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Abstract: Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high
morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the
pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing
cell subtypes from the different pathological regions of non-small cell lung cancer on the basis
of transcriptomic profiles, including a group of qualitative classification criteria (biomarkers) and
various rules. The random forest classifier reached a Matthew’s correlation coefficient (MCC) of 0.922
by using 720 features, and the decision tree reached an MCC of 0.786 by using 1880 features. The
obtained biomarkers and rules were analyzed in the end of this study.

Keywords: lung cancer; random forest; decision tree; feature selection; cell biomarker; quantita-
tive rules

1. Introduction

Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer with
high morbidity and mortality [1,2]. According to the epidemiological statistics from the
American Society of Clinical Oncology [3], more than 84% of all clinical lung cancer cases
can be attributed to non-small cell lung cancer. Annually, more than 116,300 men and
112,520 women in the United States alone are newly diagnosed with non-small cell lung
cancer [4,5]. Owing to the development of pharmacological and clinical treatment tech-
niques, the averaged death rate of non-small cell lung cancer has dropped by approximately
50%, especially in men [5]. However, the actual death rates vary with clinical background
and disease stage. Therefore, exploring detailed pathological mechanisms and treatment
strategies for this disease is necessary.

Previous studies on non-small cell lung cancer showed that genetic background
and variations are major pathogenic factors for non-small cell lung cancer [6–9]. As
driver genes, various pathogenic genes are specific and essential for the initiation and
progression of the disease. For instance, the top identified gene associated with non-small
cell lung cancer is EGFR. In 2004, the gene was identified as an effective clinical biomarker
for the pathogenesis of non-small cell lung cancer [10]. Since then, various variation-
based drugs (either targeted or chemotherapeutic drugs) have been developed, including
necitumumab [11], cetuximab [12], and erlotinib [13]. Apart from EGFR, KRAS [14], EML4-
ALK [15], ERBB2 [16], BRAF [17], and PIK3CA [18] participate in the pathogenesis of
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non-small cell lung cancer. Similar to EGFR, some of these typical genes have been used
in developing novel drugs against non-small cell lung cancer, such as alpelisib targeting
PIK3CCA, MK-2206 targeting AKT, and AZD6244 targeting MEK, confirming a complicated
genetic background for the initiation and progression of non-small cell lung cancer.

Developments in sequencing techniques have stimulated research on non-small cell
lung cancer at a single-cell level, and thus the internal heterogeneity of the disease has
been revealed [19,20]. Single-cell RNA sequencing is one of the most widely applied and
robust techniques for disease pathogenesis studies at the single-cell level [21]. By using
single-cell RNA sequencing techniques, not only the transcriptomic heterogeneity of cancer
cells but also different cell subgroups in microenvironments surrounding malignant tissues
(cancer-adjacent tissues) can be further revealed [21], and thus research on non-small
cell lung cancer has become extensive. In May 2020, researchers from Samsung Genome
Institute applied systematic single-cell RNA sequencing to more than 0.2 million cells
from 44 individuals to reveal specific and heterogeneous cell subgrouping patterns in pre-
invasive and metastatic tumors and respective tumor microenvironments [22], providing
novel systematic single-cell-level transcriptomic datasets of non-small cell lung cancers.
The study mainly focused on showing differences among the transcriptomic profiles of
different cell subtypes and among those of clinical pathological regions. However, key
differentially expressed molecules (biomarkers) distinguishing different cells or cancers of
different regions have not been fully revealed.

Here, to fulfill the research gap in identifying specific biomarkers for each cell subtype
or pathological region, we divided transcriptomic data into 32 groups according to their
tissue specificity, such as normal lung tissue (nLung), tumor lung tissue (tlung), brain
metastatic tissue (mBrain), lymph node metastatic tissue (mLN), lymph node normal
tissue (nLN), and pleural effusion (PE), and to cell subtypes, including B lymphocytes,
endothelial cells, epithelial cells, fibroblasts, mast cells, myeloid cells, and T/NK cells.
With advanced computational methods, we identified a group of qualitative classification
criteria (biomarkers) distinguishing different cell subtypes from different pathological
regions for the first time and established various rules for further quantitative distinction.
Therefore, this study may not only confirm the applicability of computational methods on
biomarker screening at the single-cell level but may also lay a solid foundation for further
biomarker discovery on non-small cell lung cancer.

2. Materials and Methods

We downloaded the processed single-cell RNA sequencing data of metastatic lung ade-
nocarcinoma from Gene Expression Omnibus (GEO) under accession number GSE131907 [22].
This dataset included cells from mBrain, mLN, nLN, nLung, PE, and tLung. For each
tissue, it included various cell types. We only considered the cell types with cell numbers
greater than 100 for further analysis. In Table 1, we list the sample sizes of filtered cell
types from six tissues. A total of 180,035 cells were obtained. In each cell, the expression
levels of 29,634 genes were represented with normalized log2(TPM+1), as described by
Kim et al. [22].

Table 1. The sample sizes of different cell types.

Tag Cell Types Sample Size

Class 1 mBrain B lymphocytes 1311
Class 2 mBrain Endothelial cells 159
Class 3 mBrain Epithelial cells 15,463
Class 4 mBrain Fibroblasts 444
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Table 1. Cont.

Tag Cell Types Sample Size

Class 5 mBrain MAST cells 508
Class 6 mBrain Myeloid cells 5657
Class 7 mBrain T/NK cells 2683
Class 8 mLN B lymphocytes 6062
Class 9 mLN Epithelial cells 3053

Class 10 mLN Myeloid cells 5442
Class 11 mLN T/NK cells 5069
Class 12 nLN B lymphocytes 10,584
Class 13 nLN Myeloid cells 1288
Class 14 nLN T/NK cells 19,478
Class 15 nLung B lymphocytes 634
Class 16 nLung Endothelial cells 1295
Class 17 nLung Epithelial cells 3703
Class 18 nLung Fibroblasts 1585
Class 19 nLung MAST cells 1079
Class 20 nLung Myeloid cells 16,672
Class 21 nLung T/NK cells 11,413
Class 22 PE B lymphocytes 3285
Class 23 PE Epithelial cells 396
Class 24 PE Myeloid cells 3063
Class 25 PE T/NK cells 9192
Class 26 tLung B lymphocytes 5781
Class 27 tLung Endothelial cells 645
Class 28 tLung Epithelial cells 13,852
Class 29 tLung Fibroblasts 1739
Class 30 tLung MAST cells 1809
Class 31 tLung Myeloid cells 10,123
Class 32 tLung T/NK cells 16,568

2.1. Boruta Feature Selection

Not all the adopted attributes were related to the target for most datasets. To remove
or reduce redundancy between attributes, we employed the Boruta algorithm [23] for
feature selection. The Boruta algorithm is a wrapper, using random forest [24] as a classifier.
The basic idea behind such an algorithm is the removal of the most redundant feature
each time. The Boruta algorithm is composed of the following steps: (1) shadow attributes
are created by copying original attributes. (2) Each shadow attribute is shuffled for the
removal of correlation with a target. (3) The shadow and the original attributes are used to
train random forest and yield the importance of each attribute. (4) The maximum score
is determined using the shadow attribute, and the original attribute whose score is more
than the maximum score is marked as important. For each attribute with a score that is
less than the maximum score, a two-sided test of equality is performed. (5) Unimportant
attributes are removed. (6) The above steps are repeated until all the attributes are marked
“important.”

In this study, we used the Boruta program, available at https://github.com/scikit-
learn-contrib/boruta_py (accessed on 5 March 2019). The single-cell RNA sequencing
data of metastatic lung adenocarcinoma was fed into the program. Genes were termed as
attributes and cell types were targets. Some genes marked as “important” were selected
for further analysis.

https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
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2.2. Max-Relevance and Min-Redundancy

The Max-Relevance and Min-Redundancy (mRMR) proposed by Peng et al. [25] are
filters for measuring correlations between attributes and targets on the basis of mutation
information criteria. Mutation information between attribute x and target y is defined by:

MI(x, y) =
x

p(x, y)log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x, y) denotes the joint probabilistic density of x and y, and p(x) and p(y) denote the
marginal probabilistic densities of x and y, respectively. The correlations of attribute x and
target y increase with the value of MI(x, y). The mutation information between the set of
attribute S and target is defined by:

MI(S, y) =
1
|S|∑x∈S MI(x, y), (2)

where the operator || denotes the number of elements in a set. The goal of the mRMR
is to search a subset S from n attributes containing mutation information in which target
y satisfies the maximum relevance and subset S satisfies the minimum redundancy. The
max-relevance and min-redundancy is modeled by

max
S

{
MI(S, y)− 1

|S|2 ∑a,b3S MI(a, b)

}
(3)

Equation (3) is an NP-hard question. The mRMR uses a greed strategy of searching; that is,
it produces a list to sort attributes according to their importance.

This study adopted the mRMR program retrieved from http://penglab.janelia.org/
proj/mRMR/ (accessed on 9 October 2017). Default parameters were used. The single-cell
RNA sequencing data with genes selected by the Boruta method were fed into the mRMR
program. Likewise, genes were termed as attributes and cell types were considered as
targets. Accordingly, we obtained a gene list. Genes with high ranks were more important
than those with low ranks.

2.3. Incremental Feature Selection

Incremental feature selection (IFS) [26] is a strategy for searching informative attributes.
Owing to its simplicity and efficiency, IFS has been extensively used in feature selection.
For the gene list obtained by the mRMR method, we added 10 genes each a time. That
is, the decision tree and random forest first performed 10-fold cross-validation over the
training set, in which cells were represented by the top 10 genes in the list, then those with
top 20 genes, top 30 genes, and so on. When all genes were added, this procedure stopped.
For each classification algorithm (decision tree or random forest), the gene set on which the
classification algorithm provided the best performance was found. This set was called the
optimum set and genes in this set were called optimum genes.

2.4. Synthetic Minority Over-Sampling Technique

As listed in Table 1, the sizes of 32 cell types have great differences. The largest cell
type contains much more cells than the smallest type. Thus, such a dataset is imbalanced.
Classifiers built on such a dataset may be apt to the largest cell type. To solve such
problem, we used the synthetic minority over-sampling technique (SMOTE) [27] to yield
new samples for all cell types except the largest cell type. The SMOTE was described as
follows. First, k nearest cells to one randomly selected cell of one minority cell type (cell
type other than the largest cell type) were identified on the basis of Euclidean distance.
Second, one nearest cell b was randomly selected from the above k nearest cells. The new
cell c was computed by:

c = a + rand(0, 1)(b− a) (4)

http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
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where rand(0,1) denotes a random number between 0 and 1. This newly produced cell
was put into the minority cell type. After this procedure was performed several times,
all cell types contained same number of cells. For convenience, the tool “SMOTE” in
Weka (https://www.cs.waikato.ac.nz/ml/weka/ accessed on 15 December 2016) [28] was
employed to tackle the imbalanced problem of single-cell RNA sequencing data.

2.5. Classification Algorithm

The IFS method needs one classification algorithm. This study selected decision
tree [29] and random forest [24]. In a decision tree, each node represents a decision of one
attribute. ID3, C5.0, and Classification and Regression Tree (CART) belong to the decision
tree. CART with the Gini index was used in constructing a decision tree in this study.
Random forest is an ensemble learning algorithm comprising many decision trees. Each
decision tree is constructed by randomly selecting some attributes and some samples (with
replacement). For a new sample, all the decision trees vote for a final decision.

In this study, we used the corresponding packages in Scikit-learn (https://scikit-learn.
org/stable/ accessed on 26 August 2019) to implement the above decision tree and random
forest. They were executed with their default parameters. The single-cell RNA sequencing
data, where samples were represented by some genes, were fed into the program of decision
tree or random forest to construct classifiers.

2.6. Cross-Validation and Metrics

We performed 10-fold cross-validation [30–34] to examine all classifiers in IFS. In
10-fold cross-validation, all cells were divided into 10 parts of equal or approximately equal
size. Nine parts were used for training, and one part was used for testing. This process
was repeated ten times.

Matthew’s correlation coefficient (MCC) in multi-class [35] was mainly used in assess-
ing performance, which was computed by:

MCC =
cov(X, Y)√

cov(X, X)cov(Y, Y)
, (5)

where X and Y are two matrices, representing the predicted and actual class of each sample.
Similar to the original MCC for binary classification [36], such an MCC ranges from −1 to
1, and 1 means perfect prediction, 0 means random prediction, and −1 means completely
opposite of prediction.

In addition, we computed the accuracy of each cell type and overall accuracy for each
classifier. These measurements were provided for reference.

2.7. Functional Enrichment Analysis

With the IFS method, we can obtain optimum genes. To reveal their potential cell
subtype specific biological functions, functional enrichment analysis was conducted. The
results can be evidence for the further exploration of different contributions of different
cell subtypes on lung tumorigenesis. In this study, we used R package topGO (v2.42.0)
to perform gene ontology (GO) enrichment analyses. The p-value threshold for statistical
significance was set to 0.001.

3. Results

As shown in Figure 1, a computational procedure was used in investigating cell
subtypes from the different pathological regions of non-small cell lung cancer. A total of
180,035 cells from 32 types were collected from GEO, and each cell had the expression levels
of 29,634 genes. Then, Boruta feature selection and mRMR were performed successively.
The 10-fold cross-validation was performed with the decision tree or random forest over the
datasets generated by the SMOTE. We introduced results generated by all computational
procedures.

https://www.cs.waikato.ac.nz/ml/weka/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Figure 1. Flow chart illustrating the entire procedures. The single-cell RNA sequencing data are
retrieved from Gene Expression Omnibus, which are analyzed by Boruta and mRMR methods. A
feature list is generated, and it is fed into incremental feature selection (IFS), incorporating several
methods (decision tree, random forest, SMOTE, 10-fold cross-validation), to extract key biomarkers,
optimized classifier, and quantitative rules.

3.1. Results of Boruta and mRMR Methods

We first applied the Boruta feature selection method to the single-cell RNA sequencing
dataset. A total of 3880 genes were preserved, which are provided in Table S1. These genes
were further analyzed by the mRMR method, yielding an ordered list of genes, which were
ranked by importance (from highest to lowest). This list is also provided in Table S1.

3.2. Results of IFS with Random Forest

The ordered list of genes was fed into the IFS method with random forest as the
classification algorithm. We used step 10 to construct gene subsets and a random forest
classifier was built on each gene subset. Each classifier was evaluated by 10-fold cross-
validation. When evaluating the performance of classifiers, the SMOTE was used to balance
samples from different cell types. The performance of each classifier, including accuracy for
each cell type, overall accuracy and MCC, is available in Table S2. For an easy observation,
an IFS curve was plotted, as shown in Figure 2, which set MCC as the Y-axis and the
number of features (genes) as the X-axis. Evidently, random forest yielded the best MCC
(0.922) with the top 720 features (genes). Accordingly, these top 720 genes constituted the
optimum genes for random forest. The overall accuracy of such a classifier was 0.927 (see
Table 2). The accuracy on each cell type was illustrated in a boxplot, as shown in Figure 3.
These results indicated the good performance of this classifier. However, the efficiency of
this classifier was not very high due to the large number of features (genes). By checking
the curve in Figure 2 and MCCs in Table S2, random forest generates the MCC of 0.884
when the top 100 features (genes) were used. The overall accuracy was 0.891 (Table 2).
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They were a little lower than those of the best random forest classifier. As for the accuracy
on each cell type, as shown in Figure 3, they were almost at the same level of those yielded
by the best random forest classifier. Considering that much fewer features (genes) were
used, this classifier was a more proper tool to identify cell types.
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Figure 2. Curve of the incremental feature selection with different classification algorithms. Random
forest yields the highest MCC (0.922) when top 720 features (genes) are used, whereas decision tree
generates the highest MCC (0.786) when top 1880 features (genes) are adopted. Random forest with
top 100 features (genes) also yields the high performance with MCC of 0.884, which can be a proper
tool to identify cell types due to its higher efficiency compared with the random forest with top 720
features (genes).

Table 2. Performance of random forest and decision tree with some top features.

Classification Algorithm Number of Features Overall Accuracy MCC

Random forest 720 0.927 0.922
Random forest 100 0.891 0.884
Decision tree 1880 0.799 0.786
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3.3. Results of IFS with Decision Tree

Although above random forest classifiers provided high performance, it is almost
impossible to understand them and obtain new insights on the differences of cell types
because they were absolute black-box classifiers. Thus, we further employed another
classification algorithm, the decision tree, in the IFS method. This algorithm can learn a
decision tree on a given dataset, from which several decision rules can be extracted. These
rules can give a clearer picture on the differences of cell types.

The IFS results on decision tree are provided in Table S2. Likewise, an IFS curve
was also plotted, as illustrated in Figure 2. The best MCC was 0.786, which was obtained
based on the top 1880 features (genes). The overall accuracy of this classifier was 0.799,
listed in Table 2. Its performance on 32 cell types is shown in Figure 3. Evidently, the
performance of such a classifier was much lower than the two above-mentioned random
forest classifiers. However, it can give more insights. Accordingly, all cells, represented by
the top 1880 features (genes), were learnt by the decision tree algorithm and a big tree was
built. From such a tree, we extracted 19,032 decision rules, which are available in Table S3.
Further analysis of these rules was helpful to uncover the differences of cell types.

Due to the huge number of rules, we tried to extract the most important information
from these rules. For each cell type, the genes that only occurred in rules of such a cell
type were extracted. We called them exclusive genes. Because these genes played critical
roles for identifying a certain cell type, they can be latent biomarkers for some cell types.
By counting the 19,032 rules, ten cell types received at least one exclusive gene, which are
listed in Table 3. In Section 4.3, further analyses are conducted on them.

Table 3. Exclusive genes for some cell types.

Tag Cell Type Exclusive Gene a

Class 7 mBrain T/NK cells FAM83H
Class 8 mLN B lymphocytes TFAP2A, TJP1, TMEM63B

Class 10 mLN Myeloid cells TMEM45B
Class 11 mLN T/NK cells RAB40B, SLC9A3R2
Class 14 nLN T/NK cells TM7SF2
Class 24 PE Myeloid cells ZDHHC9
Class 25 PE T/NK cells GNG12, ITGA2
Class 26 tLung B lymphocytes P4HA2, TJP3, BAIAP2L1
Class 27 tLung Endothelial cells FNBP1L, PTPN13,
Class 28 tLung Epithelial cells C5orf38, MLLT4

a: Exclusive gene for one cell type is defined as the genes that only occur in rules for such a cell type.

3.4. Enrichment Analysis on Essential Genes

As mentioned in Section 3.2, the top 720 genes were the optimum genes for random
forest. The enrichment analysis was conducted on them. As shown in Figure 4, 14 en-
riched GO terms with p-value threshold 0.001 were identified. Among these fourteen
terms, there are six biological processes, six cellular components and two molecular
functions. Among these enriched GO terms, specific functions such as viral transcription,
focal adhesion and extracellular exosome have already been reported to be associated
with specific cell types of lung cancer. The detailed discussion and interpretation of
results can be seen in Section 4.4.
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4. Discussion

We used our proposed computational methods to identify specific biomarkers or rules
for distinguishing different cell subtypes from different tumor regions at the single-cell level
in the primary and metastatic loci of non-small cell lung cancer. Recent publications have
shown that several screened out qualitative biomarkers and quantitative rules contribute
to the classification of 32 cell groups (six tissues and seven cell types) in the different stages
and pathological regions of non-small cell lung cancer, implying the efficacy and accuracy
of our proposed method. Detailed analyses on the correlations between non-small cell lung
cancer and the top optimal biomarkers or rules are provided below.

4.1. Biomarkers for Tissue Specificity and Cell Subtype Classification

In our prediction list, we identified multiple biomarkers that contribute to the distinc-
tion of different cell types from the different regions of non-small cell lung cancers. Genes
in such a list have been confirmed to distinguish at least two groups of cells according to
recent publications. Here, we chose the top genes for detailed analyses as outlined below.

The first gene in our prediction list turned out to be TYROBP, which encodes an
effective immune signaling adapter. According to previous studies, this gene has different
expression patterns in different non-small cell lung cancer tissues. In early 2004, TYROBP
was shown to be differentially expressed in tumor tissues in contrast in normal tissues [37],
indicating that the gene may help distinguish tumor cells from normal cells. In May
2020, another study revealed that TYROBP was found to be one of the most significant
biomarkers reflecting the immune status of tumor microenvironments and contributing to
the distinction of functional and dysfunctional immune cells [38]. Therefore, the gene may
play a role in distinguishing between normal and tumorous lymph node tissues because
of differences in immune characteristics under physical or pathological (tumorigenic)
conditions. As for the applications, such a gene can identify lung cancer using the biopsy
sample directly from lung tissue, acting as additional lung tissue tumorigenesis monitoring
biomarkers.
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Apart from TYROBP, several candidate biomarkers encode functional Cluster of Dif-
ferentiation (CD) molecules and contribute to the classification of different immune cells
during the initiation and progression of non-small cell lung cancer. Hence, they are key
immune biomarkers distinguishing immune cells under different conditions. CD52, as
the top optimal CD molecule, is differentially expressed in the activated T cells compared
with that in T cells that are not activated (in normal tissues) or inhibited. Therefore, the
expression level of the CD52 gene may be used in distinguishing T cells from different
environments, validating the efficacy and accuracy of our prediction [39]. Further studies
on immune cells in multiple non-small cell lung cancer confirmed that the gene is dif-
ferentially expressed in tumor tissues unlike in normal tissues [40], consistent with our
speculation. Apart from CD52, another gene in our prediction list from the CD family was
CD3D, which encodes the delta of the CD3 complex of the T-cell receptor and is involved
in T cell development [41] and T cell-mediated immune response [42,43]. Similar to CD52,
CD3D is differentially expressed in the normal and malignant lung tissues of non-small
cell lung cancer [44], consistent with our prediction. A systematic study [20] published in
2018 investigated T cell expression pattern in non-small cell lung cancer at the single-cell
level, which confirmed that CD3D has differential expression levels not only in normal
tissues and malignant tissues but also in the lung tissues and lymph nodes, implying that
the gene is a potential biomarker distinguishing T cells from different tissues during the
initiation and progression of non-small cell lung cancers. Such a cluster of differentiation
proteins can monitor the immune status of the tumor microenvironment at the single-cell
level. Theses biomarkers can provide valuable information for the comprehensive immune
evaluation of tumor patients in clinic.

Apart from the two clusters of differentiation biomarkers, CD79A as a key biomarker
for B cells [45] and CD37 as a significant regulator for T–B interactions [46] are effective
biomarkers identified by our proposed computational methods. According to recent
publications, CD79A has a specific expression level in carcinoma-associated fibroblasts in
non-small cell lung cancers [47]. Therefore, considering the gene a potential biomarker for
subgrouping non-small cell lung cancer-associated cells is reasonable, especially tumor-
associated fibroblasts. As for CD37, an independent study, published in 2019, on the brain
metastasis of non-small cell lung cancer identified CD37 as an effective biomarker for
lung cancer brain metastasis [48], consistent with our prediction of CD37 as a potential
biomarker for non-small cell lung cancer-associated cell subgrouping. Therefore, our
predicted genes, such as CD79A and CD37, definitely contributed to the subgrouping of
the 32 candidate groups of cells with different cell types and tissue specificity and proved
at least useful in identifying specific cell subtypes, such as fibroblasts, in tumor tissues
and brain metastatic tumor tissues. Similar with CD3D and CD52, CD79A and CD37 can
not only help us monitor specific T–B interactions, which is one of the major parts of the
anti-cancer immune response, but can also provide us a new biomarker to evaluate the
alteration of cancer microenvironment during tumorigenesis.

The next predicted gene in our prediction list, HLA-DRA, is also associated with the
immune system. As one of the major genes involved in immune recognition processes,
it is mainly expressed in antigen-presenting cells, including B cells [49], mast cells [50],
and fibroblasts [51]. Therefore, its expression level can be used in distinguishing the
three groups of cells from other cells regardless of tissue specificity. As for the distinctive
potential of the gene in non-small cell lung cancer, researchers from MD Anderson Cancer
reported in 2018 that HLA-DRA has different expression levels in the normal and tumor
tissue sections in clinical FFPE samples [52]. Therefore, our predicted gene HLA-DRA
can also be an effective biomarker distinguishing different cell subtypes from different
tissues in non-small cell lung cancers. HLA-DRA is a potential biomarker that can be
used to evaluate the antigen-presenting efficacy for cancer monitoring or immune therapy
effectiveness evaluation.

Apart from the genes described above, other genes, such as SRGN, which mediates
specific mast cell-related granules secretion [53], S100A11, which mediates leukocyte
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differentiation [54], GPX1, which protects hemoglobin in circulating systems [55], and
FCER1G, which regulates IgE-mediated immune response [56] in mast cells, contribute to
the identification of specific subtypes of cells in certain tissues in non-small cell lung cancers.
Moreover, SRGN [57], S100A11 [58], and FCER1G [59] contribute to the identification of
mast cells in tumor microenvironments. This finding is consistent with our prediction on
their specific capacities on cell subgrouping. As for GPX1, it has a specific expression level
in the brain [55] and may thus be useful in distinguishing the cells of brain metastasis from
other cell subtypes. These features validated our prediction. Such genes can also be used
as potential biomarkers to monitor abnormal alteration during the initiation, progression
and metastasis of lung cancer.

In summary, the optimal features or genes in our prediction list are definitely useful
in qualitatively subgrouping the non-small cell lung cancer-associated cells of different cell
subtypes and tissue specificity. They represent the expression profiling characteristics of
their respective cell types from different tissues. As for their application, they can be used
as potential biomarkers to evaluate and monitor the abnormal proliferation, metastasis
or cell type transformation for each cell subtype, which may be quite important and
valuable for the clinical diagnosis and therapy of lung cancers and their progression. Thus,
they can be candidate lung cancer biomarkers marking different stages, regions and cell
groups of malignant lung cancers. This finding also indicated the efficacy of our proposed
computational methods.

4.2. Rules for Quantitative Tissue Specificity and Cell Subtype Classification

Apart from qualitative genes, we set up a group of quantitative rules for the accurate
classification of different cell subtypes and tumorigenic regions of non-small lung cancers.
All the parameters from the rules were correlated with single-cell level classification and
showed corresponding expression tendency with the predicted rules, validating the efficacy
and accuracy of our prediction. Here, we selected the most typical rule for each class of
cells for further discussion. All the rules are listed in Table S3. Detailed analyses are shown
below.

The first seven classes of cells were derived from the brain metastasis of non-small
cell lung cancer. According to our predicted rules for Class 1–7, the seven groups of rules
shared a specific expression pattern, that is, the low expression level of TPSB2, except rule
4, which described the fibroblasts of the brain metastasis. As for the other six cell subtypes,
previous studies showed that a low TPSB2 expression level is one of the typical expression
patterns in cells from the brain metastasis of non-small cell lung cancer [60], implying the
accuracy and efficacy of our predicted rules. As for the fibroblasts in brain metastasis,
TPSB2 expression is upregulated in fibroblasts from inflammatory environments [61], cor-
responding to the microenvironment of metastases. As for cell type specificity distinction,
B2M expression is upregulated in B cell subgroups, which can help identify cells from
class 1 (rule 687, mBrain_B lymphocytes) [62]. PLPP2 expression is downregulated in the
endothelial cells of the brain [63], contributing to the identification of cells from class 2 (rule
6292, mBrain_Endothelial cells). As for class 3 (rule 0, mBrain_Epithelial cells), another
parameter named DCN is downregulated in epithelial cells. Given that DCN [64] is down-
regulated in the epithelial cells of brain tissues, considering it a quantitative parameter is
reasonable. Class 4 (rule 72) described the fibroblasts with a specific expression pattern
(low expression level of SFTPC). The low expression level and extremely high level of
the gene are correlated with the brain metastases of malignant lung diseases, including
non-small cell lung cancer [65], validating the efficacy and accuracy of our prediction. As
for class 5–7, contributing to the identification of specific cell types mast cells, myeloid
cells and T/NK cells, specific quantitative biomarkers with specific expression tendencies,
such as a high SPP1 expression level (rule 678) for mast cells [66], a low TRAC expression
level (rule 700) for myeloid cells [67], and a high CD79A expression level (rule 883) for
T/NK cells [47,68] contribute to the establishment of immune microenvironments under
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certain pathological conditions, including the pathogenesis of non-small cell lung cancers,
validating the efficacy and accuracy of our prediction.

As for the next seven classes of cell subtypes contributing to the identification of
normal or metastatic lymph node-associated cells, the rules of such a group all contained
a specific biomarker with IFI44L, which has a specific high expression level in metastatic
lymph nodes and a relatively low expression level in normal lymph nodes (rule 16 and
53), corresponding with recent publications on the potential clinical predictive capacities
of the gene [69]. As for the detailed cell subtypes, similar with cells in brain metasta-
sis, metastatic B cells, epithelial cells, myeloid cells and T/NK cells also have specific
biomarkers with similar expression tendencies to TGM2 (rule 35) [70,71], TYROBP (rule
82) [72], TRAC (rule 94) [73], and CD79A (rule 156) [74] confirmed in the lymph node
under pathological/malignant conditions with corresponding variation trends. As for
the normal controls, we found a group of specific biomarkers with expression tendencies
confirmed by recent publications. Class 10 normal lymph nodes have a specific expression
level of CD79A, marking different groups of B cells [46]. In rule 8, the high level of the
gene indicated the target cell as B cells from lymph nodes, validating the efficacy and
accuracy of our prediction. In normal lymph nodes, the specific expression level of RPS27
(upregulated, rule 53) [75] and TRAC (rule 75) [76] shared similar expression levels with
tumor comparison [77], and SFTPC (rule 174) [76] was involved in the identification of
specific cell groups: B lymphocytes, myeloid cells, and T/NK cells, validating the efficacy
and accuracy of our prediction.

For the next 14 classes: class 15-21, class26-32, various cell subgroups from lung tumor
tissues, and normal tissues were gradually analyzed, and specific quantitative biomarkers
were identified for each group. For each cell subgroup with specific tissue specificity, we
identified some optimal biomarkers for accurate subgrouping. In our prediction rules for
normal lung tissues, ITGA5 (rule 167), MT-ND2 (rule 45), SFTPC (rule 114), ADH1B (rule
21), MMP7 (rule 60), TYROBP (rule 92), and SYK (rule 71) are typical biomarkers for seven
clusters of lung normal cells (B lymphocytes [78], endothelial cells [79], epithelial cells [80],
fibroblasts [81], mast cells [82], myeloid cells, and T/NK cells [83]), which had specific
expression tendencies and had been validated by recent publications. As for the malignant
tissues, for each of the seven cell subgroups of lung malignant tissues in non-small cell lung
cancer, IGLC2 (rule 17), AXL (rule 189), SERPINA1 (rule 190), CALD1 (rule 265), APOE (rule
383), S100A8 (rule 393), and GSN (rule 405) are useful in distinguishing the following cell
subgroups: B lymphocytes [84], endothelial cells [85], epithelial cells [86], fibroblasts [87],
mast cells [88], myeloid cells [89], and T/NK cells [90]. The correlations between gene
expression levels and cell subgrouping were confirmed by recent publications, validating
the prediction efficacy of our newly presented computational method.

As for the remaining four classes describing pleural effusion-associated cells, rule-
predicted cells from the four classes were validated by recent publications. For the first
subgroup of cells from pleural effusion, the B lymphocytes, recent publications confirmed
that one of our predicted upregulated parameters, TPT1 (rule 47), can definitely contribute
to the identification of B lymphocytes in samples obtained from pleural effusion [91,92],
validating the efficacy and accuracy of our prediction. Similarly, the upregulated genes,
APRT in rule 138, S100A8 in rule 14, and GIMAP7 in rule 90, are all typical biomarkers for
the identification of specific cell subtypes: epithelial cells, myeloid cells, and T/NK cells,
which are further supported by recent publications [93–96].

4.3. Analysis of Exclusive Genes

As one of the main results of this study, several quantitative rules to distinguish cell
types were established. We extracted exclusive genes for each cell type as described in
Section 3.3. Ten cell types had their own exclusive genes, which are listed in Table 3. They
may provide their specific contributions on their respective cell types. To reveal their
linkage to the corresponding cell types, we conducted an extensive discussion on them.
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Two genes, C5orf38 and MLLT4, have been shown to be specific biomarkers for lung
cancer epithelial cells in situ. C5orf38 has been shown to be associated with multiple
epithelial tumorigenesis [97,98], implying its specific expression pattern in lung cancer
epithelial cells compared to other cell types. As for MLLT4, this gene has also been reported
as a risk factor for lung epithelial tumorigenesis [99], validating such a result. Using such
two biomarkers, it is easy to identify whether lung epithelial cells have been malignantly
transformed or not.

Three genes, P4HA2, TJP3, and BAIAP2L1, have been shown to be associated with
lung cancer B lymphocytes in situ. P4HA2 has been reported to be an extracellular matrix
signaling-associated gene and was shown to participate in B-cell-mediated immune re-
sponses [100]. As for TJP3, although no direct evidence has connected such a gene with lung
cancer B cells, it has been reported to participate in the regulation of antibody-mediated
immune responses during lung tumorigenesis [101], validating such a result. Another
gene, BAIAP2L1, is a general regulator associated with the tumor microenvironment [102],
which may identify lung cancer B lymphocytes.

Three genes, TFAP2A, TJP1 and TMEM63B, have been shown to be associated with the
B lymphocytes in lymph node metastasis of lung cancer. TFAP2A [103] and TJP1 [104] have
both been identified in the lymph node of lung adenocarcinoma as potential biomarkers.
As for TMEM63B, it has also been shown to be associated with immune responses during
the metastasis of lung cancer [105], associated with the summarized cell subtype.

As for other clusters, RAB40B and SLC9A3R2 have been shown to be associated with
T/NK cells in the lymph node metastasis of lung cancer [106]. TMEM45B has been shown
to be associated with myeloid cells in lymph node metastasis of lung cancer [107]. TM7SF2
has been shown to be associated with T/NK cells in normal lymph nodes [103]. ZDHHC9
has been shown to be associated with myeloid cells in pleural effusion [108]. GNG12
and ITGA2 have been reported to relate to T/NK cells in pleural effusion [109]. FNBP1L
and PTPN13 have been shown to be related to endothelial cells of lung tumors [110].
FAM83H has been shown to be associated with the T/NK cells in brain metastasis of lung
cancer [109]. All these findings validated our results.

4.4. Functional Enrichment Results on Optimum Genes

As mentioned in Section 3.4, 14 enriched GO terms with p-values less than 0.001
were identified. All such GO terms were shown to be associated with cell-subgroup-
specific contribution to lung tumorigenesis, validating the idea that the optimum genes
can distinguish different cell subtypes and reveal their potential biological mechanisms.
The detailed discussion on significant GO terms can be seen below.

Due to the limitation of the length of the manuscript, we selected three typical
GO terms with the lowest p-value from each GO cluster. They were viral transcription
(GO:0019083) for biological processes, the cytosolic small ribosomal subunit (GO:0022627)
for cellular components and the structural constituent of ribosome (GO:0003735) for molec-
ular functions.

According to recent publications, viral infections and transcriptions have been shown
to be associated with the metastasis of lung cancer [111]. Thus, it is reasonable for the
optimum genes to be enriched in the viral-transcription-associated biological processes.
Specifically, viral infections have already been confirmed in multiple cancer subtypes to
be associated with different kinds of malignant metastasis [112,113]. Other biological
process terms may also be linked to the tumorigenesis of lung cancer in their respective
ways. For the cellular component cytosolic small ribosomal subunit, it has been shown
to be abnormally regulated during the initiation and metastasis of lung cancer [114],
corresponding with our results. As for the structural constituent of ribosome, in the
same paper [114], authors also validated the specific role of ribosome during lung cancer
tumorigenesis.
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5. Conclusions

We presented a random forest- and decision tree-based method for classifying cell
subtypes from different pathological regions of non-small cell lung cancer. The selected
the qualitative features (genes) and quantitative rules were confirmed to be correlated
with non-small cell lung cancer and involved in the complicated classification of different
cell subtypes. Therefore, the identified genes and rules can be potential biomarkers for
the clinical diagnosis and monitoring of non-small cell lung cancer targeting different
cell subtypes and tumorigenic focus, enriching techniques for the clinical treatment of
non-small cell lung cancer. The key codes are available in Code S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11090940/s1, Table S1: feature list yielded by the mRMR method, Table S2: performance of
two classification algorithms on different feature subsets, Table S3: rules extracted from decision tree.
Code S1: key codes used in this study.
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