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Abstract: Graphene-based nanomaterials have gained a lot of interest over the last years in flexible
electronics due to their exceptional electrical, mechanical, and optoelectronic properties, as well
as their potential of surface modification. Their flexibility and processability make them suitable
for electronic devices that require bending, folding, and stretching, which cannot be fulfilled by
conventional electronics. These nanomaterials can be assembled with various types of organic
materials, including polymers, and biomolecules, to generate a variety of nanocomposites with greater
stretchability and healability, higher stiffness, electrical conductivity, and exceptional thermal stability
for flexible lighting and display technologies. This article summarizes the main characteristics and
synthesis methods of graphene, its oxidized form graphene oxide (GO), and reduced GO derivative,
as well as their corresponding polymeric composites, and provides a brief overview about some
recent examples of these nanocomposites in flexible electronic applications, including electrodes for
solar cells and supercapacitors, electronic textiles, and transistors.
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1. Introduction

Graphene is a 2D multifunctional carbon nanomaterial of a few nanometer thickness,
comprising sp2 carbon atoms forming a layered structure. It is considered as the starting
point of other carbon nanomaterials with different dimensionalities, such as 0D fullerenes,
1D CNTs, and 3D graphite, since these can be assembled based on this unit [1]. In 2004,
it was exfoliated for the first time from graphite at Manchester University by Geim and
Novoselov [2], and displays exceptional physical and electronic properties, very high mobil-
ity of electrons, around 3 × 105 cm2/(V·s), and therefore superior electrical conductivity [3].
It is one of the lighter materials on earth, and it is believed to be the stiffest, with an intrinsic
strength close to 130 GPa [4], a fracture toughness of 4 MPa, fracture stress of 98 GPa, and
modulus of elasticity close to 1100 GPa [5], being much stronger than steel. It has a thermal
conductivity of around 5000 W/(m·K) [6], greater than that of Cu, and a huge surface area
of 2600 m2/g. It can behave as a metal and semiconductor, but has no bandgap, there-
fore it is regarded as a semi-metal [7]. Furthermore, it is optically transparent, though its
transmittance decreases with increasing number of graphene layers. Graphene monolayer
has a transmittance of ∼97.8% [8], which is a key benefit for use in optoelectronic devices.
In addition, it is biocompatible, and has good electrochemical stability. The combination
of mechanical flexibility, its good electrical properties and huge surface area make this
nanomaterial perfect for application in many fields, including flexible energy storage de-
vices, such as lithium-ion batteries and supercapacitors, as well as wearable and portable
electronics, such as touch screen displays, electronic papers, foldable organic light-emitting
diodes (OLEDs), field-effect transistors (FETs), and so forth (Figure 1).
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Figure 1. Representation of the applications of graphene in flexible electronics.

Nonetheless, some issues need to be solved before using graphene, including the fact
that it is hydrophobic, hence insoluble in water, which strongly limits some applications. A
way to solve this and extend its potential uses is to synthesize graphene derivatives, like
graphene oxide, an oxidized form of graphene with carboxyl, epoxy, and hydroxyl groups
on the planes of graphite (Figure 2). These oxygenated groups make GO amphiphilic,
hence can be dispersed in many conventional solvents and can be processed in aqueous
solution [9]. This good processability enables to develop thin films on many substrates
through conventional drop-casting route, making it an appropriate candidate for flexible
applications. In addition, the oxygenated moieties act as reactive points for GO modification
via covalent and non-covalent approaches [10–12]. Moreover, GO films are optically
transparent, non-toxic, and biocompatible. Nonetheless, this nanomaterial has considerably
lower electron mobility than pristine graphene, and its electrical mobility is very low, hence
it is electrically insulator. It also has poorer mechanical strength and thermal stability.
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The chemical or thermal reduction in GO can reestablish its conductivity to some
degree. The resulting reduced graphene oxide (rGO) supports certain functional groups
(Figure 2), which enables good dispersability in numerous solvents. In addition, it is
fairly easy to regulate its solubility and electrical performance by adjusting the amount
of residual functional groups [13]. The properties of rGO are midway between those of
pristine graphene and GO. Accordingly, rGO has an electrical conductivity in the range of
102–104 times lower than raw graphene.

Over recent years, multifunctional wearable and flexible electronics have received a lot
of interest. Remarkable efforts have been recently focused on developing multifunctional
materials with an inherent flexible or stretchable property, such as waterproof wearable
sensors with good mechanical durability and long-term stability [14]

Up to now, flexible electronics have been primarily manufactured by a three-step wet
transfer printing process [15] (Figure 3). First, a silicon-based semiconductor nanostructure
is grown on a substrate. Secondly, the nanostructure is taken from the substrate by a
polymeric stamp. Finally, the nanostructure is transferred from the stamp to another
flexible substrate. However, this process poses several constraints that make it challenging
for large-scale applications, since the precise control of the transfer velocity, nanostructure
adhesion, and orientation are difficult to attain reproducibly. Despite novel methods being
developed to make the transfer more effective, like dry transfer printing, they often require
additional equipment, such as lasers, thus increasing manufacture cost. An instant dry
transfer printing technology has been reported by Heo et al. [16], based on the fact that
materials expand at different rates when heated. Placing the device to be printed onto the
surface to be anchored and then increasing the temperature, cracks are formed between the
layers, allowing them to be detached successfully after printing. This novel dry transfer
printing method is faster than the wet approaches and preserves the device initial shape
and structure.
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Zumeit et al. [17] have developed an alternative approach named “direct roll transfer”.
Firstly, a thin silicon nanostructure is prepared. Then, the polymeric substrate (polyimide)
is covered by a thin layer of chemicals and wrapped around a metal tube. A computer-
controlled machine rolls the tube over the silicon wafer, transferring it to the flexible
material. By thoughtfully optimizing the process, homogenous prints up to 96% trans-
fer yield have been developed. Moreover, the manufacture of conductive materials in a
quick, economic, and sustainable way is one of the main prerequisites for flexible elec-
tronics [15]. In this regard, a simple, fast, and sustainable flexible electronics preparation
technology was reported by Wang et al. [18] to address the key restraints of materials and
fabrication techniques. They prepared a thermoplastic polyurethane (TPU) membrane by
electrospinning, which was used as substrate in a sandwich structure, assembled layer by
layer, and each layer was composed of a TPU membrane, and a liquid metal printed on
it. This strategy provides flexible devices, such as circuits, resistors, capacitors, inductors,
and others, with excellent stretchability, air permeability, and stability. More importantly,
they are reconfigurable, and address the concerns regarding environmental and energetic
problems, opening new possibilities for commercialization.

Nonetheless, despite the above-mentioned efforts, there is a lack of review articles
summarizing the recent progress in this brilliant area. This article reviews the synthesis of
graphene and its derivatives, along with its corresponding polymeric nanocomposites and
offers a brief overview about some current examples of these nanocomposites in flexible
and wearable electronics, including organic solar cells (OSC), supercapacitors, electronic
textiles, and field-effect transistors (FETs).

2. Synthesis of Graphene and Its Derivatives
2.1. Synthesis of Graphene

The first attempt to synthesize graphene was reported by Boehm et al. [19] in 1961,
who prepared extremely thin carbon lamellae by deflagration of graphite oxide via heating
or reduction in alkaline medium. Geim and Novoselov [2] prepared graphene by peeling a
graphite surface with scotch tape in 2004, and were awarded the Noble Prize in 2010. This
approach yields high-quality monolayer graphene and it is economical, however it produces
very low amounts and therefore it can only be used at lab level. Until now, synthesis can
be accomplished through top–down and bottom–up procedures, as shown in Figure 4.
Graphite can be exfoliated in liquid media, both in aqueous and non-aqueous solvents,
via application of ultrasounds, in a process known as liquid-phase exfoliation (LPE) [20].
This is the key technique for manufacturing large amounts of high quality and low cost
2D materials, and it is now broadly accepted by both academia and industries since it is
suitable for large mass production. It is typically performed in three steps: firstly, sonication
causes the breakage of bulky flakes and the formation of twist band striations. Secondly,
cracks develop along these striations, resulting in the unzipping of thin graphite layers
upon intercalation of solvent. Thirdly, the thin layers are exfoliated into graphene. This
method holds potential for application in optoelectronics and nanocomposites. Another
means of exfoliation is the electrochemical method, in which ions enter within the graphite
flakes and induce layer separation [20–22]. Thus, an applied voltage drives ionic species
to intercalate into graphite where they form gaseous species that expand and exfoliate
individual graphene sheets. The characteristics of the obtained graphene depend on the
voltage and the electrolyte nature. This technique is cheap and sustainable, and could
also be suitable for electronic applications. However, this approach is not a suitable
manufacturing route due to several issues: only graphite monoliths are appropriate as a
source for electrochemical exfoliation. In addition, due to the degradation of the graphite
rod, the yield is too low and needs additional removal of unexfoliated material.
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Regarding the bottom–up approaches [20], these begin with small molecular pre-
cursors as units using procedures, such as chemical vapor deposition (CVD), epitaxial
growth, or molecular beam epitaxy (Figure 4). CVD is a method in which carrier gases and
carbon precursors are inserted into a chamber at elevated temperature. The precursor is
disintegrated to yield graphene on metal catalyst, such as Cu, Pd, Ru, or Ni [21]. It takes
place in two steps: (1) the decomposition of precursors on the substrate surface at elevated
temperatures with the aid of metals; then (2) the growth of graphene from the detached C
atoms. This method is appropriate for use in flexible electronics. The key disadvantages
are the potential presence of impurities to form the catalyst, the difficulty to tailor the film
thickness, and the expensiveness of the substrate.

Epitaxial growth is usually achieved on a SiC substrate in which graphite is decom-
posed by heating. This procedure allows to adjust the thickness by controlling temperature
and time, and results in high-quality big layers with uniform thickness. It allows the direct
production of electronic devices.

2.2. Synthesis of Graphene Oxide

Different means to synthesize GO from graphite have been published including Brodie,
Staudenmaier, Hofmann, and Hummers (Figure 5). Graphite oxide was first produced
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by Brodie in 1859 using KClO3 and HNO3 [23]. Then, Staudenmaier [24] and Hofmann
used concentrated H2SO4, KClO3, and HNO3 to synthesize oxidized graphite. Based
on these works, Hummers and Offeman in 1958 developed a novel path by replacing
HNO3 and KClO3 with NaNO3 and KmnO4 [25], which has been the most used since
2004, when graphene was prepared for the first time. Nonetheless, it still has several
drawbacks, including poor yield and toxic gas generation. In addition, there is high oxidant
consumption, and it takes a long time, resulting in expensiveness and poor scalability. Thus,
numerous works have been published to improve this synthesis. Environmentally friendly
means that syntheses with natural oxidants like citric acid have also been reported [26],
which circumvented the production of poisonous gases, appropriate for energy storage
applications.
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2.3. Synthesis of Reduced Graphene Oxide

Reduced graphene oxide (rGO) can be obtained from GO via removal of some oxy-
genated groups by chemical, thermal, and other methods [28]. The goal is to attain nano-
materials comparable to raw graphene. Nonetheless, due to the generation of defects and
the existence of residual functional groups, the properties of rGO are midway between
those of GO and graphene.

One approach is to heat GO at elevated temperature under inert, vacuum, or reduc-
ing atmosphere. However, this route is difficult to be applied for layers deposited onto
substrates, consequently it is not suitable for electronic applications. Additional paths are
irradiation with microwaves or reduction with a pulsed laser or an arc-discharge lamp [29],
which results in extremely conductive rGO layers, allowing straightforward manufacturing
of flexible devices.

On the other hand, chemical reduction can be carried out at ambient conditions or with
moderate heating using strong reductors, such as hydrazine hydrate [30]. Since this reagent
is very toxic, alternative chemicals, such as Fe, hydroiodic acid (HI), sodium borohydride
(NaBH4), hydroquinone, and hexamethylenetetramine [31,32] can be used. In addition,
the global sustainability concern has motivated researchers to examine the application
of bio-reducers derived from plants, bacteria, fungi, and so forth. For instance, a strong
reducing agent can be derived from the Opuntia ficus-indica (OFI) plant [33] (Figure 6),
which, combined with high-energy ball milling, can lead to sustainable and cheap, few
layered rGO at an industrial level. rGO is well suitable for various applications, such as
field effect transistors (FET), transparent conductors, and solar cells [34].
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3. Graphene-Based Polymeric Composites for Flexible Electronics

The first work on polymer/graphene nanocomposite was published by Stankovich
et al. [35] in 2006 via exfoliation of graphene with polystyrene as polymer host. Two types
of interactions can occur between graphene related nanomaterials and polymer matrices,
namely covalent and non-covalent. In the case of covalent functionalization, covalent
bonds are formed between the polymer and the nanomaterial. However, for non-covalent
strategies, many interactions can take place, including hydrophobic, π–π, van der Waals,
ion–π, hydrogen bonding, and electrostatic (Figure 7) [36]. Among these, the weakest
forces, van der Waals interactions, affect all neighboring atoms. The hydrophobic effects
are a main contribution to consider in G and GO systems. π–π interactions occur in systems
with aromatic rings. In addition, there is also a small chance that CH···π-like interactions
happen around the edge of graphene that may be terminated with a hydrogen atom or from
phenyl rings oriented perpendicular to the graphene surface. Since graphene is several
magnitudes larger than the contributing part of the polymer, there could be numerous
interactions on both sides of the nanomaterial sheet. On the other hand, the electrostatic
interactions are more pronounced on GO, since the different oxygenated functional groups
can be deprotonated depending on the environment. In addition, H bonding interactions
are quite common between GO and polymers incorporating amine or hydroxyl groups,
such as polyester amide copolymers, poly(vinyl alcohol), polyols, etc.
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Figure 7. Non-covalent interactions between graphene and polymers. Adapted from [36].

Taking into account these interactions, three different structures can be observed
in graphene/polymer nanocomposites: phase separated, intercalated, and exfoliated
(Figure 8). Intercalation is the desirable to occur, in which the polymer inserts into the
spaces between the nanomaterial sheets. However, exfoliation is the most favorable, since
the polymer is completely distributed within the individual nanometer layers.
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The outstanding properties of graphene/polymer composites [37] arising from the
above-mentioned types of interactions, grant their applications in flexible electronics, that
is, electronics with performance equivalent to that of conventional technologies founded
on rigid systems, through bendable and flexible arrangements. It can also imply lower
cost and electronic system integration via using scalable engineering procedures such
as printed electronics, roll-to-roll or lamination, which are not available for traditional
materials. The following sections describe representative examples of graphene-based
polymer nanocomposites used in flexible electronic devices.

3.1. Graphene-Based Electrodes in Solar Cells

Flexible electrodes based on graphene and its derivatives have a lot of potential in energy
storage. For instance, a flexible nanocomposite consisting of poly(3,4-ethylenedioxythiophene)
(PEDOT)–graphene was fabricated by electrochemical deposition of ethyl glycol on a
graphene-filtrated carbon cloth substrate [38]. This flexible composite showed excellent ca-
pacitive properties. Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)
has also been mixed with graphene oxide derivatives via solution processing [39], yielding
nanocomposites with improved properties for organic solar cells (OSC) applications [40].
Thus, these nanomaterials have been used as transparent conducting electrodes to substi-
tute usual ITO electrodes in polymer solar cells. Numerous studies have dealt with flexible
polymers, such as polyethylene terephthalate (PET) as substrate. Thus, thermally annealed
rGO films were deposited onto PET and plasma treated to attain a hydrophilic surface. The
OSC manufactured by spin coating [41] with rGO films 16 nm thick showed the highest
efficiency (0.8%) and a transmittance of 65%. In addition, the device could resist more than
1300 cycles without lessening performance, whilst traditional ITO-based cells tend to break
after a thousand of cycles, due to the fragility of ITO. Better performance was obtained
by depositing a laser-patterned rGO micromesh on to PET, attributed to the mesh greater
transmittance and reduced resistance compared to rGO sheets [42]. The main drawback of
these type of electrodes is their high defect content that restraint device efficacy.

Flexible transparent electrodes based on sulfonated graphene/PEDOT have also been
fabricated via in situ polymerization of the monomer EDOT using NaBH4 as reducing agent.
The resulting nanocomposite was easily processable in water and organic solvents, and had
elevated conductivity, stability, and transmittance [43]. Other electrodes have been prepared
via spin coating a mixture of surfactant-functionalized graphene and PEDOT:PSS [44], and
the conductivity and transparency were comparable to those of ITO electrode together
with higher mechanical stability. Though, from an application viewpoint, the surfactant is
unwanted.

An aqueous G dispersion in PEDOT:PSS was produced by a reduction in GO with
this polymer, without the requirement for surfactants. This tactic comprises strong rGO-
PEDOT π–π interactions between rGO sheets and the PEDOT chains, and intermolecular
repulsions between PSS chains holding negative charges and covalently anchored to the
rGO sheets. The film displayed a high conductivity combined with a transmittance of 90%
(Figure 9) [45]. Other authors [46] fabricated flexible OSC on polyimide (PI) substrates
with multilayer CVD graphene/PEDOT:PSS nanocomposites and gold nanoparticles as
a top transparent electrode. The device kept a maximum efficiency of ~3.2% after a
thousand cycles, representative of superior elasticity and durability. More significantly, it
was reported that air did not penetrate the graphene layers, thus providing an outstanding
packaging. Multilayer graphene can behave as a barrier against air pollution, which makes
the device manufacture simpler and diminishes the related expenses.
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Exfoliated graphene have also been deposited on flexible poly(ethylene 2,6-naphthalate)
(PEN) substrates, and the resulting nanocomposite was used as an anode in OSCs. This
anode showed a high transmittance, a small sheet resistance, an efficiency of 4.2% and a
high stiffness that were maintained after 150 bending cycles. Flexible OSCs incorporating
a low-pressure CVD graphene with a PEDOT:poly(ethylene glycol) (PEDOT:PEG) block
copolymer were developed. They had very good conductivity and transparency and were
applied as anode and cathode in conventional and inverted cells [47], reaching efficiencies
of 6% and 7%, respectively. These G-based devices did not lose mechanical performance
after hundreds of flexing cycles.

3.2. Graphene in Flexible Capacitors

Although conducting polymers, such as polyaniline (PANI) and polypirrol (PPy), have
outstanding properties, they alone might not be suitable as electrodes in devices such as
supercapacitors. In order to enhance the electrochemical performance, they have been
combined with graphene. A major advantage of using graphene as electrode is that both
surfaces are readily accessible by the electrolyte. This nanomaterial has a theoretical specific
capacitance of ~20 uF cm−2, corresponding to a specific capacitance of 550 F g−1 when
the entire surface area is used [48]. However, due to its strong agglomerating tendency,
expected values are not in polymeric nanocomposites. For instance, PANI/nitrogen-doped
graphene nanocomposites were synthesized by in situ polymerization [49] and displayed
good cycling stability with a specific capacitance of 480 F g−1. Others were prepared
via chemical precipitation method, resulting in a specific capacitance in the range of
300–500 F g−1 [50]. A flexible PANI/nitrogen doped nanocomposite was synthesized
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via electropolymerizing of PANI nanorods onto nitrogen-doped graphene paper, which
retained the original flexibility of graphene paper. The supercapacitor electrode showed
very high specific capacitance (about 770 F g−1) and outstanding cycling stability attributed
to the homogeneous growth of the polymer on graphene (Figure 10) [51], thus it is perfect
candidate for application in the manufacture of transportable energy devices.
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Figure 10. (a) Flexible graphene paper. (b) Graphene/PANI paper. (c,d) SEM micrographs of the
surface of graphene/PANI paper. (e,f) SEM micrographs of cross sections of graphene/PANI paper.
(g) Graphene/PANI papers with different electropolymerization times (From left to right: 2, 5, 10,
15 min). Reproduced from ref. [51], copyright 2013, Royal Society of Chemistry.

A self-standing 3D PANI/rGO foam was prepared via an in situ polymerization
method with the aid of a template, to obtain a specific capacitance of 700 F g−1, which
preserved around 90% of the original value after a hundred of cycles [52]. In addition, a
PANI-grafted rGO nanocomposite electrode with fibrillar morphology has also been devel-
oped [53], which showed a high electrical conductivity at 25 ◦C and a specific capacitance
of 250 F g−1.

Graphene/PPy composite fibers with diameters ranging from 15 to 80 µm have been
developed via wet-spinning approach [54]. The fibers showed elevated conductivity and
flexibility, thus providing substantial benefits as flexible, low dense electrodes for electro-
chemical supercapacitors. The complete supercapacitor with H2SO4–polyvinyl alcohol
(PVA) electrolyte was prepared, which was converted into a textile for wearable electronics.
Binder free composite electrodes with multilayer graphene and PPy nanowires have also
been prepared, which showed a maximum capacitance of 160 F g−1 for the highest scan
speed. Novel flexible graphene/PPy nanocomposite films were manufactured using a
pulsed electropolymerization technique [55]. A maximum capacitance of 240 F g−1 was
attained for a whole buildup time of only 2 min (Figure 11), about four-fold that of the
raw graphene alone. Different scan rates were tested, from 0.01 to 0.2 V/s. This flexible
supercapacitor showed exceptional energy (∼33 Wh/kg) and power density, ∼1200 W/kg,
at the lowest scan speed. This enhancement was ascribed to the advantageous nucle-
ation of polymeric segments at defect points of the graphene surface. On the other hand,
nanoscale fillers, such as TiO2 have been mixed with graphene for the development of
flexible capacitors. For instance, TiO2/graphene/PPy composites were synthesized in four
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stages [56]: first, TiO2 precursor and GO films were prepared by direct mixing and drying.
Second, hydriodic acid (HI) was used as green reducing agent to obtain rGO/TiO2 films.
Third, annealing was performed at different temperatures to obtain films with diverse
titania crystalline phases. Lastly, PPy was deposited onto rGO/TiO2 composites. The TiO2
nanoparticles improve nanocomposite wettability, leading to high capacitance and good
cycling stability. Moreover, different TiO phases had different behavior. Anatase had higher
capacitance while rutile had better stability.
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Phenolic resin-based laser-induced graphene patterns have also been prepared for
application in flexible supercapacitors [57]. This type of nanocomposites, fabricated with a
laser under ambient conditions, present very interesting properties, including 3D porous
structures, low electrical resistance, and good mechanical performance. In addition, this
approach shows numerous advantages including low cost, easiness, excellent film forma-
tion ability, as well as tunable structure and composition. More recently, polyacrylonitrile
(PAN) nanofiber mats including GO with a core–shell microstructure were developed via
coaxial electrospinning and hot-pressed into nanocomposite films [58]. The hot-pressing
induced conformational changes in PAN, leading to the formation of an electroactive phase
with high dielectric constant. Simultaneously, the GO was reduced into rGO. The resulting
rGO/PAN composites showed thermally stable dielectric properties with a high dielec-
tric constant over a broad temperature range. This work provides an effective approach
for the development of flexible composite dielectric films for high-temperature electronic
applications.

3.3. Graphene in Flexible Electronic Textiles

Wearable electronic devices, like e-textiles, are of great interest for use in multifunc-
tional fabrics, portable electronic devices, and wearable displays [59]. To accomplish
marketable demands, an e-textile needs to be light, stiff, conductive, flexible, and wearable.
Carbon-based nanomaterials are suitable since they meet all of these conditions. In this
regard, woven fabrics with graphene display outstanding elasticity and strain sensitivity.

A novel e-textile that can be prepared as yarns or fabrics was prepared with rGO
and nylon-6 [60]. They were obtained by electrostatically assembling GO with bovine
serum albumin (BSA), a common adhesive for GO adhesion onto textiles. This technique
can be applied to many current textiles, such as cotton, nylon, polyesters, and so forth.
The composites exhibited an elevated electrical conductivity (>1000 S/m) that remained
under successive washing cycles at different temperatures. The yarns were made-up in
three stages (Figure 12): firstly, functionalization of electrospun nylon-6 yarns with BSA
molecules (yellow dots) was carried out via simple dipping; secondly, an electrostatic
self-assembly between the GO nanosheets and BSA-functionalised yarns was attained.
Finally, rGO/nylon-6 yarns (black color) were prepared using HI as a reducing agent at
low temperatures.
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In a recent study, the production scale dyeing approach was used to prepare a fab-
ric coated with GO, which was converted into rGO with a sustainable reductor to yield
extremely conducting textile electrodes. Then, using the layer-by-layer method, these
textiles were subsequently coated with conductive polymers to develop breathable, flexi-
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ble, and washable electrodes [61]. The effect of post-treatment with ethylene glycol (EG)
and dimethyl sulfoxide (DMSO) was also investigated, which further enhanced the elec-
trical conductivity. These graphene-coated wearable electronic textiles can be used in
health monitoring systems and biomedicine. In another work, a multifunctional wearable
nanocomposite with graphene was developed via laser scribing technology [62]. A thin
layer of polydimethylsiloxane was deposited regularly onto graphene-textile film, which
improved abrasion resistance, and extended durability, whereas preserved flexibility. By
controlling the voltage, constant temperature heating can be attained, thus enabling the
detection of human movement and pulse signals.

3.4. Graphene in Flexible Transistors

Graphene is highly valuable for flexible electronics but simultaneously needs band-
gap opening for digital applications. This nanomaterial can be applied as an electrode
in field-effect transistors (FETs), which need high transparency combined with elevated
conductivity. It can act as a source and drain, as well as a channel layer in any type of FET
structure. The idea is to find a great capacitive, easily printable, tough, and well-matched
material for gate dielectric. Polymeric electrolytes can be an optimum selection, though
their time-consuming response with frequency impedes attaining a good TFT performance.
Taking into account compatibility with graphene, GO can be chosen as an insulator, though
the development of high-quality GO film is essential. In this regard, organic field-effect
transistors (OFETs) are more attractive as they can easily be fabricated by printing method
and exhibit a good on/off ratio.

Highly conductive and flexible graphene-based textile composites for OFETs have
been recently developed. They were arranged by vacuum filtration and wet-transfer of GO
onto flexible PET textiles combined with the addition of AgNPs. In particular, the transistor
devices were fabricated with a bottom-gate top-contact structure, as depicted in Figure 13.
Poly(3-hexylthiophene) (P3HT) was selected as the solution-processable p-channel semi-
conductor [63]. A flexible poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP)
gel layer and an ionic liquid ((EMI)(TFSA)) were employed as a high capacitance gate
dielectric and a mechanically tough transporter, respectively. Upon repeated spin-coating
of the ion gel and the P3HT layers onto a clean silicon wafer, the two-fold layer was cut
and moved onto the AgNP/graphene electrode placed on a PET textile.
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(AgNP) textile. P3HT: Poly(3-hexylthiophene); S: Source electrode; D: Drain electrode. Reproduced
from ref. [63], copyright 2016, MDPI.

Analogously, flexible fiber-type FET with graphene/Ag hybrid fibers as highly conduc-
tive electrodes were developed via wet-spinning and an adapted wet-drawing process. The
fibers were then mixed with AgNPs, which showed elevated electrical conductivity, up to
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16,000 S cm−1. The transistors presented excellent stability in terms of device performance,
which was preserved following a thousand of bending cycles and preserved for 1 month
out of the glove box [64].

4. Conclusions and Future Perspectives

Portable and wearable electronics are becoming extremely popular, since devices make
life more secure, healthier, and more relaxed. In particular, flexible electronics have gone
through important progresses in recent years, due to the miniaturization of technology
and the wireless revolution. Henceforth, novel materials need to be explored. Graphene is
regarded as one of the most talented materials for the next-generation of flexible electronic
applications, due to its brilliant optical, mechanical, and other characteristics. However,
most of the graphene-based devices developed up to date are time-consuming and need
multi-stage fabrication routes, which are neither scalable nor suitable for industrial produc-
tion. Moreover, they typically display poor electrical conductivity, washability, and flexi-
bility. In order to solve these issues, they can be combined with polymers to manufacture
nanocomposites with enhanced stretchability, superior mechanical strength, conductivity,
and stability. Another approach is the combination with other nanoscale fillers like silver
nanowires, that also display optimal properties for flexible electronic applications [65].
However, in order to use them in commercial applications, many challenges need to be
addressed. For instance, novel approaches that permit to make high-quality graphene films
with controlled size, composition, and electronic properties need to be established, since
these characteristics determine the device performance. Regarding electrodes for OSCs,
an optimum balance between conductivity and transparency is desirable. In addition, the
real specific surface area of graphene nanomaterials is smaller than the forecasts due to
their intense agglomeration tendency, and the mixture with polymers makes it even worse.
Hence, novel synthetic approaches to avoid aggregation are required. Additionally, in
order to synthesize composites with outstanding performance, the interfacial graphene–
polymer interactions need to be studied. Novel doping or functionalization approaches
that are well-matched with the fabrication process of flexible electronic devices need to be
considered. Recently, laser driven integration of graphene into polymers has been reported
as an effective approach for the development of hybrid structures with outstanding me-
chanical resistance, cyclability, and chemical stability for flexible electronic applications,
including electrodes for energy storage, and electrochemical and bending sensors [66].
More importantly, economic means to synthesize graphene and its derivatives at a large
scale are crucial. Though complications and challenges still exist, it is envisaged that, in
the near future, scientists will be able to improve the performance by merging the good
qualities of graphene and organic polymers to develop high-performance flexible electronic
devices. The present and near future marketplace for polymer/graphene applications is de-
termined by their manufacturing processes. Once each production path is well established,
a wide-ranging practical implementation of these nanocomposites will be attained.
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