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Abstract

Characterizing the molecular identity of a cell is an essential step in single-cell RNA sequencing (scRNA-seq) data analysis. Numerous
tools exist for predicting cell identity using single-cell reference atlases. However, many challenges remain, including correcting for
inherent batch effects between reference and query data andinsufficient phenotype data from the reference. One solution is to project
single-cell data onto established bulk reference atlases to leverage their rich phenotype information. Sincast is a computational
framework to query scRNA-seq data by projection onto bulk reference atlases. Prior to projection, single-cell data are transformed
to be directly comparable to bulk data, either with pseudo-bulk aggregation or graph-based imputation to address sparse single-cell
expression profiles. Sincast avoids batch effect correction, and cell identity is predicted along a continuum to highlight new cell states
not found in the reference atlas. In several case study scenarios, we show that Sincast projects single cells into the correct biological
niches in the expression space of the bulk reference atlas. We demonstrate the effectiveness of our imputation approach that was
specifically developed for querying scRNA-seq data based on bulk reference atlases. We show that Sincast is an efficient and powerful
tool for single-cell profiling that will facilitate downstream analysis of scRNA-seq data.
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Introduction
Single-cell RNA sequencing (scRNA-seq) allows for
the study of cell-specific variations in transcriptional
states at an unprecedented resolution. One essential
step in scRNA-seq data analysis is to characterize
cell molecular identity, either de novo or with existing
vocabularies of known cell types or states. Numerous
computational tools have been developed for predicting
cell identity using other single-cell atlases as references
[3, 4]. However many challenges remain, including
integrating atlases from independent studies to build
comprehensive atlases that are generalizable, annotating
reference cells accurately and tuning the parameters of
these prediction tools appropriately [5]. Furthermore, the
reference and query data effectively represent separate
batches. Correcting for batch effects is required before
direct comparisons can be made. Using data integration
to address this issue is difficult from both a statistical
and data analysis perspective [6, 7]. During the reference-
query integration task, biological and batch effects are

confounded, resulting in the potential removal of large
amount of biological variation that is considered as batch
variation.

In light of these challenges, bulk sequencing data rep-
resent a valuable resource for building reference atlases,
as the samples can be of high quality, well replicated
and well annotated as their phenotype is known [1, 8–
13]. However, using bulk atlases for single-cell identity
has mostly been overlooked. Instead, some studies have
proposed to analyse bulk data using scRNA-seq data as
a reference. For example, many deconvolution methods
have been developed to estimate bulk sample cellular
composition based on scRNA-seq [14, 15]. Only a few
approaches have attempted to decipher cellular identity
of scRNA-seq by leveraging bulk data. SingleR annotates
query cells using labels of bulk reference samples that
are matched to each cell according to Spearman corre-
lation [16]. Capybara predicts continuous cell identity by
regressing each query cell expression profile on a bulk
reference with restricted linear regression [2]. SCRABBLE
imputes scRNA-seq under the constraint that the
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averaged expression of imputed single cells is consistent
with a given bulk reference [17]. To correct for batch
effects in the query data, [18] projected scRNA-seq
data onto a reference microarray dataset. These meth-
ods remain challenged by large technical differences
between scRNA-seq and bulk data, in particular library
size and zero composition [19]. [20] addressed this
challenge by down sampling reads in reference bulk data
prior to data integration with scRNA-seq query using the
approach from Seurat [21].

We propose Sincast (SINgle-cell data CASTing onto
reference), a computational framework to query scRNA-
seq data via projection onto bulk transcriptional ref-
erence atlases. Our framework avoids reliance on data
integration to address technical differences across
batches (Figure 1). Instead, we account for technical
variation by normalizing data using rank transformation
(RT) previously proposed in [1]. This transformation is
highly scalable, applies independently to each sample
and cell. Using RT, we can customize a comprehensive
atlas by collecting and combing bulk samples from
multiple sources, including both microarray and RNA-
seq data. Atlases are built based on Principal Component
Analysis (PCA). ScRNA-seq query data are projected onto
the low-dimensional expression space spanned by the
atlas principal components. The location of the query
cells on the atlas allows the identification of similarities
with well-annotated bulk reference samples. Prediction
of cell identity is based on an improved Capybara
score [2]. Most importantly, the core challenge of the
structural differences between the reference and the
query is addressed with two independent approaches,
depending on the data structure of the query. We propose
to either aggregate single cells to create pseudo-bulk
samples, mimicking structure and variation of bulk
samples, or to zero-impute single-cell data as sparsity
is a major data characteristic that deviates single cell
from bulk data. We rank transform the query and
the atlas profiles independently, also avoid the need
of batch effect correction. On five case studies (each
query being projected on a relevant reference atlas),
we demonstrate that we can robustly map single cells
into correct biological niches of bulk atlases with a high
concordance with the biology described in the original
query study. The projection of imputed single cells also
highlighted the value of bulk references in benchmarking
single-cell computational methods.

Results
Projecting data after pseudo-bulk aggregation is
a simple and effective way to reveal cell identity
Projecting single-cell data onto a bulk reference without
addressing single-cell data sparsity performed poorly
with Sincast. The projected cells tended to indistinctly
cluster together toward the middle of the atlas relative to
the locations of their biologically matching bulk samples
(Supplementary Figure 1). This result was not surprising

due to the large difference in data structure between
single cell and bulk. In particular, a large number of zero
values limits the linear separation of single cells on PCA.

Instead of direct bulk projection, we considered
pseudo-bulk aggregation as a straightforward way to
make single-cell data compatible for projection onto
bulk. Aggregation is done by sampling cells of the same
cluster with replacement and adding up their expression
profiles. This approach is simple to implement and
also conforms to our biological understanding that bulk
expression represents pooled single-cell expression. We
illustrate the usefulness of this approach through two
case studies, where the query and reference data contain
biologically matching cell types.

Case study 1: Projecting Jurkat cells onto The Cell Atlas
shows pseudo-bulk aggregation can classify cells accu-
rately. The reference atlas from The Cell Atlas [22] con-
sists of bulk RNA-seq data from a comprehensive range
of cell lines. The query data from [23] contain Jurkat T cell
line from 10x Genomics (32 058 cells, see also Table 1).
PCA of the reference data showed a strong separation of
blood cells from the other cell types along the first prin-
cipal component (PC1, Figure 2). However, even though
the nonaggregated single-cell data were projected onto
the blood cell area of the PCA space, classifying them
as one of the nearby cell types was difficult. Pseudo-
bulk aggregation was more successful, as all aggregated
cells were projected very closely to the Jurkat cell of the
reference.

Case study 2: Querying COVID-19 case-control study data
onto an immune cell atlas shows pseudo-bulk aggregation
can highlight shifts in cell identity. The reference data
from [24] consist of 29 immune cells sorted from
peripheral blood mononuclear cells. The query cells
were from [25], describing immune cells profiled on both
healthy and COVID-19 infected donors. We selected nine
donors from the same batch, in different disease stages
of healthy, moderate and severe, to aggregate and project
(see also Table 1).

Figure 3A illustrated the pseudo-bulk aggregated pro-
jection colored by cell type only (see Supplementary
Figure 2 for the projection colored by atlas and query cell
type). We observed a high concordance between query
and reference cell types. Next, we colored the projected
cells according to disease stage on the same plot. This
projection illustrated that the T and the NK cell popu-
lations of COVID patients had identity shifts toward the
positive direction of PC1 of the reference compared to
the healthy controls (Figure 3A). We found that inflam-
matory markers such as BTK, CXCL8, IL1B, S100A8/9
were among the top 20 genes with the highest PC1 load-
ings (i.e. important genes that drive linear separation of
samples on PC1). The shifts of cell population indicated
an upregulation of these inflammatory signatures in
COVID patients according to disease severity (Figure 3B).
This finding was consistent with [25], who claimed that
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Figure 1. An overview of Sincast framework for projecting query scRNA-seq data onto reference bulk atlas. The differences in zero composition and
scale between bulk and scRNA-seq data constitute major challenges to capture biologically relevant variation in the single cells, which Sincast addresses
without data integration. (A) The reference bulk data are rank transformed, as proposed by (Angel et al.) 1 and additional gene filtering based on Hellinger
Distance (HD) is applied to retain the most important genes discriminating cell types. (B) For the query single-cell data, Sincast either aggregates single
cells by pooling the expression profiles of cells to create pseudo-bulk samples, or zero imputes the data by inferring unobserved expressions in a cell
from the other cells in the query, followed by robust data normalization. The overlapping genes are then rank transformed for (C) projection, which
consists in aligning both query and reference. PCA is performed on the reference data to construct a low dimensional expression space (atlas). Projection
of the query is performed by calculating the query principal component scores learnt from the reference, and projection is further improved by diffusion
mapDM. Cell identity prediction based on the neighboring reference samples on the atlas is performed with a modified Capybara score [2].

hyper-inflammatory cell subtypes defined by the sys-
tematical upregulation of these inflammatory signatures
were one of the major causes of cytokine storm in severe
COVID patients.

In the myeloid compartment of the projection, the
shift in the projected monocytes of COVID patients com-
pared with the healthy controls was difficult to visualize.
Thus we applied our improved Capybara cell score to the

projected cells [2] to quantify the projection more rig-
orously. Our predicted score revealed that non-classical
monocytes (CD14- CD16+) in COVID patients acquired
an intermediate monocyte (CD14+ CD16+) identity (Sup-
plementary Figure 3), providing potential explanation on
the reported increase of intermediate monocytes in the
peripheral blood mononuclear cells (PBMCs) of COVID
patients [26, 27].
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Table 1. Summary of the case studies, including the reference data on which we built the atlases and their number of samples, the
query data for the corresponding reference atlases, and their numbers of cells, the number of discriminant genes selected for the
reference atlas and their overlap between the reference and query prior to projection

Reference data
Reference
cells Query Data Query Cells

Genes Selected
and Overlap Used in

[22] RNA-seq of 69 Cell lines N = 69 [23] Single cell Jurkat T (10x v1) N = 3,258 3,000/1,531 Section 2.1 Figure 2
[38] Gene expression data from the
DICE project

N = 1,561 [23] single-cell Jurkat T (10x v1) N = 3,258 2,000/1,556 Section S1.8 Figure S11

[13] Bulk Jurkat T (Fantom5) N = 1
[10] Bulk Jurkat T (ENCODE,
identity: ENCSR000BXX)

N = 1

[24] Molecular characterization of
29 immune cells within peripheral
blood mononuclear cell.

N = 114 [25] Human immune response to
COVID19 infection

N = 49,900 1,000/937 Section 2.1, S1.6 Figure 3
S2, S3, S1

[12] An integrated myeloid atlas N = 901 [29] Deciphering human embryonic
macrophage development

N = 1,231 2,000/1,952 Section 2.2 Figure 5 S4,
S6, S12

Monocyte and DC subset of [12] N = 500 [33] Human dedritic cell and
monocyte subsets

N = 1,078 500/416 Section 2.2, S1.11
Figure 4 S5, S7, S13, S15

[37] Microdissected rat kidney
tubules segments

N = 114 [36] Mouse Kidney cell scRNA-se N = 5,000
sampled from
10,000 cells.

(a): 250/249.
(b): 250/233

Section S1.9 Figure S16

Figure 2. We projected single-cell data from [23], representing Jurkat
cells profiled using 10x Genomics, onto The Cell Atlas [22] representing
bulk RNA-Seq profiles of cell lines. Query cells were shown as crosses,
and reference samples were shown as markers. Projection without any
transformation resulted in the cells (in gray) being identified as lymphoid
cells. After pseudo-bulk aggregation the cells (in red) projected closest to
the Jurkat cells in the reference.

This case study showed that pseudo-bulk aggregation
can work beyond simply benchmarking cells when there
is high concordance between the query and reference
cell types and can reveal more intermediate cell types.
It also illustrated how a projection method can rapidly
generate biological insight, without the need to perform
differential expression analysis separately for example.
Indeed, the reference atlas already contained key genes
that defined the principal components in the PCA space.
Batch correction was not necessary when projecting, a
feature from Sincast that provides a large advantage
when the query data contain large batch effects. It
is possible to extend this idea even further by using
the reference as a background on which multiple
query data can be compared with each other without

batch correction (see Supplementary Material 1.8,
Figure 11).
Limitations of pseudo-bulk aggregation. Case study 2
(Figure 3A) highlighted some ‘mismatched’ cell projec-
tions near the centre of the PCA space, illustrating an
inherent limitation of pseudo-bulk aggregation when
the query cluster is highly sparse. Aggregation requires
a sufficient number of bootstrap sampling from each
cluster to overcome zero-inflation problem. Thus, a
cluster composed of only a few cells poses a problem
as the pooled gene counts may still be zero-inflated.

We defined sparsity in this context as the percentage
of zeros present in a pseudo-bulk aggregated cluster.
We assessed whether a sparsity threshold could indicate
the appropriateness of pseudo-bulk aggregation, depend-
ing on the study and cell types. We down sampled the
atlas samples to simulate sparse samples to project.
The threshold was defined at the point where matched
cell identities of sparse samples diverged (Supplemental
Material 1.10). For example, case study 2 showed that any
cluster with sparsity greater than 15 percent led to poor
projection (Supplemental Figure 1, and Supplemental
Figures 8, 9, 10, for other case studies).

Data imputation prior to projection reveals
complex single-cell biology
When the query data contain clusters with high sparsity
or represent a more continuum of cell states rather than
distinct states, data imputation offers an alternative to
pseudo-bulk aggregation. However, we show that existing
imputation methods created inaccurate projections, due
to over smoothing of the query data prior to projection,
resulting in over-shrinking the variance. Our imputation
method builds on MAGIC [28] to project single-cell data
onto bulk reference. We compare our method against
existing imputation methods in two case studies and
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Figure 3. (A) We projected immune cells from COVID-19 infected donors as well as healthy controls [25] onto bulk RNA-seq atlas of immune cells [24]
after pseudo-bulk aggregation. Query cells were shown as crosses. Reference samples were shown as ellipses and were labelled by colored boxes. PC3
is visualised as the first component that separates T cell subtypes on the y-axis. The cells were projected accurately onto the corresponding cell types
of the reference (left). When we colored the same projected cells by disease state (right), we observed a clear shift in the identities of lymphoid cells
according to disease severity (H: healthy, M: medium, S: severe). The arrows represent the top positive and negative loading of important genes that
define PC1. (B) Dot plot showing the expression of the top loading genes as described in (B), highlighting an increase in the expression of each of the
positive loading genes with disease severity.

illustrate how imputation followed by projection can
reveal new cell states.
Case study 3: Existing scRNA-seq imputation methods
show limitations when used to project onto bulk reference
data. We considered the reference data from [12], where
we previously integrated 44 microarray and bulk RNA-
seq datasets to create an atlas of myeloid cells. The query
data from [29] contain myeloid cells derived from human
embryos (see also Table 1). Three existing single-cell
imputation methods were compared with their default
parameters: MAGIC [28], knn-smothing [30] and SAVER
[31]. These methods chosen as they were the top three
performers in the review of imputaton methods by [32].

We found that the projection of imputed single-cell
data onto the reference differed greatly depending on
the imputation method, reflecting the assumptions
and characteristics of each method (Supplementary
Figure 6). In this case study, cells imputed by MAGIC
were connected to form smooth cellular trajectories
with restricted local variance. Cells imputed by knn-
smoothing were more scattered than MAGIC, as a result
of iterative data aggregation during imputation. Cells
imputed by SAVER, a model-based method that predicts
the expression profile of each cell by regressing on
the rest of the cells, were not shrunk locally relative
to the global scale of the query data. The projection
visualization can be used as preliminary benchmark to
assess the relevance of these methods in this context.

To illustrate how these differences translated to
specific projection results, we focused on the embryonic
macrophages Mac_1 and Mac_4 in the query data. [29]
noted that these describe distinct cell identities, where
Mac_1 cells were mainly found in the yolk sac at Carnegie
Stage 11, whereas Mac_4 cells were predominantly
located in the head representing developing microglia.
Only the projection made after MAGIC or Sincast

imputation showed these cell types as distinct clusters
(Figure 12).
Case study 4: Sincast imputation produces more accurate
projections onto bulk reference data. We next evaluated the
performance of Sincast imputation against these three
imputation methods. This case study used the query data
from [33], which contain six dendritic cell (DC) subpop-
ulations, fluorescence-activated cell (FACS) sorted and
profiled using Smart-seq2 [34]. For the bulk reference,
we chose a pseudo-bulk aggregated version of the query
data itself and used the accompanying annotation as
ground truth in the evaluation (see also Table 1). We also
calculated median silhouette index (MSI) and adjusted
rand index (ARI) on the query projection to evaluate the
accuracy of the results. MSI and ARI measure how well
each cell’s cluster membership is preserved before and
after imputation.

While all imputation methods improved cell type
classification compared to raw data projection. The
failure of raw data projection suggests that single-cell
data and bulk data are not directly comparable. Sincast
imputed data performed best in terms of ARI and the
second best in terms of MSI (Figure 4A). Each of the
clusters of [33] projected onto their matched reference
cell types after Sincast imputation. We then evaluated
the robustness of Sincast regarding its imputation tuning
parameters on the same atlas, compared with MAGIC
(see Method Section 4.5). We only imputed and projected
ten DC6 and 285 Mono1/Mono2 cells of the query (see
Supplementary Material 1.11). We intentionally imputed
each cell based on its 15 nearest neighbors (i.e a value
larger than the actual DC6 population), and varied the
diffusion time parameter t for both MAGIC and Sincast
before projection. With MAGIC, higher values of t resulted
in the DC6 cluster from the query data projecting
further from the reference DC6 cell cluster, toward
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Figure 4. (A) We projected the DC cells from [33] onto a pseudo-bulk version of the same data to evaluate the performance of popular imputation
methods in the context of projection. Measures of accuracy such as adjusted rand index and median silhouette showed Sincast performed best. (B) To
assess impact of imputation tuning parameters on the projection results, we imputed then projected the subset of DC6, Mono1 and Mono2 cells from
[33] onto the Villani pseudo-bulk atlas while varying the diffusion time parameter t for MAGIC and Sincast. The line shows the centroids of projected
points according to t values. The DC6 population after MAGIC imputation was wrongly assigned monocyte identity when t increased, unlike Sincast
imputation that preserved the DC6 identity. (C) By reconstructing the PCA projection landscape with diffusion map (DM), Sincast imputed version of
[33] projected the cells accurately onto the bulk DC and monocyte subset of [12]. The projection also highlighted the newly discovered DC5 population
as a continuum state between pDCs and cDCs.

monocytes. We did not observe such effect with Sincast
(Figure 4B).

Next, we queried Sincast imputed [33] data with the
reference of the DC and monocyte subset from [12]
(Supplementary Figure 7). We nonlinearly reconstructed

the PCA projection landscape with DM, embedding the
atlas samples and query cells into new data coordinates
of diffusion components (Section 4.7). We found that
DC5 cluster projected between conventional DCs and
plasmacytoid DCs, suggesting a dual identity (Figure 4C,
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Figure 5. (A) Projecting embryonic macrophages from [29] onto [12] after Sincast imputation revealed their identity to be closest to the fetal microglia in
the reference. (B) Sincast preserved the development trajectory inherent in the query data. Modified Capybara score of these cells against the reference
microglia showed increasing values with their Carnegie stages. (C) Sincast workflow can produce pseudo-time trajectories. We applied a trajectory
inference algorithm (Slingshot) to the projection of another subset of query data from [29] after Sincast imputation. This showed pseudo-time trajectories
from GMPs toward either monocyte or myeloblast fates. (D) Projected cells colored by pseudo-time calculated from (C) showed a clear concordance with
the annotated cell types in the query data. PC3 is the first component that shows the trajectory branches on the y-axis. (E) These trajectories can then
be used to find key genes of differentiation. The expressions of neutrophil specific gene S100P (top) and monocyte specific gene MEF2C (bottom) were
plotted against the pseudo-time values of the projected cells. These showed clear branching of their expression according to the cell fate.

Supplementary Figure 5). This results was consistent
with [33] who claimed that DC5 represent a new
subpopulation of DCs, which lie on the continuum
between these two states. This highlights how Sincast
imputation and projection can reveal new cell states,
which may not exist on the reference data.

Sincast imputation can highlight pseudo-time trajectories.
We considered a subset of data from [29] corresponding
to macrophages from the embryonic head and york sac.
The cells were projected onto [12] atlas after Sincast
imputation. As expected, the cells were projected close
to fetal microglia in the reference (Figure 5A). When we
investigated our modified Capybara score for each of
the projected cells against the reference microglia cell
types, there was an increase of this score according to
the Carnegie stage of the embryo (Figure 5B). This result
showed that Sincast imputation followed by projection

can preserve the inherent time course information in the
query data.

We then considered a different subset of cells from
the same query data, involved in the monocyte to
neutrophil differentiation process in the lung, and
projected these cells onto the same reference atlas after
Sincast imputation. We ran the unsupervised trajectory
inference algorithm Slingshot from (Street et al.) 35 on
the PCA of the projected cells (Figure 5C). This analysis
highlighted pseudo-time trajectories originating from
granulocyte–monocyte progenitors (GMP) and branching
toward the myeloblast and the monocyte cell fates
(Figure 5D). When we identified the significant genes
with loadings that are in the same directions of the
trajectory development, they represented the typical
marker genes that are associated terminal cell types
of each trajectory (i.e. S100P for neutrophil, MEF2C for
monocyte) (Figure 5E).
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These examples showed that pesudo-time trajectories
can be inferred correctly from the Sincast workflow. They
also illustrate another major advantage in performing
pseudo-time analysis after projecting onto a reference:
only subsets of the query data are required, as the refer-
ence data already provide sufficient underlying structure
for a trajectory analysis. In addition, without formal
differential expression testing, key genes along a tra-
jectory can be simply inferred by the gene loadings of
principal components.

Discussion
The analysis of scRNA-seq data requires unbiased char-
acterization of the transcriptional identity of each cell.
Even though many bulk RNA atlases have been devel-
oped over the decades—covering most tissue types and
offering rich phenotype data such as FACS markers and
extensive sample annotations, they have been currently
ignored in cell type annotation and cell identity pre-
diction tools. Our computational framework is designed
specifically to leverage these well curated and estab-
lished bulk transcriptional data as references. Sincast
projects query scRNA-seq data onto the low-dimensional
expression space learnt on the bulk reference using PCA.
PCA preserves euclidean distances between cells and
produces new data coordinates that are easy to interpret,
compared with nonlinear data embedding methods such
as UMAP, and is more suited to bulk data. When projected
to the bulk atlas, the transcriptional identity of each sin-
gle cell can be interpreted visually, based on its location
on the atlas, but also quantitatively, using our improved
Capybara cell score. Both approaches can reveal novel
single-cell biology that can be defined as a composition
of bulk biology, such as intermediate cell types, cell states
and rare cell populations. For example, with PCA, transi-
tioning cells can be identified when projected between
major atlas cell clusters. With Capybara, transitioning
cells will be assigned a high score on multiple atlas cell
types corresponding to the root, branches and ends of
the transition. Two query data processing pipelines are
proposed, aggregation and imputation, to mitigate the
structural discrepancy between bulk and scRNA-seq data
in the projection result.

Our first approach, cell aggregation, generates in
silico mimics of bulk RNA-seq samples and is primarily
designed for recovering pseudo-bulk identities of cell
populations in the query scRNA-seq data. Cell aggre-
gation is easy to implement and preserves global scale
and genuine population differences of the query data.
Moreover, pseudo-bulk samples have valid statistical
interpretation as they are built based on bootstrap
sampling of query cluster averages. By visualising the
degree of overlap between clusters of pseudo-bulk sam-
ples on the atlas, one can obtain a first understanding
on whether clusters of cells differ significantly based
on their averaged expression. Pseudo-bulk analysis is
particularly suitable for case–control studies in which

cluster level differences are of greater interest than of
cellular level variation within clusters, as we showed
in Case study 2. An additional use case for pseudo-
bulk aggregation is the creation of a reference for
evaluation of single-cell methods, as we showcased in
Case study 4 with the [33] query for self-projection to
evaluate imputation methods. Other use of pseudo-bulk
aggregated data include appending an existing bulk atlas
to extend its range of cell states. Sincast facilitates this
process through its aggregation workflow.

However, aggregation also has its limitations as pooling
and averaging ignores within cell cluster variation.
As a consequence, meaningful sub-population signal
detected by scRNA-seq can be masked in pseudo-bulk
samples. For example, our attempt to project the [29]
data was challenged due to the complexity of the
study underlying biology (not shown). Continuous time
resolution in cell development was lost, and the number
of cells with a common combination of biological
attributes (cell type, tissue location, development stage)
was too small to generate valid pseudo-bulk samples.
In that case, it is better to choose our cell imputation
approach.

We compared the performance of Sincast imputation
with three other popular scRNA-seq imputation meth-
ods: MAGIC, knn-smoothing and SAVER. We imputed the
same query data with the methods’ default parameters.
The query projections onto the bulk atlases resulted
in different data structures and scales depending on
how each method models cell-to-cell relationships.
This comparison raised the issue that imputation may
induce excessive technical artifacts. Thus, choosing a
suitable imputation method with appropriate tuning
parameters is important and should be evaluated with
the overall aim of the analysis. Sincast imputation is
designed to perform well with poor tuning or default
parameters, and hence is accessible for users who
are not familiar with the algorithm. However, the risk
of over-imputation still exists. Other been used for
projecting single-cell data onto bulk reference, Sincast
imputation can also be extended for other types of
analyses, such as clustering, differential expression
analysis.

Regarding general guidelines for choosing between the
imputation and the aggregation approaches, we propose
the following. Best practice is to try both approaches as
the resulting projection results can inform on the suit-
ability of the approach. The aggregation approach applies
when existing clustering assignment of the data are reli-
able and the aim is to benchmark overall cluster identity.
Otherwise, cell imputation, which can model and retain
complex cell-to-cell relationships in the scRNA-seq data,
can be a better choice but can be computationally costly
as memory usage grows in the order of O(N2), where N
is the number of cell in the data. For example, Sincast
imputation on the [33] data (1078 cells and 416 genes)
and [29] data (1231 cells and 1952 genes) with a laptop
with 12 cores and 8.00 GB RAM took 1.37 seconds and
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3.92 seconds respectively, and used 30.9MB and 54.6MB
memory, respectively.

Query identity profiling was performed using an
improved version of the Capybara cell score from [2],
based on restricted linear regression. We chose Capybara
for its ability in providing smooth quantitative profiling
of single cells whose identities might be between the
major cell types and states of the reference. Rank
formation is also a perfect fit for a regression based
method because ranking profiles are positive, with con-
stant variance and scales. Other tools were considered,
such as Machine Learning classifiers, but they tends to
assign cells to specific (discrete) reference categories.
However, since collinearity between the reference gene
expression profiles affects linear regression models, all
predicted cell type scores other than the dominant cell
type should be considered when characterizing a query
cell identity with our prediction tool.

Finally, all our case studies were based on atlases of
blood and immune cells, which are naturally separated in
fluid tissues. In contrast, cells in solid tissues have been
difficult to isolate in the past, thus reducing the ability
to build quality reference atlases. One way to address
this limitation is to aggregate well annotated single-cell
data to build pseudo-bulk atlases. Aggregated cells have
higher gene detection rates and hence larger statisti-
cal power for benchmarking query data. This approach
in Sincast would also avoid integrating the reference
and the query data. One example of the broad appli-
cability of Sincast in querying cells of solid tissue and
across species is given in Supplementary Material 1.9.
We queried mouse kidney scRNA-seq data from [36] on
the atlas built on micro-dissected rat kidney tubules
segments from [37]. Our analysis shows that Sincast is
able to handle related species while highlighting slightly
different biology. We also identified potential promising
genes associated cell type transition in kidney cell types.

In conclusion, leveraging established bulk transcrip-
tional atlases as reference data for determining cell iden-
tity in scRNA-seq data can lead to powerful biological
insights. Sincast is an unique toolkit specifically designed
for this purpose, and can be used to comprehensively
annotate matching cell states as well as discovering new
states. Sincast also provides a novel framework for single-
cell computational method evaluation.

Methods
Data description
All data were collected from public data repositories, as
described in Table 1.

Building a bulk transcriptional reference atlas
We define bulk transcriptional reference atlas as a PCA
representation of a gene expression dataset to which
external data (i.e. scRNA-seq data) can be projected and
queried. This section details the data pre-processing
steps required to build the reference atlas prior to PCA

(Figure 1), where we assume that quality controls on the
reference data, such as low-quality gene and sample
filtering have been performed.

We first perform RT to normalize the reference data,
as previously described by [1], and further detailed in
Supplementary Material 1.1). Only discriminant genes
relevant for classifying the reference sample cell types
(or any other class of interest) are selected to build the
reference atlas (we summarize the number of genes
retained in our case studies in Table 1). For data with-
out distinct class assignment, one can either perform
sample clustering on the data first, or use highly vari-
able genes as substitute of discriminant genes [39]. We
assess the relevance of a gene by calculating the correla-
tion between the samples ranked expression of the gene
and the samples (known) cell type labels, using the HD.
Details on how to calculate the HD score can be found in
Supplemental Material 1.2.

Sincast projection requires that the query genes match
the set of genes used to construct the PCA reference
atlas. Hence, overlapping discriminant genes are retained
between reference and query. The reference data are
rank then transformed again to adjust for the change
of gene sets and the reduction of available ranking allo-
cation. PCA with gene centering is then applied to the
reference data to project samples into low-dimensional
coordinates that maximize sample variation (as detailed
in Supplementary Material 1.3).

Projecting the query data onto the bulk reference
atlas
We define projection as mapping query cells onto the
PCA space of the reference atlas. This allows us to bench-
mark query biology by measuring the cell locations rela-
tive to the distributions of the reference samples from
the atlas. RT followed by gene centering is applied to
the filtered query data, where centering factors of the
query genes are the same as from those of the reference
data. We project the query cells by multiplying their
centered rank profiles with gene loading matrix of the
reference data, which defines rotation of gene coordi-
nates to obtain atlas PC basis. Reference samples and
query cells can then be visualized jointly on the atlas
coordinates, where distances between samples and cells
indicate their transcriptional profiles similarity. How-
ever, projecting sparse scRNA-seq query data onto bulk
atlases is challenging, as RT is not sufficient for sparse
data normalization. The large proportion of tied gene
expression and inflated zeros violates the RT assumption
of constant gene rankings across batches and libraries.
We describe below how Sincast addresses this issue via
pseudo-bulk aggregation and imputation on the query
single-cell data before projection.

Sincast pseudo-bulk aggregation
Cell aggregation has been used in single-cell studies to
use bulk statistical methods, such as differential expres-
sion testing [40, 41]. In Sincast, we recommend using an
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aggregation approach when the query scRNA-seq data
satisfy the following requirements:

1. Cells can be distinctly separated according to clus-
ters. Cellular variation within cell clusters is not of
primary interest, and cells are considered as pseudo
replicates.

2. The unit of the query data must be additive (e.g. raw
UMI count, TPM or CPM transformed data).

For the latter requirement, note that aggregating log-
transformed counts is equivalent to multiplying counts
and then performing log transformation; thus, the result-
ing aggregated samples do not represent valid bulk iden-
tities of cell populations.

We consider query data clustered according to cell
types or other combination of identity labels of interest.
We denote the number of cells of cell type t as Nt.
Aggregation is simply performed by sampling cells of cell
type t with replacement Nt times, and then calculating
the average expressions across re-sampled cells on a
gene-by-gene basis to create pseudo-bulk samples. The
sampling bootstrap procedure is repeated Bt times for
each cell type t independently, where Bt is usually chosen
to be at least Nt. Labels of pseudo-bulk samples are inher-
ited from the labels of single-cell cluster from which the
samples are generated. Bootstrap sampling is often used
for inferring sampling distribution of a given statistic.
Here, the idea is to infer the sampling distribution of
averaged expression profiles of single-cell populations.

Existing imputation methods for scRNA-seq
RT is limited by small library sizes of scRNA-seq, result-
ing in many tied expressions and zeros to adequately
align query scRNA-seq to reference bulk-seq data. One
solution to address the structural discrepancy between
the query the reference is to impute and smooth values
in the query. Here we describe three best-performing
scRNA-seq imputation approaches (evaluated by [32])
that were benchmarked in our study. MAGIC [28] in
particular prompted the methodological development
of Sincast.
MAGIC (Markov Affinity-based Graph Imputation of
Cells)) [28] is based on the theory of DM. MAGIC first
computes a cell-wise distance matrix for the query
data, then converts the distance into a probabilistic
similarity measure called ‘affinity’ using adaptive
Gaussian kernels. The affinity matrix is row-stochastic
normalized into Markov transition matrix, whose entry
represents transition probabilities from the row to the
column cells. The imputed expression profile of a cell is
the weighted average profile of cells within the targeted
cell’s neighborhood where the weights correspond to the
transition probabilities of the Markov matrix.

The performance of MAGIC can be largely affected by
the tuning parameters, primarily the exponent of the
Markov matrix, called diffusion time t, the cell neigh-
borhood size, knn-max and the bandwidth of diffusion
kernel. The affinity between two cells that are not in

each other’s knn-max neighborhood, is set to zero, which
means that these two cells will not participate in each
other imputation. When knn-max is set to a too small
value, the imputed scRNA-seq data will retain a high
proportion of zero expression value due to small pooling
size. When knn-max is set to a too large value—larger
than the cell population size, the cell is almost equally
imputed by the other cells in its neighborhood, from the
same or different types and states. This is a result of
high dimensionality, where distances between cells to
their neighbors are large and indistinguishable (Figure 6).
This, in turn, make affinities among cells small and indis-
tinguishable due to the fast decaying tail of the Gaus-
sian kernel function. The impact of knn-max is further
aggravated by increasing the imputation strength using
the diffusion time t parameter. Our proposed approach
described next addresses these limitations.
SAVER (Single-cell Analysis Via Expression Recovery) [31]
assumes that the UMI counts of scRNA-seq data follow
a negative binomial distribution framed as Poisson-
Gamma mixture. SAVER performs penalized Poisson
Lasso regression of each gene using the rest of the genes
as predictors. The fitted regression values are set as prior
Gamma means for the Poisson rate, and the Gamma
variance is estimated empirically with a maximum
likelihood approach. The final imputed value for each
gene in each cell is the posterior mean of the Poisson
rate, i.e. the weight between the regression fit and the
empirical observation.
knn-smoothing (K-nearest neighbor smoothing) [30] first
aggregates the expression profile of each cell with its
nearest neighbor to initialise the input cells for the next
iteration. In the next iteration, the aggregated profiles
are smoothed again, but this time each cell is aggregated
with its three-nearest neighbors. The process iterates
with increasing aggregation size equals to 2i − 1 at ith

iteration. The iteration stops when the aggregation size
reaches a set maximum k.

Imputation with Sincast: a graph-based approach
Our imputation method is inspired by MAGIC, and is
modified on the theoretical basis of DM and UMAP—both
are nonlinear data embedding methods that recover low-
dimensional representation of the manifold underlying
data in the euclidean space [28, 42, 43]. Our method aims
to

1. Infer a κ-neighbor graph from the query scRNA-seq
data based on UMAP (steps 1–4 in algorithm 0),

2. Construct a diffusion operator from the graph that
is applied to the query for data diffusion (steps 5–8
in algorithm 0).

We assume that cells in the query can communicate
and exchange their expression profile according to their
local arrangement on the manifold. Gene expression of a
cell is imputed as the weighted average gene expressions
of the cell’s κ nearest neighbors. Weight for imputation
between a pair of cells is derived from their geodesic
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Figure 6. A schematic diagram showing MAGIC sensitivity to tuning parameters. Suppose the query contains two-cell populations represented as green
and blue points and cell 1 is to be imputed. Using MAGIC affinity matrix specification, cell 4 and 5 contribute highly to the imputation of zeros in cell 1 if
a wrong neighborhood size for imputation (5 in this case) is chosen. We propose to address this issue by scaling the distance measurement to highlight
differences in distances, so that cells 2 and 3 participate more in the imputation.

distance measured on the manifold. Our pseudo-code is
presented in Algorithm 0.
Distance scaling. Suppose G (Gene) by N (Cells) normal-
ized gene expression matrix of the query data X. Consider
S = {c1, c2, ..., cN} as an ordered set that contains the col-
umn vectors of X. Cells ci in S are assumed to be sampled
from a low-dimensional manifold embedded within the
data R

G expression space. We use a graph G = {V, E, k}
to represent the pairwise geometric relationships of cells
on the manifold. In such setting, cells can be considered
as nodes of G (V(G) = S), connected by weighted edges,
whose weights Wij are given by the pre-defined kernel
functions k : S × S → R�0, k(ci, cj) = k(cj, ci). The
weight Wij = k(ci, cj) represents the similarity between
cells i and j with respect to their geodesic distance on
the manifold, where k is derived from adaptive Gaussian
kernels applied to pseudo-matrices defined individually
for each cell ci in the query. Denote knn(ci) = {ci1 , ci2 , ..., ciκ }
the set of κ nearest neighbors of cell ci. As we do not
know the true structure of the underlying data mani-
fold, the geodesic distance between ci and its jth nearest
neighbours cij

∈ knn(ci) is approximated by the euclidean

distance in R
G (valid only if κ is small enough):

d
RG(ci, cij

) =
√

‖ci − cij
‖2.

The euclidean distance is then converted to cell-specific
pseudo-metrices defined by the distance beyond nearest
neighbor:

dci
(ci, cij

) = max(0, d
RG(ci, cij

) − d
RG(ci, ci2)).

The reason for this step of distance scaling can be
simplified as follows (for theoretical details, see [42])

1. Since now dci
(ci, ci) and dci

(ci, ci2) are both 0 and indis-
tinguishable, we can define a graph in which all cells
are guaranteed to be locally connected to at least
its first nearest neighbor. The weight of self-looping
edge (ci, ci) becomes less important compared with
the weights of other edges {(ci, cj)|j �= i} connected to
ci. As such, neighbors of ci can contribute more to the
inference of ci’s identity, as we illustrated in Figure 6.

2. Because of the curse of dimensionality, distances
between cells to their neighbours, based on their
gene expression, are expected to show little vari-
ation relative to the absolute values of distances
(i.e. d

RG(ci, ciκ ) ≈ d
RG(ci, ci2). We subtract the dis-

tance to each cell’s first nearest neighbor to mit-
igate that effect in the graph construction, and to
put more emphasis on distances differences among
neighbors.

Weighted adjacency matrix. Next, we define the adaptive
kernels kci

(ci, cj) for ci as follows:

kci
(ci, cj) =

⎧⎪⎨
⎪⎩

exp

(
−

(
dci(ci,cj)

σci

)2
)

cj ∈ knn(ci)

0 cj /∈ knn(ci)

The kernel bandwidth σci
is defined locally for ci with

respect to the ci cell-specific pseudo-metric such that
kci

(ci, ciκ ) = log( κ
κ−1 ). The probabilistic interpretation for

the choice of bandwidth is that all the cells in X are set
to communicate with their κ th nearest neighbors with a
fixed probability equal to log( κ

κ−1 ). Each cell’s bandwidth
is derived from its distance to its κ th nearest neighbor,
which gives a proxy of the cell’s local density. Hence,
by normalizing distances with local densities of cells,



12 | Deng et al.

weights of connection between cells are defined irrespec-
tive of sampling density of the data.

We have already obtained a directed graph with asym-
metric weighted adjacency matrix Wasy whose entries are
given by Wasy

ij = kci
(ci, cj). However, asymmetric weights

among different cells are not compatible as these weights
are computed based on different matrices. To construct
a valid Laplacian graph and hence a Markov transition
matrix for data diffusion, we define a symmetric W based
on Wasy to represent the final undirected graph G:

Wij =
Wasy

ij + Wasy
ji

2
∗

∑N
k=1 Wasy

ik Wasy
jk∑N

k=1 Wasy
ik + Wasy

jk − Wasy
ik Wasy

jk

The term on right-hand side of the fraction product
represents the Fuzzy Jaccard Index (FUJI, (Petković et al.)
44) measured between the knn graphs of cell i and j.
We modified FUJI by swapping the minimum t-norm on
the numerator to a product t-norm and the maximum t-
conorm at the denominator to a probabilistic t-conorm.
Our graph is constructed to highlight the connection of
cells that share common neighborhoods. The connec-
tivity constrain down weights potentially poor connec-
tions in the graph and improve the robustness of the
imputation.
Data imputation. Using the theory of DM, W is the dif-
fusion matrix defined by (S, k). Let q(ci) = ∑N

j=1 k(ci, cj) =∑N
j=1 Wij be the finite approximation of kernel volume (or

degree in graph) for cell i. We define a new kernel scaled
by the local volumes for Laplace–Beltrami diffusion,

Wij = k(ci, cj) = Wij

q(ci)q(cj)
,

and obtain the Markov transition matrix, or diffusion
operator P by row stochastic normalization:

Pij = Wij∑N
j=1 Wij

Data imputation is done by applying powered operator Pt

on X

X = XPt

where t is a positive scale parameter that controls the
step size of diffusion random walk. A large t value usually
results in stronger imputation strength and less noisy
data, and also over-imputation. The risk is a loss of
biological signal as the Markov process may attract the
identities of minor cell populations towards the regions
in G with low escaping probabilities (these regions often
correspond to discrete biological niches) in a long-time
diffusion.
Visualization To get a sense of the geometry of the data
that defines the graph used for data imputation, we can

visualize the data embedding by mapping each cell ci to
its first three diffusion coordinates

�t(ci) = (
λt

1ψ1(ci), λt
2ψ2(ci), λt

3ψ3(ci)
)

,

where ψ1, ψ2, ψ3 are the left eigenvectors of P with the top
three largest corresponding eigenvalues 1 > λ1 � λ2 �
λ3 � 0. These eigenvalues are only strictly less than 1 if
the graph is connected. The constant eigenvector ψ0 of
P with eigenvalue λ0 = 1 is not of our interest and so is
omitted from the visualization.
Parameter tuning. By default, the graph of the query data
is computed based the PCA of X for dimension reduction
and global noise filter prior to distance calculation (see
Algorithm 0). By default, κ = 30. Two alternative ways of
choosing κ are also proposed based prior assumption on
the characteristics of the data set:

Option A. We can approximate the minimum κ that
gives a connected graph. This approach is recommended
when we assume that no cells or biological components
in the data are functionally isolated.

Option B. We can approximate the minimum κ to
reduce the sparsity of the data to 25% when t =
1. This approach avoids tuning t in the imputation,
but the euclidean distance may no longer be a valid
approximation of geodesic distance when κ is large. In
A, if κ is much larger than in B, the latter should be
preferred.

We found that the parameter t had a significant impact
on the imputation result, based on our case studies: a
large t value tended to distort the data structure com-
pared with an imputation with t = 1. For most of the
query data we examined, a small t ≈ 3 was usually
enough to reconstruct complex cell-to-cell relationships
with a wide range of κ values. Regardless of the tuning
of our parameters, we showed that our methodological
improvements, such as using a distance beyond nearest
neighbor and FUJI greatly compensated for a poor param-
eter choice, highlighting our algorithm’s robustness and
accessibility for imputation and method evaluation.
Data scaling after imputation. We found that nearest
neighbor based graph imputation methods (e.g. MAGIC,
knn-smoothing) can easily over-smooth the query data
when the tuning parameters are not chosen carefully. For
instance, the projection of query data imputed by MAGIC
showed strongly reduced local variance and shrinking of
the global structure relative to the atlas landscape when
the diffusion time t > 1. The loss of local variation is
expected due to averaging gene expression of cells within
each cell’s neighborhood. The shrinkage of query distri-
bution towards its global average happens when the cells’
defined local neighbourhood sizes are larger then their
actual size (as we showed when comparing the MAGIC
and Sincast in Figure 4). To prevent overimputation and
creating technical artifacts to the query data, we propose
a scaling approach to shrink the imputed data back to
the original data and recover part of the lost variance
due to imputation. The degree of shrinkage in each cell is
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determined according to the amount of variation change
in data due to imputation.

Briefly, we take the weighted average between each
cell’s original and imputed expression profile as the data
scaling result. Post-imputation data variance up-weights
the imputed profile, whereas imputation strength mea-
sured by the deviation between the original and the
imputed data up-weights the original profile (see Supple-
mental 1.4 for more details).

Nonlinear visualization projection via DM
After projecting the query data onto reference atlases,
we apply DM [43] to the concatenated PC scores (up
to the elbow point) of query cells and reference sam-
ples to recover the manifold of the projection landscape.
Indeed, we can only and practically visualize the first
three PCs fitted on the reference samples, but these PCs
only reveal the most important variations related to the
reference biology, but not to the query. Query-specific but

important information beyond the first three PCs can be
missed. DM enables a fast, nonlinear reconstruction of
the projection result, allowing for better visualization.

We used function diffusion() from the R package diffu-
sionMap [45]. PHATE [46], a DM-based dimension reduc-
tion method can also be an alternative. Diffusion band-
width in DM is data specific, set to be two times the
maximum distance between the reference atlas sam-
ple pairs. We chose a large enough bandwidth to avoid
creating a disconnected representation of the projection
landscape. For a large integrated reference atlas rich
in biological heterogeneity, a too small bandwidth only
emphasises on the differences between atlas samples
with distinct identities and will make the local views
between single cells disproportionally smaller than the
global view dominated by the atlas samples. As such,
local views of projection will be difficult to visualize.

Capybara cell score for continuum cell identity
prediction
We applied the Capybara cell score (Capybara, (Kong et
al. 2) to predict continuum identities of the query cells.
Capybara performs restricted least square (RLS) regres-
sions on each query cell transcriptional profile using
cell type or cluster, averaged expressions of reference
samples as predictors. Regression coefficients fitted for
each predictor (cell type reference) correspond to identity
score predictions. Capybara constraints the coefficient
estimates on each query cell to be positive with total sum
less than one for biological interpretation. We made two
adjustments to improve the predictive performance of
Capybara, as described below.
Weighted RLS. Since different genes may have differ-
ent degrees of contribution in explaining cell identi-
ties, we performed weighted RLS to assign observational
weights to each gene corresponding to their importance
in classifying cells. These weights (i.e. gene importance)
can be estimated from the reference data in a various
ways, including standardized gene variance, differential
expression P-value or variable importance metrics from
machine learning classifiers. We used gene HDs (also
used for variable selection to build the atlas).
Regression on neighboring samples. To take into account
of biological heterogeneity in a comprehensive reference
atlas, we propose to regress the query cell expression
profiles on their neighboring samples within each atlas
clusters, defined as the nearest sub-cluster medoids,
rather than on the cluster averages (see Supplemental
1.5 for more details).

Clustering assessment of query observations
after projection
We used clustering performance of query projections on
atlases as a mean to evaluate the goodness of projection.
Clustering performances were quantified using the Sil-
houette Index, the Distance ratio and the ARI (see more
details in Supplemental Material 1.7).
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Key Points

• Sincast uses RT and discriminant gene filtering based on
HD to build the reference bulk RNA-seq atlases.

• The query cells from scRNA-seq data can be either aggre-
gated or zero imputed, without the need for batch effect
correction.

• Single cells are projected on the reference bulk atlas
using PCA and DM allows visualization across several PC
dimensions.

• Cell prediction along a continuum allows to highlight
new cell states.

• Key gene regulators can be identified as well as pseudo-
time trajectories.

Data and code availability
Sincast R functions, code and data analyzed in this
manuscript are available in https://github.com/meiosis97/
Sincast.
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