduction appears as an unavoidable

concomitant of rapid adaptive synaptogenesis. However, the shortest development times,

which always produces the greatest amount of synapse overproduction, reduce adult perfor-

mance by three measures: energy use, discrimination error rates, and proportional neuron

allocation. Thus, the results here lead to the hypothesis that the observed speed of neural

network development represents a particular inter-generational compromise: quick develop-

ment benefits parental fecundity while slow development benefits offspring fecundity.

Author summary

The brain processes information by building and adjusting neural connections, and as an

organism learns about the environment, it incorporates associations between features of

the environment into these adjustable connections. Organisms, however, are not born

with these connections; synapses must develop from a connectionless set of neurons. An

important aspect of normal brain development is the timely development of the brain and

of hierarchically arranged brain regions. In this paper, we show that an unsupervised
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algorithm, called adaptive synaptogenesis, builds neurons with stable connections and

allows these neurons to appropriately discriminate patterns. Here, we show that larger

rates of synaptogenesis and synaptic modification speed up development of stable connec-

tions. However, such a speed-up produces larger, steady-state energy-costs. We conjecture

that these synaptic modification rates have evolved as a compromise via natural selection.

In this regard, the evolution-theoretic idea of parent-offspring conflict arises as a develop-

mental consideration; that is, time to stable connectivity must balance with subsequent

neural performance. Importantly, we illustrate that the widely-observed phenomenon of

synapse overproduction during development can be understood as a compromise

between speedy and efficient development.

Introduction

The phenomenon of net synapse overproduction in brain development is well-documented

[1–4] but, as far as we can find, almost nothing definite is said about its purpose. Nevertheless,

misregulation of this overproduction phenomenon is postulated to be a possible cause of

autism [5–7]. The research reported here provides a functional perspective for two opposing

goals in the regulation of synapse number. The first goal is that synapse overproduction speeds

the time to develop a quasi-stable connectivity (from here on referred to as stable connectivity

or just stability; see Methods for the need to qualify stable connectivity as quasi-stable rather

than an absolute stability). The second goal is to avoid too many synapses per neuron for rea-

sons of (i) energy efficiency of neuron-use [8, 9], (ii) per-category allocation of neuronal

responses, and (iii) specificity of neuronal responses [10].

Empirical studies suggest that following overproduction, net synapse loss is integral to nor-

mal development [11, 12] including development of executive function [12] and memory per-

formance [13]. Indeed, the results here support, in a quantitative fashion, Purves’s and

Lichtman’s qualitative suggestion that “subsequent elimination of some innervation is a strat-

egy well-suited to ensuring both the prompt innervation of all the cells in a target and ulti-

mately, a quantitatively appropriate distribution of synapses among the target cells” [p. 135,

14; underscoring is our’s]. Moving from this qualitative statement toward the quantitative, in

general, it might seem that faster development is better for the parents (particularly the dam),

but there are other considerations; that is, the performance of neurons in the adult will also

constrain development.

It seems that synapse overproduction appears in the computational literature only twice,

and both times it is found in a figure without comment [10, 15]. The later study [10] shows

that the synapse development paradigm of adaptive synaptogenesis [16, 17] can produce neu-

ronal allocation in proportion to the input category frequency; this paradigm creates such a

neuronal allocation in an unsupervised manner, without inhibition, and starting from a con-

nectionless set of neurons. Here, we continue to investigate adaptive synaptogenesis. This

model is inspired by BCM theory [18] and its functional control of activity (and we are not

alone in considering functional controls over structural plasticity [19–21]). As used here, adap-

tive synaptogenesis incorporates (i) Hebbian synaptic modification, (ii) stochastic, postsynap-

tic activity-dependent synaptogenesis, and (iii) anti-Hebbian driven synapse elimination [16,

22]. Previous studies have shown that this paradigm can produce what appears to be a homeo-

stasis in synapse number and neuron firing while encoding the statistics of the input environ-

ment into its connections [10, 23–26]. The paradigm can also reproduce the results of
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postnatal ocular dominance experiments [27], and it achieves compressive coding with small

information losses [24].

The present study begins with variants of an earlier result concerning the use of adaptive

synaptogenesis in discrimination learning and the resulting neuronal allocation that reflects

input statistics [10]. (Indeed, all the quantified results reported here were qualitatively

observed in [10] for A, B1, B2, and B3 datasets; see Fig 6 in [10].) In the context of allocation

that is proportional to input statistics and low error rates as outcomes of development, we eval-

uate rates of synapse growth and modification (i.e., γ and ε). Higher rates of synapse growth

and plasticity reduce the time to reach stable connectivity, but these higher rates raise the

energy-costs of using the stabilized network and downgrade proportional neuronal allocation

and specificity of neuronal responses. The same result is obtained by manipulating the initial

number of synapses.

Results

Neurally relevant adaptive synaptogenesis

The adaptive synaptogenesis model was developed to explain the results of postnatal manipula-

tions of sensory experiences, for example the effect of monocular deprivation on neuron allo-

cation in V1 neocortex [27]. Our interest here is in extending this theory to earlier times in

development. A standard result in experimental neuroscience is that neurons are allocated

proportionately to the frequency of input patterns [28]. Studies of adaptive synaptogenesis

produce this proportionality [10, 26, 27]. That is, there is greater neuronal representation for

categories that occur more frequently. Before studying the simpler and more easily interpreted

dataset A1, we remind the reader of the biological relevance of the theory by demonstrating

biased allocation of orientation sensitive neurons via simulations of prenatal and postnatal

development.

The simulations make use of three environments: (i) a prenatal, retinal wave-generated

environment with no bias in orientation (dataset C3), (ii) a normal postnatal environment

with slight biases in the vertical and horizontal orientations (dataset C4), and (iii) a postnatal,

experimentally manipulated, stripe-tilt environment with biases of 45 (dataset C1) and 135

(dataset C2) degrees. The three set of patterns were presented in sequence, one after another,

with the algorithm running throughout; within each set, the patterns were randomly per-

muted. See Methods for more detail about the datasets and the references to the empirical

motivations. All neurons begin with one connection. By the time the connections stabilize in

the prenatal environment, a neuron has, on average, 9.4 connections, while in the normal post-

natal and experimentally manipulated postnatal environments, a neuron has, on average, 11.1

and 12.1 connections. Stabilization in each environment produces different neuron allocations

that reflect the orientation statistics of each environment (Fig 1). In the prenatal, uniform envi-

ronment, neuron allocation is evenly spread across all orientations (Fig 1A). In the normal

postnatal environment, more neurons are allocated to horizontal and vertical orientations (Fig

1B), and in the experimentally manipulated, stripe-tilt environment, orientations of 45 (Fig

1C) or 135 (Fig 1D) degrees receive the most neuronal allocation.

Because there is a certain complexity to the orientation datasets due to the overlaps between

adjacent orientations [10], we turn to a simpler, non-overlapping environment with five cate-

gories of patterns, each with a different frequency of presentation to the network. The results

of this section establish a baseline of neuronal allocations required of later results. Within data-

set A1, neuronal allocation is a linear function of category frequency (the fraction of presenta-

tions of patterns generated by a certain prototype). Fig 2 illustrates this linear relationship. The

five orthogonal categories with fractional frequencies of 0.1, 0.15, 0.2, 0.25, and 0.3 receive

Adaptive synaptogenesis and synapse overproduction
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fractional neuron allocations of 0.01, 0.08, 0.21, 0.29, and 0.41, respectively. The linear regres-

sion line of Fig 2 has a slope of 2.0 and a r2 value of 0.99.

Higher rates of synaptogenesis (γ) and synaptic modification (ε) speed

stabilization of connectivity

Raising the rates of synaptogenesis (γ) reduces the time to reach stable connectivity (Fig 3). In

conjunction with γ, the rate of synaptic modification (ε) also determines the time to reach sta-

bility. Thus, in Fig 3, the value of ε is the empirically observed optimum for each value of γ.

See Methods and S1 Appendix Fig 3 for details of the empirical optimization of ε values.

Fig 3 plots time to stable connectivity as a function of the inverse of γ. There are two plots

in Fig 3 because of the 500-fold range of γ values simulated; i.e., Fig 3A shows the results for

the smaller γ values, and Fig 3B shows the results for the larger γ values. The two figures are in

good agreement; the regression lines of Fig 3A and 3B have slopes of 0.06 and 0.05, respec-

tively, and the same r2 values of 0.99. Using much larger γ values (e.g. 0.1) eliminates the linear

relationship shown in Fig 2.

Faster stabilization correlates with costlier neurons

Faster development mediated either by large γ is problematic when energy-costs are consid-

ered since faster development (i.e., shortest time-to-stability) correlates with greater energy-

costs (Fig 4). Note that in Fig 4, there are there different axes for three different costs, each of

which is defined in Methods.

A postsynaptic neuron’s energy-costs arise from its computation and communication costs.

Computational costs of the neuron j arise from (i) maintenance of its total number of synapses

Fig 1. A sequence of input statistics across development biases allocation of orientation selective neurons. Adaptive synaptogenesis

controls synaptic modification across three stages—one prenatal and two postnatal. In each stage, neuron allocation reflects the bias of the

input statistics. Three input environments are presented sequentially, and synapses are allowed to stabilize in each environment. The allocation

of neurons preferring each orientation reflects the probability of occurrence of the orientations. (A) Prenatal retinal waves with no orientation

bias. (B) A natural, early postnatal environment with a slight bias for vertical and horizontal orientations. (C) and (D) show subsequent,

experimentally manipulated stripe-tilt environments of 45 degrees and of 135 degrees, respectively. Each histogram bin represents an

orientation ±5 degrees. The orientation circles are qualitative visualizations of the C datasets (Fig 9). Each histogram is based on 100

postsynaptic neurons.

https://doi.org/10.1371/journal.pcbi.1005750.g001
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Fig 2. Neuron allocation suggests a linear relationship with category frequency. Each of 5 orthogonal

prototypes defines an input category 1–5. Prototypes are never presented to the network. Input vectors are

random perturbations of each prototype. See Dataset A1 in Methods (Fig 9). Once the connectivity of the

simulation stabilizes, the allocation of postsynaptic neurons’ firings suggests a linear relationship to each

category’s relative frequency. The simulation uses 100 postsynaptic neurons with γ and ε of 0.001 and a

receptivity threshold shutoff of 0.1.

https://doi.org/10.1371/journal.pcbi.1005750.g002

Fig 3. Time-to-stability is linearly related to the inverse of the probability of synapse formation. Increasing γ
speeds development, and time-to-stabilize is proportional to the inverse of γ. The relation spans a considerable

range, here plotted for both smaller (A) and larger (B) values of γ. (A) The γ values are 0.00001, 0.00003, 0.00001,

0.00003, and 0.001. (B) plots the same relationship on an expanded scale with γ values of 0.001, 0.002, 0.003, and

0.004. At each γ setting, an ε setting that produces the fastest development is used (See Methods and S1

Appendix). The error bars, if not visible, are smaller than the plotted points. Each data point is a simulation of 1,000

postsynaptic neurons.

https://doi.org/10.1371/journal.pcbi.1005750.g003
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mj, and (ii) the average use of these synapses, a value proportional to E[Yj]. Communication

costs arise from time-proportional leak and action potentials, where action potentials require

about 100 times the energy-cost of leak per unit time [8]. Thus, communication costs increases

with firing-rate. See Methods for further explanations of the measurements of energy-cost. Fig 4

plots each of these relative costs as a function of γ; the greater the value of γ, the greater the fir-

ing-rates, the greater the average internal excitations, E[Yj], and the greater the synapse num-

bers. Combining these results (Fig 4) with those of the previous section (Fig 3) reveals an inverse

relationship between time-to-stability and energy-costs of neuron-use (Fig 5).

Faster stabilization correlates with less selective neurons and loss of

proportional neuronal allocation

As firing-rate increases for a neuron, its error-rate also increases. An error-rate is defined as

the fraction of the time a neuron fires to a pattern belonging to a non-preferred category (see

Methods). The largest error-rate is six times the smallest. The error-rates are steadily increas-

ing with number of synapses, and this increase is what causes the gradual loss of specificity.

The error-rates are 0.0097, 0.0135, 0.0279, 0.0435, 0.0616 for the sequence of average number

of synapses: 15, 16.8, 20.27, 23.45, and 25.8.

With larger γ, the neuronal allocation that was a linear function of category probability (see

Fig 2) is lost. For example, when γ is 0.1, categories one through five have fractional neuronal

allocations of 0.02, 0.06, 0.10, 0.41, and 0.40, respectively.

Increasing starting synapse number (SSN) while holding γ and ε
constant

In addition to increasing γ, initializing a simulation with more, random connections also

reduces time-to-stability. Initializing neurons with as many as 100 (out of 1,000 possible) ran-

domly chosen synapses, as opposed to an initialization of just one synapse, speeds develop-

ment while still achieving the appropriate neuron allocation (as illustrated in Fig 2). In this

Fig 4. Increasing γ produces energetically costlier neurons. At stability, neurons that develop under larger γ’s use more energy in

these ways. (A) Larger γ produces neurons with greater firing-rates. Communication costs rise with more action potentials because an

action potential’s energy-cost is about 100 times the leak energy-costs over the same time interval. (B) Larger γ produces neurons with

greater total synaptic weight and greater average excitation. The computational costs arise from maintenance of synapses, proportional

to the total synaptic weight, and the average use of the synapses, proportional to average synaptic activation. The error bars, if not

visible, are smaller than the plotted points. Each data point is a simulation of 1,000 postsynaptic neurons. Without knowing the constants

cap, cleak,axo, cexc, and cleak,syn, the y-axes do not afford comparisons across dependent variables.

https://doi.org/10.1371/journal.pcbi.1005750.g004
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particular case, the time-to-stability is cut by 60%. Fixing values of γ and ε at 0.001, SSNs of 1,

50, 100, and 150 lead to an average time-to-stability of 90.9, 55.4, 36.8, and 27.6 blocks,

respectively.

The relationship between time-to-stability and energy-costs is consistent for both manipu-

lations of γ (continuous lines in Fig 5) and SSN (dashed lines in Fig 5). A simulation with

higher SSN has even shorter time-to-stability and even larger communication and computa-

tional costs than simulations with larger values of γ. At an SSN of 100 and γ and ε values of

0.001, a neuron reaches stability in 36.8 blocks on average, whereas a neuron at an SSN of 1, a

γ value of 0.001, and an ε value of 0.0038 reaches stability in 56.7 blocks on average. However,

the energy-costs of the neuron developed with 100-SSN are much higher than the neuron

developed at 1-SSN. The percent increase for each cost from 1-SSN are 180% for firing-rate,

267% for excitation, and 258% for total weight per neuron, a substantial increase in each

measure.

Though simulations with SSN values greater than 100 produce even faster development,

the discrimination performance of neurons in these simulations is severely prone to error.

For example, with an SSN of 150, the average firing-rate is 0.5 when stability is achieved;

that is, a neuron at 150 SSN fires 50% of the time. Each category in these simulations is, how-

ever, presented 30% of the time or less. Thus, even when one assumes that such neuron fires

100% of the time to the most frequent category with its 30% appearance rate, it must be fir-

ing 20% of the time to other categories. If the neuron prefers a category that is presented less

than 30% of the time, the error rate can only be worse. Thus, SSN-based overproduction also

diminishes the specificity of neuron firing.

Synapse overproduction correlates with fast stabilization

Overproduction of synapses is a well-known phenomenon of development and, at first glance,

seems energetically wasteful. This section points out why limited overproduction may exist.

Fig 5. Faster development correlates with more energetically expensive neurons. (A) Neurons with shorter time-to-

stability have more frequent action potentials and thus greater communication costs on average. (B) Neurons with shorter

time-to-stability have greater total synaptic weights and greater average synaptic activation. The plotted points on the

dashed lines come from simulations manipulating the starting synapse number (SSN). The values of SSN for the points

from right to left are 50, 100, 150, 200, and 250 out of 1,000 total possible synapses. These simulations use fixed values of

γ and ε at 0.001. The plotted points on the continuous lines come from simulations manipulating γ. The values of γ for the

points from right to left are 0.0003, 0.001, 0.002, 0.003, and 0.004. Optimal values of ε are used for each γ (See Methods

and S1 Appendix). The error bars, if not visible, are smaller than the plotted points. Each data point is a simulation of 1,000

neurons. Without knowing the constants cap, cleak,axo, cexc, and cleak,syn, the y-axes do not afford comparisons across

dependent variables.

https://doi.org/10.1371/journal.pcbi.1005750.g005
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For the adaptive synaptogenesis paradigm, synapse overproduction characterizes fast devel-

opment; the greater the overproduction, the faster the development. By definition, an overpro-

duction occurs when a neuron gains more synapses than are present at stabilization; clearly at

some point during development, there must be more shedding than synaptogenesis. Fig 6 illus-

trates a single neuron example. Starting with one connection, this neuron eventually stabilizes

at 14 synapses. However, it first achieves 14 synapses at block 52 and continues gaining synap-

ses; it eventually reaches a maximum synapse number of 30 at block 101. Following this maxi-

mum, there is a period of oscillations, but on average, there is a decrement in synapse number

until around block 200; at this point in development, shedding proceeds with very little synap-

togenesis leading to a stable synapse number of 14 at block 235. (The simulation continues for

1,088 more blocks with synaptic connections remaining unchanged.)

The size of this overproduction effect increases in concert with the speeding of develop-

ment; this correlation is true for both γ or SSN manipulations (Fig 7A). Fig 7 presents direct

comparison of the average maximum (red/square line) value to its corresponding average sta-

ble value (black/circle line). At a γ value of 0.001 and SSN of 1, for example, on average, the

maximum synapse number is 35 accompanied by an average stable value of 17; by calculation

then, the average overproduction is 18. For this same SSN of 1 and the largest acceptable γ of

0.004, the average overproduction is 37.7. For a γ value of 0.001 and SSN of 100, the average

overproduction is 75.6 synapses.

Discussion

The main contributions of this work are (i) a model of synapse overproduction with explicitly

delineated control mechanisms and (ii) bringing attention to a fitness hypothesis that con-

strains neural development: specifically, duration of neural development as a phenotype (an

idea implicit in the mentioned quote of Purves and Lichtman concerning rapid development).

Fig 6. A neuron overproduces and subsequently sheds synapses. An individual example of the

overproduction phenomenon. The neuron develops in a simulation with a γ value of 0.0003 and an ε value of

0.0015 and is representative of the amount of overproduction for neurons with these settings. It obtains a

maximum total synapse number of 30 at block 101, but eventually stabilizes with 14 synapses by block 235.

The simulation continues for 1,088 more blocks with connections remaining unchanged. Note that the

example neuron shown here (Fig 7B) is chosen from the 1,000 neurons used to produce the single data point

where γ equals 0.0003.

https://doi.org/10.1371/journal.pcbi.1005750.g006

Adaptive synaptogenesis and synapse overproduction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005750 September 22, 2017 8 / 23

https://doi.org/10.1371/journal.pcbi.1005750.g006
https://doi.org/10.1371/journal.pcbi.1005750


For the adaptive synaptogenesis paradigm presented here, this study elucidates three micro-

scopic, arguably evolvable, parameters that control a neuron’s rate of afferent synaptic devel-

opment. In this regard, increasing SSN (i.e., quick synapse formation in the absence of

associative modification) and increasing the value of γ (the rate of synaptogenesis) are just the

starting points. As noted in the Methods section, for speediest development, ε must be

matched to both the input statistics and γ’s value. Regardless, development that is too speedy

leads to certain undesirable concomitants. Under the developmental model studied here, there

is an inverse relationship between a neuron’s time to form stable connections in a statistically

stationary environment and the energy-costs of the steady-state synapses. In addition, propor-

tional neuronal allocation is lost when development is too quick. These effects of increasing γ
generalize to a more complex input environment; see S2 Appendix.

Why is speed of development important?

Earlier studies of neuron optimization have concentrated on the energy-cost of information

processing [29–32] and the energy-cost of communication [8]. These sensible perspectives are

not broad enough, at least for us, given the added context of synaptic development. With this

additional context, a lifespan perspective (prenatal to adult) motivates our questions about

adaptive synaptogenesis [33–38]. The demonstrations here illustrate our working hypothesis

that natural selection creates a balance between speed of connectivity development and the

later costs of using the relatively stabilized connectivity.

Inspired by this line of thinking, the report here notes the existence of an antagonistic inter-

action between two phenotypes that are both determinates of fitness in the modern Darwinian

sense (i.e., lifespan and inter-generational theories of fitness; see above references and S3

Appendix for more about our research philosophy including our perspective on optimizations

[39]). The two phenotypes are (i) the duration of neural development, a time period requiring

the reproductive efforts of time and energy by the parents as they intensively nurture their

Fig 7. A transient overproduction in the number of synapses is more prominent in fast developing

neurons. Faster developing neurons have larger overproductions in synapse number as well as more

synapses at stability. The overproduction is calculated as the difference between each average maximum

(black, circle) and the corresponding average final number of synapses per neuron (red, upside-down

triangle). (A) As SSN is increased, overproduction becomes more prominent. For simulations manipulating

SSN, the values of γ and ε are fixed at 0.001 for all points, and the values of SSN for the points from left to

right are 50, 100, 150, 200, and 250 out of 1,000 total possible synapses. (B) As γ is increased, neurons

converge faster, and overproduction (red, circle) is more prominent. These simulations manipulating γ use

values of ε that are fastest for the given value of γ (See Methods for how such values of ε are found), and the

values of γ for the points from left to right are 0.0003, 0.001, 0.002, 0.003, and 0.004. Each point is a mean of

1,000 postsynaptic neurons.

https://doi.org/10.1371/journal.pcbi.1005750.g007

Adaptive synaptogenesis and synapse overproduction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005750 September 22, 2017 9 / 23

https://doi.org/10.1371/journal.pcbi.1005750.g007
https://doi.org/10.1371/journal.pcbi.1005750


developing offspring [37, 38], and (ii) the implied adult behavioral performance and its adult

costs associated with these same offspring. In the case of (i), the costs include the energy-

expense to the parents of providing for the entire organism of each of the offspring (not just

neural energy-costs) and, additionally, the opportunity-loss incurred by the delay in starting a

new brood; both of these costs increase with longer prenatal development-time and increase

with the duration from birth to weaning. In the case of (ii), the costs take the form of poorly

apportioned neuronal allocation, assuming the importance of well-apportioned neural codes

(cf. Figs 1 and 2; see also discussion in 10), and the energy associated with activating synapses

(cf. Figs 4 and 5). As far as we are aware, the antagonism between time-to-develop and later

adult quality-of-performance has not yet influenced quantitative control of neural develop-

ment. The parametric study here, which hypothesizes such an antagonism, offers a rational

explanation for limited synapse overproduction, at least for those who believe in a lifespan per-

spective for defining fitness.

Synapse overproduction

Net synapse elimination characterizes certain phases of cortical development. (Net synapse

elimination refers to the net loss in the number of synapses, as opposed to synapse elimination

that is part of synapse turnover, a process that may not result in a change of synaptic totals.)

Both non-human studies [1, 40–44] and human studies [45–47] show net synapse elimination

occurs in various parts of the brain at various times in development. For example, a human

brain undergoes synapse growth prenatally and for a few months after birth. Net synapse elim-

ination then begins postnatally and accelerates at onset of puberty [48]. Some studies observe

synapse elimination even in young adults, both in humans [49] and rats [50].

A primary hypothesis of the present research is that synapse overproduction reflects the

speeding of development in order to reach an approximate steady-state of connectivity. How-

ever, our model is not the only synaptogenesis model that finds the existence of overproduc-

tion. Another postsynaptic activity-dependent paradigm also creates overproduction.

Although observed without comment, this other model [15] produces a similar correlation

between overproduction and time-to-stability as elucidated here.

In focusing on synapse overproduction, the research here first points out that two fundamen-

tal parameters control overproduction—the {ε, γ} pair and SSN. Second, it points out that too

much overproduction, which does indeed continue to increase the speed of development, can

cause later problems. From this perspective, observing net synapse elimination in normal devel-

opment is observing the result of a compromise, and from our perspective, an evolvable one.

The two manipulations, (i) {ε, γ} and (ii) SSN, are natural controls of synaptic development;

moreover, there is the requirement that {ε, γ} must be appropriately matched for best results,

yet another part of the overall optimization problem studied here (see Methods). The similarity

of the results using the two distinct manipulations, i.e. (i) and (ii), is notable. Both control

mechanisms lead to the same problems when applied in an excessive manner. Specifically, too

much synapse overproduction leads to excessive adult energy-costs because (i) acquiring

many weak synapses at random implies that there will be more positively correlated input

lines for whatever category wins the competition for a neuron’s allocation (Fig 7) and because

(ii) more stabilized synapses consume more energy. Moreover, accompanying the largest over-

production are two more problems: first, neuron allocation unduly favors the high probability

categories while in the second case, a neuron is less likely to be category specific in its

responses when it stabilizes with too many synapses.

Importantly, the SSN observations point to the generality of the results. When SSN is large,

the parameters controlling synaptogenesis—γ, ρ and �Zj , become irrelevant to the formation of
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synapses. The mechanism of synaptogenesis is irrelevant because with large SSN, only the bidi-

rectional Hebbian modifications and the shedding rule come into play; synaptogenesis never

occurs.

The biological meaning of SSN is worth a comment since it might not be obvious. Our

interpretation of SSN as modeled here is a very early phase of very fast synaptogenesis (i.e., a

large γ) in the absence of any Hebbian or anti-Hebbian modification, i.e., ε = 0. Of course, γ
has several physical possibilities, including a growth factor-dependent rate of probing axonal

growth or a value reflecting the availability of postsynaptic territory on which to form new

synapses.

Alternative models and future extensions

With small alteration, the approach here can be melded with BCM theory. For example, one

can use the combination of SSN, the BCM synaptic modification equation, and the shedding

principle. However, expanding upon adaptive synaptogenesis with the Δw equation used here

holds our interest.

In terms of the generality of adaptive synaptogenesis, the reader is cautioned that the spe-

cific theory presented here will benefit from, or even require, certain modifications. First, not

all synapses of forebrain cortical systems are expected to use synapse overproduction as stud-

ied here. Second, different classes of synapses will have different sets of modification rules, and

in such cases, the ideas here will have to be modified for successful application. For example,

inhibitory and monoamine synapses require different considerations. Similarly, it can be ques-

tioned whether this theory applies to (a) excitatory feedback synapses (perhaps half the synap-

ses of cortex) or to (b) lifelong associatively dynamic encoders (e.g., neurons of the

hippocampal system [51] or the short-term memory system of dorsal medial prefrontal cor-

tex). That is, the neurons and synapses of such regions present a particular challenge; because

the neurons of these regions are constantly changing their identity (i.e., the stimulus to which

they best respond), they require a more nuanced definition of quasi-stability compared to cor-

tical region V1.

One particular result, the excessive firing-rate—that is an observed concomitant of overly

rapid synaptogenesis—will be easy to control in a more comprehensive model. For example,

and still using adaptive processes, mechanisms such as a local, adaptive threshold-adjustment

or some forms of inhibition, with their own set of synaptic modification rules, can be used to

force firing-rates to some prescribed level. As one form of such inhibition, lateral inhibition

might succeed in improving discriminability of categorical representations. Of course, adding

lateral inhibition in the form that exists in neocortex only seems sensible when the input has

an appropriate topological property (which can be added to adaptive synaptogenesis, as found

in our own preliminary results; see also Ooyen and van Pelt [15]). But still topology, and thus,

lateral inhibition are vexing issues when considering clusters defined in high dimension as

opposed to the rather simple computations involved in early sensory processing where spatial

clustering is inherent (e.g., retinotopy, tonotopy, etc.). Again considering either inhibition or

local threshold modification, these enhancements are less than cure-alls: neither of these

mechanisms will affect the synapse overgrowth and the associated adult energy costs; secondly,

it is not at all obvious that these mechanisms can recover proportional neuronal allocation

when there is the overabundance of synapses as occurs along with very fast development; and

then there is the problem of piling too many adaptive processes on top of each other while pre-

serving the existence of quasi-stability. Only in regard to this last objection is there a simple

solution, a developmental critical period, which times-out synaptogenesis, i.e., modulates γ to

zero.
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When expanding a model, one must always check to see that the base functions are not

lost. In this regard, it seems sensible to alter the present model when incorporating mecha-

nisms that can by themselves control firing-rates. That is, to incorporate inhibition or local

threshold modification forces us to backtrack a little and use a synaptogenesis control-mech-

anism closer to our original approach [16, 23, 27]. Specifically, if one uses other mechanisms

to control firing rate E[Zj], then adaptive synaptogenesis should be curtailed based on the

moving average of internal excitation Yj, not based on the moving average of firing-rate Zj.

Thus, on top of a Yj shutoff-control of synaptogenesis, there can be an additional adaptive

process without the stabilization problem mentioned above. Another advantage of control-

ling synaptogenesis with the average value of net excitation is that this approach optimizes

information-rate and the associated synaptic energy-use (see [10] Theory section). Then

separately, other adaptive algorithms can control firing rate, which itself figures into the

large energy-cost of long-distance communication. Preliminary simulations of Yj–based

synaptogenesis indicate that the major relationships shown here still hold; that is, small over-

production of synapses is good for fast development, but even faster development results in

energetically costlier neurons in the sense of acquiring additional excitatory synapses with-

out any benefit to function.

A final enhancement of the current model, and one that we consider rather urgent, is a con-

trol mechanism for the rate constants ε and γ. The success of the current model and many

other computational models of neural network development depend on the ergodic mixing

characteristics of the input. This assumption seems sensible prenatally and early postnatally.

However, the stimuli of the postnatal environment, particularly in the context of high-level,

neocortical processing, are far from ergodic. Thus, upgrading the model to handle the absence

of input ergodicity is, for us, an active area of research.

Relative to brain function, the assumptions underlying the goals of any empirically

observed developmental process (e.g., synaptogenesis) is bound to be contentious. However,

we submit that the final arbiter will include the perspective of evolution through natural selec-

tion rather than merely the perspective of neuroscience alone. Such a broadened approach can

benefit the priorities of empirical neuroscience. For example, there may be a relatively small

number of genes that control SSN or γ, making these variables a tempting target for empirical

research.

Methods

Neurons

This study uses adaptively constructed, feedforward networks of McCulloch-Pitts neurons

[52]. For the synapses that exist, an input vector x(t) at time-step t produces internal excitation

yj(t) of neuron j with weights wij(t).

yjðtÞ ¼
X

i
xiðtÞ � wijðtÞ

where xi(k) 2 {0,1} and wij(k)> 0. If the internal excitation is greater than a predetermined

threshold θ, neuron j produces an output firing. That is,

zjðtÞ ¼ f1 if yjðtÞ > y; and 0 otherwiseg

No interaction exists between the outputs of these neurons (i.e. there is no feedback or lat-

eral inhibition), and each neuron develops its connections independently of all other neurons.

Adaptive synaptogenesis and synapse overproduction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005750 September 22, 2017 12 / 23

https://doi.org/10.1371/journal.pcbi.1005750


Adaptive synaptogenesis

There are three parts to adaptive synaptogenesis: synaptogenesis, associative synaptic modifi-

cation, and synaptic shedding.

Synaptogenesis, when allowed to occur, is a random Bernoulli process with parameter γ
and is governed by rj(k), a neuron j’s receptivity for synaptogenesis at the conclusion of block

k. A block consists of a complete set of randomized inputs (see Timescales). This receptivity

depends on a constant γ and the moving average of neuron j’s firing-rate. The moving average

�zjðkÞ is updated after each block k of input presentations.

�zjðkÞ ¼ �zjðk � 1Þ � a þ ð1=ntÞ
Xnt

t¼1
zjðk; tÞ � ð1 � aÞ

where α = 0.25, nt is the total number of exemplars in a block. Neurons that fire above rate ρ
will not add new synapses. When a new synapse is formed, its initial weight is set to 0.1, an

arbitrarily chosen value greater than the shed weight. Synaptogenesis is allowed after each pre-

sentation of a block of input patterns.

rjðkÞ ¼ fg if �zjðkÞ < r; and0otherwiseg

where ρ = 0.1

Associative synaptic modification [10, 17] alters weights and captures correlations in the

inputs. Given a binary input vector x(t) such that xi(t) 2 {0,1} and rate constant ε, where t
advances one with each time-step.

wijðt þ 1Þ ¼ wijðtÞ þ ε � xiðtÞ � E xi½ � � wijðtÞ
h i

� yjðtÞ

Synaptic shedding [25] occurs when the weight of a synapse is below 0.01. Because a de
novo synapse is given a weight of 0.1; it is not immediately subject to shedding. No negative

weights exist.

wijðkÞ ¼ f0 if wijðkÞ < 0:01; andwijðkÞotherwiseg

Timescales

In the adaptive synaptogenesis model, there are three timescales (from shorter to longer dura-

tion): 1) the presentation of an input pattern (i.e. one time-step t), to which a neuron fires or

not; 2) the synaptic modification of existing synapses as determined by the rate constant ε; and

3) synaptogenesis and shedding. Synaptic modification occurs after each presentation of an

input pattern, and synaptogenesis and shedding are allowed to occur after presentation of a

block k of input patterns. The rate constants, ε and γ, determine the exact timescales of synap-

tic modification, shedding, and synaptogenesis. In one block, all input vectors are presented to

the network in a randomized order.

An input block consists of a sequence of randomly chosen prototypes that are each ran-

domly perturbed. The random prototype selection is well-mixed. For each postsynaptic neu-

ron, input blocks are presented until no synapses are gained or lost for 200 blocks, at which

point a neuron’s synapses are assumed stable. At this time, the weights have achieved their val-

ues predicted by the adaptive synaptogenesis theory [10]. See the section Input datasets for the

block sizes for each input dataset.
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Parameters

For the purpose of the study, values for parameters ε and γ are manipulated (see Adaptive

Synaptogenesis in Methods). The parameter values are listed in Table 1.

Setting the variables of ρ, θ, and α. A great deal of pilot simulations preceded the

research presented here; this pilot work determined the settings for firing threshold, the mov-

ing-average time constant the determines the moving average firing-rate, and the cutoff value

that halts synaptogenesis onto j. In arriving at the settings and in general, we entertain the fol-

lowing assumptions: (i) cortical neurons have many excitatory synapses which leads to desir-

able statistical computations, employing the benefits of the law of large numbers and the

central limit theorem; (ii) although a biological neuron has many inputs, it only sparsely sam-

ples the full input space (that is, the set of all the presynaptic axons to the neuron’s brain

region); (iii) firing rates are low, on average much lower than 50%, and (iv) the moving-aver-

ages that encode statistics are good approximations of the corresponding expectations because

they are matched to the ergodicity and mixing of the input exemplars.

These assumptions lead to some very crude approximations and demand compromises, partic-

ularly in terms of (i) and (ii). The input dimension of a sensory cortical region is huge, well

beyond anything we can repetitively simulate and analyze. Likewise, the number of synapses per

neuron is also large, in the thousands, while the sampled subspace, as a fraction of the total num-

ber of input axons, is inevitably very small; its value is less than a fraction of one percent in visual

cortex. With these thoughts in mind and with tractable input dimensions ranging from 100 to

400, we settled on the desirable number of synapses per neuron in the range of 20–50. By achiev-

ing around 20 synapses per postsynaptic neuron, some of the benefits of the central limit theorem

just start to be seen. It is the Central Limit Theorem and the setting of threshold that allows these

neurons to demonstrate relatively high specificity for the very noisy input datasets. Given the

input datasets used here, θ and ρ are set to achieve this range of final synapse-number per neuron.

Increasing ρ increases the number of synapses and decreases the specificity of neuronal responses.

The value of α should be matched to the ergodicity of the inputs. The goodness of this

approximation is determined by how well mixed the input samples are and by the variation of

the input firing vectors. It is assumed that, in utero and even for a brief part of the postnatal

period in altricial species, input vector statistics are predictable enough for evolution to match

the moving-average rate-constants that it imparts to neurons matching the random variation

of the input environment. Later postnatal times, when the input world might not be so well

mixed, modulatory factors will be needed to dynamically adjust rate constants. This problem

of dynamic adjustment is left for future research.

Given assumptions (i)-(iv) and parameters set to obey these assumptions, we believe our

synapse overproduction results will be robust even across certain variants of adaptive

synaptogenesis.

Table 1. Network parameters.

Parameters Values

ε, rate constant for synaptic modification manipulated

γ, rate constant for synaptogenesis manipulated

α, rate constant for �zj� 0.25

ρ, threshold for receptivity, rj(k) 0.1

θ, threshold for neuron firing, �zj�ðkÞ 1.0

Number of initial connections for a neuron manipulated

Initial synaptic weights 0.1

Shedding value � 0.01

https://doi.org/10.1371/journal.pcbi.1005750.t001
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Quantification of dependent variables

Time-to-stability. The time-to-stability is measured as the number of blocks required

both for (i) the number of synapses and for (ii) the weights of synapses to converge to a statisti-

cal steady-state. When no synapses are gained or lost for 200 presentations of input blocks, neu-

rons are considered to have converged, fulfilling requirement (i). Based on an earlier study [10],

200 blocks of unchanging synapse number were enough for the weights to stabilize on average,

fulfilling requirement (ii) and also to reach the values predicted by the adaptive synaptogenesis

theory [10]. It should be noted that such a the steady-state is possible because the random

inputs are forced to be well-mixed. In fact, for a fully randomized input, this is a quasi-steady-

state due to the possibility of a very improbable occurrence of a long, poorly mixed sequence.

Neuron allocation index. The neuronal allocation index per category is the fraction of

total neuron firings to a single category. For example, suppose that ten neurons fire a total of

100 times to an input set with three categories: category one accounts for 20 of these firings,

category two accounts for 30 of these firings, and category three accounts for 50 of these fir-

ings. Then, categories one, two, and three will respectively have neuron allocation indices of

0.2, 0.3, and 0.5. To determine the neuron allocation index, a testing set consisting of a novel

set of 100 input blocks is presented without modifying weights.

Firing-rate. The firing-rate is calculated by averaging the firings of a neuron that is pre-

sented with a testing set of input patterns without synaptic modification occurring during

these presentations.

Energy-cost. The energy-cost formula has four terms: for two synaptic, computational

costs, (cleakE
Xmj

i¼1
wij

h i
and cexcE

Xmj

i¼1
wijXi

h i
), and two axonal, communication costs, (cleak(1

− E[Zj]) and capE[Zj]).

Energy ¼ cleak;synE
Xmj

i¼1
wij

h i
þ cexcE

Xmj

i¼1
wijXi

h i
þ cleak;axoð1 � E Zj

h i
Þ þ capE Zj

h i

mj is the number of inputs i going to j.
cexc is the scale factor of for excitatory synaptic ion-fluxes.

cleak,syn is the scale factor of for synaptic leak cost.

cleak,axo is the scale factor of for axonal leak cost.

cap is the scale factor of the cost of a conducted action potential.

cap/cleak ranges from 40:1 to 120:1 [8].

Error-rate. The error-rate of a neuron is calculated as the fraction of times a neuron fires

to a pattern belonging to a non-preferred category. A neuron’s preferred category is defined as

the category to which a neuron fires the most. As the error-rate of a neuron increases, the neu-

ron’s specificity decreases.

Assumptions & simplifications

Table 2 shows assumptions and simplifications of the model used here.

Setting ε relative to γ
At each value of γ, there is a best value of ε that produces fast convergence to stability. For

Dataset A, such ε settings were found by sweeping over a range of values and creating the

empirical convex functions as seen in Fig 8A. See S1 Appendix for further remarks concerning

this convexity. For γ values below 0.001 and the input sets used here, the best ε value is approx-

imately predicted by a fixed ratio (ca. 5) between ε and γ. For γ values above 0.001, the rela-

tionship breaks down; at such γ values, an ε setting greater than 0.004 produces neurons that
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develop slower (Fig 8B). At even higher γ values of 0.01, neuron allocation is not proportional

to category frequency (See Neuron Allocation in Results).

For Dataset C, the values of ε and γ are both 0.001.

Input datasets

There are two classes of input environments studied here: (A and C; Table 3, S3 Code). Data-

sets A1 and A2 (Fig 9A and 9B) have five orthogonal prototypes, each defined by 200 adjacent

input lines valued one (i.e., “on”) and the remaining are valued zero (i.e., “off”). In Dataset A1,

the prototypes have relative frequencies of 0.1, 0.15, 0.2, 0.25, and 0.3 for a total of 100 input

patterns per block. Dataset A2 has equally probable categories.

Random noise is added to our input environments. In Dataset A1, 100 input lines of the pro-

totype are turned off (100 off-noise) and 100 input lines not of the prototype are turned on (100

on-noise). For each input pattern, the total number of active input lines remains constant. For

Dataset A2, we manipulated the level of on- and off-noise to investigate the effects of noise in

the input environment on neuronal development (See Noise-to-signal ratio constrains best ε).

The C datasets crudely mimic the input environment of orientation neurons in V1 visual

cortex. Each input line represents an angle of an orientation, and thus, there is a total of 180

input lines for 180 degrees (Fig 9). (There are 180 input lines and not 360 because a line rotated

Table 2. Assumptions and simplifications.

1. Stochastic synapse formation as a function of postsynaptic firing-rate

2. Bi-directional Hebbian synaptic modification

3. Thresholded additive neurons

4. Inputs are ergodic and stationary.

5. Rate constants are appropriately matched to ergodic mixing of inputs.

6. There exist optimal firing-rates for neurons.

7. Natural selection assigns an optimal bits-per-joule.

8. The timescale of a neuron and Hebbian modification is matched to the rate of input presentations.

Synaptogenesis is much slower.

9. Category-specific neurons are desirable.

https://doi.org/10.1371/journal.pcbi.1005750.t002

Fig 8. Matching ε to γ for fast development (A) Average time-to-stability is convex in ε. That is, at each value of γ, there is a value

of ε that produces shortest time-to-stability. (B) Best ε for fastest development as a function of γ. For γ values larger than 0.001,

the best ε is approximately the constant 0.004.

https://doi.org/10.1371/journal.pcbi.1005750.g008
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Table 3. Dataset parameters.

Dataset A1 A2 C1 C2 C3 C4

Input dimensions 1,000 1,000 180 180 180 180

Active lines per

pattern

200 200 20 20 20 20

Number of

categories

5 5 18 18 18 18

On-noise 100 manipulated 5 5 5 5

Off-noise 100 manipulated 5 5 5 5

Category

probabilities

{.1, .15, .2, .25,

.3}

.2 for all .13 for 5; .1 for 4, 6; 0.04

for rest

.13 for 14; .1 for 13, 15;

0.04 for rest

.055 for

all

.088 for 1, 9; .07 for 2, 8, 10, 18;

.04 for rest

Block size 100 100 180 180 180 180

https://doi.org/10.1371/journal.pcbi.1005750.t003

Fig 9. Input datasets single blocks of the datasets. Patterns are grouped together by category to aid

visualization of the categories, but in simulations, the presentation order of the patterns is randomized for

each block. (A) and (B) show 100-pattern blocks of Datasets A1 and A2, respectively. There are five

orthogonal categories. Dataset A1 has categories with probabilities of 0.1, 0.15, 0.2, 0.25, and 0.3, and

Dataset A2 has categories with the same probability of 0.2. (C) and (D) show 100-pattern blocks of the

Datasets C1 and C3, respectively. Datasets C2 and C4 are not shown. The datasets mimic environments of

orientation neurons in the visual system. The circular illustrations are qualitative visualizations of the

orientation biases that each C dataset represents. Dataset C1 and C2 simulate experimentally manipulated

environments with contours of a single orientation. Dataset C3 simulates a retinal wave-generated

environment with no bias in orientation, and Dataset C4 simulates a normal visual environment with slight

biases for horizontal and vertical orientations. The circular illustrations are qualitative visualizations of the

datasets. See text for more details, including references to the empirical motivations.

https://doi.org/10.1371/journal.pcbi.1005750.g009
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180 degrees has the same orientation.) There are 18 categories, or prototypes, each with 20

input lines. A category overlaps with its two adjacent categories. Ten of its 20 input lines are

shared with one adjacent category, and the other ten of its 20 input lines are shared with the

other adjacent category. The on-noise and off-noise are both 5 for the C Datasets.

The differences among datasets C1, C2, C3, and C4 are the probabilities of the orientations,

or categories. The category probability is the probability that a pattern presented is derived

from a given category, and it is determined by dividing the number of patterns in an input

block derived from a category by the total number of patterns in an input block (See Time-

scales for an explanation of an input block). Such differences are used to simulate environ-

ments with various biases in orientations, where a bias for an orientation increases the

probabilities of a category and its two adjacent categories. Dataset C1 and C2 mimic an experi-

mentally manipulated, stripe-tilt environment with biases in orientations of 45 and 135

degrees, respectively (categories 5 and 14) [53]. Dataset C3 represents a retinal wave-generated

environment with no bias in any orientations [54, 55]. Dataset C4 represents a normal postna-

tal environment with slight biases in the vertical and horizontal orientation (categories 1 and

9) [56–58].

For analysis of simulations in a more complex input environment, see S2 Appendix.

Noise-to-signal ratio constrains best ε
At lower noise levels, larger ε values can be used to speed up development, and at higher noise

levels, smaller ε values are required (Fig 10).

Fig 10. At a higher NSR, a lower ε is required for fast neuron development. A phase diagram of the

shortest development time with respect to ε and NSR. On average, a neuron develops the fastest along the

curve of plotted points; above or below the points, development is slower. With an ε value above the curve, a

neuron develops slower because its low firing-rate is too close to the receptivity threshold, while an ε value

below the curve leads to slower development because of prolonged competition among input classes (See S1

Appendix for an explanation of how slow development occurs).

https://doi.org/10.1371/journal.pcbi.1005750.g010
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Input noise level is measured via the noise-to-signal ratio (NSR). The NSR of individual

input vectors is calculated by dividing the number of active input lines orthogonal to the

selected prototype by the number of active input lines belonging to the selected prototype. All

datasets are such that the number of active input lines are the same for each pattern; i.e. the on-

and off-noise are equal (See Input datasets in Methods for description of on- and off-noise).

To understand the relationship between ε and input noise, consider an input environment

with no noise and an environment with an extremely high NSR. In an input environment with

no noise, a neuron only needs a single synapse to maintain a high enough firing-rate, given

that the probability of the corresponding input line is above ρ (receptivity threshold). With a

large ε, a neuron can quickly produce just a few synapses (See S1 Appendix) and converges to

stable connectivity. In contrast, a neuron in a high noise environment needs more synapses to

maintain average firing-rate above ρ, and a small ε allows the neuron to amass enough synap-

ses. When ε is small, a neuron’s synapses are also shed more slowly. Because synapses are

added much faster than they can be shed, this neuron accumulates a large number of synapses.

Time penalty for suboptimal parameter selection

Here, we show the time penalty for suboptimal parameter values as a function of input noise

levels. In Fig 2, three sets of values are compared. To best understand these time penalties, con-

sider these time penalties from Nature’s evolutionary perspective.

If the parameter ε could be set to suit each noise level for fastest development, then the

solid blue (�) line of Fig 11 would represent the development times of neurons. The dashed

Fig 11. Time penalty for suboptimal parameter selection. The time penalty for suboptimal parameter

selection is the difference between the dot-dashed/dashed curves and the continuous curve. This blue curve

(*) is the time to stable development at each NSR using the optimal ε for each NSR. The dot-dashed and

dashed curves use fixed ε values, with the dot-dashed (red) using an ε value (0.026) optimal for a low NSR

(0.43) and the dashed (blue) using an ε value (0.005) optimal for a high NSR (1.0). The values of the points of

the dot-dashed, red line outside of the plot are 553, 8,282, 14,790, and 14,988.

https://doi.org/10.1371/journal.pcbi.1005750.g011
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and dot-dashed lines represent scenarios in which Nature does not evolve a best ε value for

each noise level, but instead must chose a single value for all environments. A small ε value

is best suited for a high-noise environment, and it also works well in low noise environ-

ments (shown by the dashed, green, square line). In such case, the time penalty for choosing

a small ε is small for the noisy environments, but at NSR of 0.43, neurons take twice as

long, on average, to develop with the single fixed ε value. This time penalty, however, is

small compared to the penalties of using the large ε at all NSRs. That is, if Nature chose a

large ε value best suited for a low-noise environment, the time penalty at environments

with a noise level any greater than the lowest noise level, for which the ε value was chosen,

would be extreme. At NSR of around 0.55, the time penalty is 520 which is around 26 times

slower, and at the highest noise level of 1.0 NSR, the time penalty becomes 14,900, which is

over 150 times slower than if a suitable ε value was chosen. Thus, if ε is not adjustable to

specific NSRs, then Nature should choose the smaller value for robustness across all noise

inputs.
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