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Abstract High throughput screening determines the effects of many conditions on a given

biological target. Currently, to estimate the effects of those conditions on other targets requires

either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally,

data-driven experimentation could be used to learn accurate models for many conditions and

targets without doing all possible experiments. We have previously described an active machine

learning algorithm that can iteratively choose small sets of experiments to learn models of multiple

effects. We now show that, with no prior knowledge and with liquid handling robotics and

automated microscopy under its control, this learner accurately learned the effects of 48 chemical

compounds on the subcellular localization of 48 proteins while performing only 29% of all possible

experiments. The results represent the first practical demonstration of the utility of active learning-

driven biological experimentation in which the set of possible phenotypes is unknown in advance.

DOI: 10.7554/eLife.10047.001

Introduction
Classical screening methods determine the phenotype of a biological component under many condi-

tions (such as the presence of different mutations or the addition of small molecules or inhibitory

RNAs). What phenotypes would be elicited by these conditions for other biological components is

unknown unless either additional screens are performed, or it is already known how effects on one

component generalize to others. The risk of not generalizing can be great; drug candidate screens

identify compounds that perturb a particular target in a desired way, but their possible off-target or

side-effects are not measured during the screening process and are often only discovered late in

drug development (Lounkine et al., 2012; Macarron et al., 2011; Trist, 2011). In principle, better

drug candidates could be discovered by performing experiments for every combination of potential

target and condition. However, exhaustive experimentation is infeasible for essentially all biological

systems (Murphy, 2011). These indicate the need for a practical method for both iteratively choos-

ing a subset of the total experiment space to observe, and for generalizing the observed results to a

potentially much larger set. This type of approach is referred to as active learning in the machine

learning literature.
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We have previously described an active learning method applicable to large sets of targets and

conditions (Naik et al., 2013). Using simulations, we showed how a predictive model could be

learned by incrementally selecting sparse subsets of experiments to perform based on the results

from previous sets. The results showed that accurate predictions (of whether a given drug would

affect a given target) were learned significantly more rapidly when this active learner was used to

guide sequential experiment selection than when experiments were selected at random. The critical

assumption of that work was that once an experiment was performed it could be unambiguously

assigned to one of a set of known phenotypes. While this may be a reasonable assumption for some

cases (e.g. on/off expression phenotypes), for most drug screening systems it is not only difficult to

define distinct phenotypes but the general problem of inferring which phenotypes are possible by

clustering observations is considered to not have a solution (Kleinberg, 2002; Vapnik, 1998). Thus

in order to use active learning for complex, real-world scientific applications, we must demonstrate

its feasibility under conditions where the number and types of phenotypes must be estimated as

data are acquired during the learning process.

In this paper, we consider the problem of using active learning to determine how multiple pro-

teins change their subcellular location patterns in response to multiple chemical compounds. To

demonstrate the feasibility of our approach to this problem, we performed a pilot study using a

small and spatially diverse set of proteins to capture the effects of a modest number of drugs on dif-

ferent subcellular structures (since we lacked the resources to consider all proteins and a large drug

library). Note that our goal is to identify whether a given drug perturbs the pattern of a given pro-

tein, and symmetrically, which drugs perturb which proteins in a similar manner. In doing so, we do

not seek to describe each protein or type of perturbation in terms of a previously described organ-

elle or structure, since previous work has illustrated that some protein patterns are not typical of any

single organelle (Chen and Murphy, 2005; Chou et al., 2011), and some perturbations may not

have been previously observed (and therefore not yet named). Similar to the approach taken in

screening drug libraries, we considered a small and chemically diverse set of perturbagens in hopes

of identifying salient patterns of effects (Inglese et al., 2007; Macarron et al., 2011). While there is

eLife digest Biomedical scientists have invested significant effort into making it easy to perform

lots of experiments quickly and cheaply. These “high throughput” methods are the workhorses of

modern “systems biology” efforts. However, we simply cannot perform an experiment for every

possible combination of different cell type, genetic mutation and other conditions. In practice this

has led researchers to either exhaustively test a few conditions or targets, or to try to pick the

experiments that best allow a particular problem to be explored. But which experiments should we

pick? The ones we think we can predict the outcome of accurately, the ones for which we are

uncertain what the results will be, or a combination of the two?

Humans are not particularly well suited for this task because it requires reasoning about many

possible outcomes at the same time. However, computers are much better at handling statistics for

many experiments, and machine learning algorithms allow computers to “learn” how to make

predictions and decisions based on the data they’ve previously processed.

Previous computer simulations showed that a machine learning approach termed “active

learning” could do a good job of picking a series of experiments to perform in order to efficiently

learn a model that predicts the results of experiments that were not done. Now, Naik et al. have

performed cell biology experiments in which experiments were chosen by an active learning

algorithm and then performed using liquid handling robots and an automated microscope. The key

idea behind the approach is that you learn more from an experiment you can’t predict (or that you

predicted incorrectly) than from just confirming your confident predictions.

The results of the robot-driven experiments showed that the active learning approach

outperforms strategies a human might use, even when the potential outcomes of individual

experiments are not known beforehand. The next challenge is to apply these methods to reduce the

cost of achieving the goals of large projects, such as The Cancer Genome Atlas.

DOI: 10.7554/eLife.10047.002
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a large literature on chemical library design (Gordon et al., 1994; Welsch et al., 2010), some of

which attempts to make use of observed data or design of experiments (Tye, 2004), we are unaware

of methods which have been applied to studying how the behavior of large numbers of targets

beyond single classes (e.g. kinases, GPCRs, etc.) are affected.

Our approach is similar to other high-content campaigns (Abraham et al., 2004; Zanella et al.,

2010) in that we made extensive use of liquid handling robotics for both drug manipulation and cell

culture. The crucial distinctions and novelty of this work are that multiple targets and perturbagens

were considered at the same time and that the experiment loop (deciding what experiments to per-

form next) was entirely guided by a machine learning algorithm without human intervention. While

active learning and similar ideas have been applied to biological data as post-hoc or retrospective

analyses (Danziger et al., 2009; Liu, 2004; Mohamed et al., 2010; Romero et al., 2013) and while

robotically-executed experiments have been carried out (King et al., 2009), to our knowledge this is

the first series of active learning-driven prospective biological experiments where the possible

answers (e.g., what phenotypes might be observed) were not known a priori with the only constraint

being the type of experiment that could be performed.

Results

Experiment space construction and active learning
We have previously constructed an atlas of unperturbed protein subcellular location patterns by

extensive CD-tagging in NIH-3T3 cells (Coelho, 2013; Garcia Osuna et al., 2007) which produced

clones endogenously expressing different EGFP tagged proteins. From fluorescent microscopy

images of these cells we chose 48 different clones (Supplementary file 1) collectively representing a

broad range of location patterns (Figure 1). We chose an additional six clones, distinct from the

above, for independent testing of how well a model learned from the 48 would generalize to unob-

served proteins. We also formed a library of 48 different treatment conditions (’drugs”’) (Table 1):

47 chemical compounds suspected to affect some aspect of subcellular trafficking, structure or local-

ization, together with a vehicle-only control (no drug). The clones and drugs were each assigned

numbers by which the active learner could refer to them; both the clones and drugs were “dupli-

cated” by assigning two numbers to each, and this duplication was hidden from the learner. The

learner was thus presented with a 96 x 96 space of possible experiments in which an experiment

consisted of acquiring images for a given clone in the presence of a given drug. As described in

Materials and methods, a new experiment was done when the learner requested it even if an experi-

ment had been done previously for a combination of either of the duplicates of that drug and target

– images were not shared across the duplicates and therefore the learner could not easily uncover

the duplications by seeing which images were the same. The rationale for the duplication was to pro-

vide a basis for evaluating the choices of experiments by the learner after active learning was

completed.

The first round of experiments began by collecting images of all clones for one of the vehicle-only

conditions (96 experiments). For analysis and model building, images were represented by numerical

features that captured the subcellular localization of the EGFP labeled protein. Data from each

experiment were subjected to a quality control procedure established at the outset from the initial

data (see Materials and methods).

At the end of each round (including the first), all experiments up to and including that round (that

passed quality control) were used to identify phenotypes. We use the term ’phenotype’ to refer to a

statistically distinguishable localization pattern that may or may not correspond to a previously

described or characterized drug effect; see Discussion. Each experiment was represented by a set of

feature vectors corresponding to its images. We clustered these sets such that clusters of experi-

ments with similar feature vectors defined phenotypes (see Materials and methods). The number of

phenotypes was determined anew from the data every round; which patterns are statistically differ-

ent may change from round to round as new images might contain entirely new patterns, might be

additional examples of a pattern that was previously not considered statistically significant, or might

show a pattern that is intermediate between two previous clusters causing them to become joined.

The phenotype assignments were then given to the learner to form a model to make predictions

about unmeasured experiments (see Materials and methods). The basis of this predictive model was
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to group together those drugs that had been observed to elicit the same phenotype for at least one

clone and had not been observed to elicit different phenotypes for any clone (and similarly by

grouping clones). This grouping reduced the complexity of the problem: each group of drugs or

clones was assumed to behave the same; of course, later experiments might reveal that some of

these groupings were incorrect. The predictions of the model were therefore that drugs in the same

group would show the same effect on all clones in future experiments (and that all clones in the

same group would be affected similarly). Using this model of correlations of phenotypes among

drugs and clones, the active learner chose a new round of 96 new experiments to be performed.

The choice of experiments in a round simultaneously prioritized experiments that would test the

greatest number of the groupings (i.e., experiments predicted by the largest groups of drugs or

clones) while minimizing the number of experiments that could be predicted from each other (i.e.,

experiments predicted by the same group).

The learner repeated this process for a total of 30 rounds (this number was chosen due to bud-

getary constraints). Since not all experiments passed quality control, 30 rounds accounted for 2697

Figure 1. Representative location patterns of the CD-tagged clones. Images of EGFP (green) and Hoechst 33,342 (blue) fluorescence were acquired at

40x with an automated widefield microscope (see Materials and methods). Each panel is independently contrast stretched. The identities of the tagged

gene for each clone are listed in Supplementary file 1. Clone order is random with respect to location pattern. The untagged NIH 3T3 (upper left) was

assigned as clone 46.

DOI: 10.7554/eLife.10047.003
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Table 1. Compounds used.

Compound # Compound
Stock concentration
(mM) (in 100% DMSO)

1 Apicidin 2.00

2 Cytochalasin D 2.45

3 Latrunculin B 1.25

4 Cycloheximide 1.75

5 a-amanitin 0.25

6 Camptothecin 2.85

7 Chloramphenicol 12.4

8 Nocodazole 8.3

9 Diethylstilbestrol 1.85

10 Dinitrophenol 35.3

11 Griseofulvin 4.95

12 Amiloride hcl 1.88

13 Alsterpaullone 0.85

14 Dimenhydrinate 13.85

15 Colchicine 3.75

16 Econazole 3.35

17 Chloroquine 1.45

18 Bulsulfan 6.1

19 Actinomycin D 1.2

20 Radicicol 1.35

21 Calmidazolium 1.45

22 Etoposide 0.85

23 z-Leu(3)-Al 1.05

24 Exo2 1.4

25 Exo2 0.7

26 Exo2 0.35

27 Brefeldin A 0.9

28 Brefeldin A 0.45

29 Brefeldin A 0.23

30 Cytochalasin D 1.23

31 Cytochalasin D 0.61

32 Latrunculin B 0.63

33 Latrunculin B 0.31

34 Staurosporine 0.55

35 Leptomycin B 0.025

36 Trichostatin A 0.025

37 Paclitaxel 0.645

38 Ganciclovir 3.15

39 Monensin 1.1

40 5-azacytadine 2.85

41 Na butyrate 2.95

42 Hydroxyurea 22.35

43 Clonidine hcl 4.3

Table 1 continued on next page
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experiments (~29%) of the total 96 x 96 experiment space, which covered 1670 experiments (~72%)

in the underlying (unduplicated) 48 x 48 experiment space. During the process of data collection,

there was no human intervention as to which experiments to perform, nor did we attempt any

assessment of the performance of the learner. To complete the dataset, the 634 combinations of

drug and clone (ignoring duplication) that had not been chosen by the learner were collected after

the 30 rounds. We also collected images for all drugs for six clones outside the set of 48 that the

learner knew about.

Accuracy of learning
After data collection had been completed, we first asked whether the active learner accurately pre-

dicted phenotypes for unobserved experiments. We assessed the accuracy of the predictions of a

model from a given round using data it had not yet seen: data from the ’completion’ experiments as

well as from experiments that were performed in subsequent rounds. Each prediction for an experi-

ment consisted of a phenotype from the set of phenotypes observed so far, and was considered cor-

rect if a plurality of images from that experiment were closest (in the feature space) to an image

from an observed experiment that had been assigned to the same phenotype. That is, for each of

the images from an as yet unobserved experiment, the image was found that was closest to it out of

all that the learner had already observed. The phenotype that this closest image had been assigned

by the learner was given to the image from the unobserved experiment. The number of unobserved

images assigned to each phenotype was then counted, and if more images were assigned to the

predicted phenotype than any other individual phenotype, the prediction was considered correct

(note that the phenotypes themselves may change from round to round). This definition parallels the

nearest-neighbor methods used for clustering (see Materials and methods). Using this definition, the

accuracy of the model learned after each round was retrospectively calculated (Figure 2, black line).

We then asked whether the last actively learned model could make accurate predictions for the

six clones the learner had not seen. Given just the images for the unperturbed (no-drug) condition

for the six clones, we generated predictions for the remaining 47x6 experiments and assessed them

using the same nearest neighbor plurality approach described above. As a baseline accuracy for

these predictions, we can consider what predictions we could make without having learned a model.

In this case, we have no way of knowing what phenotypes are possible (other than the unperturbed

phenotypes), and must predict that no matter what drug is added the phenotype would remain

unperturbed. For the six unseen clones, this would lead to an accuracy of 85%, i.e., 15% of the

experiments showed a phenotype different from the unperturbed phenotype for that clone. The

model from active learning did much better than this, giving an accuracy of 98% (only 5–6 out of 282

experiments were incorrectly predicted). As can be expected, the learner’s predictions were also sig-

nificantly better than expected for random guessing if we are given the set of possible phenotypes

(P<0.05, Multinomial test). This high accuracy at generalizing to new clones suggests that the final

model had captured quite well the effects of the drugs on the localization of any target (at least for

targets somewhat similar to the original set).

Table 1 continued

Compound # Compound
Stock concentration
(mM) (in 100% DMSO)

44 Alginate lysate N/A *

45 Leptomycin B 1.0125

46 Trichostatin A 0.125

47 mdivi-I 3.55

48 Vehicle (No Drug) N/A

1.3 mL of a given stock were added to 1000 mL, so the final concentrations used are 1/1000 of the concentration

listed.

* 2.2 mg of the lysate (from Flavobacterium multivorum, Sigma-Aldrich) was dissolved in 2.0 mL DMSO to form the

stock solution; units indeterminate.

DOI: 10.7554/eLife.10047.004
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Efficiency of learning
Due to the duplications, for every unique combination of clone and drug, the active learner could

have selected to perform up to four logically equivalent (i.e. duplicated) experiments; we refer to

these sets of four as quads. The learner should be able to learn these (hidden) equivalences as its

learning proceeds, and eventually avoid performing multiple experiments in the same quad. To illus-

trate this process, Video 1 shows, for each round, how many experiments were done for each quad

and the accuracy of the predictions made at that round for experiments that had not yet been per-

formed (assessed in the same manner as for Figure 2). To calibrate these results, in an optimistic set-

ting an accurate model could be learned by performing only ~26% of the 96 x 96 experiments (see

Materials and methods). Presumably an efficient learner should learn regularities quickly and then

avoid excessive sampling of each of the (48 x 48 = 2304) quads. In other words, once the learner

had realized that clone A was similar to clone B, it could do experiments for only one of those clones

and then predict that the same result would have obtained for the other. The same holds for recog-

nizing that two drugs are similar. Thus, the extent to which the learner chose to do experiments for

only one clone and one drug from the same quad reflects its ability to recognize similarities and thus

do experiments efficiently.

Intuitively, when the learner chose an unmeasured quad to examine, if the drug elicited a statisti-

cally dissimilar localization pattern than was predicted, then the next model would likely be

improved. Potentially, a different grouping of drugs and clones would have to be formed to explain

the observed data, or new phenotypes would be estimated (since the data would have different sta-

tistically distinguishable parts), or a combination of these. We therefore asked how well

Figure 2. Accuracy of active learning. The performance of the active learner (black line) generally increased

superlinearly as more data were acquired. Hypothetical models (dotted gray lines) with fixed generalization

accuracy have constant slopes and are displayed for reference (10% to 90% rates as isoclines). The initial model

poorly generalized (~45%) while the final model learned at round 30 (29% experiment space coverage) had ~75%

generalization accuracy and 92% overall accuracy. A regression model based on unique experiment coverage

(blue line, see main text for details) qualitatively explains the observed learner performance. Using this coverage

model, an estimate of expected accuracy for random learning was constructed (red line, see main text for details);

the final accuracy difference between the active learner and random learning is ~40%.

DOI: 10.7554/eLife.10047.005
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generalization accuracy could be predicted from

the degree to which quads were sampled. It is

important to note the distinction between gen-

eralization accuracy and overall model accuracy:

the former is the accuracy of predictions for

unobserved experiments while the latter is the

combination of the generalization accuracy and

the percent of experiments done so far (since

we assumed that the results of experiments that

had been done were correct).

We summarized each round’s experiments by

constructing a five-bin histogram of how often

experiments were done for the same quad: the

first bin was the fraction of quads (out of 48 x 48

total) that were not sampled, the next bin was

the fraction of quads that were sampled only

once, and so on. For example, in round 11 there

were 1529 quads never observed, 575 observed

once, 164 observed twice, 36 observed three

times, and none observed four times. This was

encoded as the vector [0.66, 0.25, 0.07, 0.02,

0.0]. We fit the resulting 30 vectors, one for each

round of learning, to the generalization accuracy

at that round by linear regression (see Materials

and methods). As shown in Figure 2, experiment

coverage is a good predictor of observed model

performance (blue line).

We can further understand the performance

of the learner by examining the coefficients of

regression, which are in units of expected accu-

racy (out of 1.0 or 100%) per coverage fre-

quency. These were: 0.42 (quads not covered),

1.0 (covered once), -0.57 (2x), 6.4 (3x), and -21

(4x). For the round 11 data above, this fit pre-

dicts 60% generalization accuracy, which is close

to the measured 61% (72% total accuracy).

This fit, as to be expected, shows a large

opportunity cost for performing four experi-

ments from the same quad that should have

been recognized as being equivalent, and a

slight penalty for performing two experiments.

Interestingly, there was a benefit of performing

three experiments in the same quad, although

this happened rarely (7% of the time). We attri-

bute this to the fact that some quads showed

greater variation within their experiments than

others (data not shown), leading the learner to

do more experiments within a quad in order to

improve its accuracy. The number of phenotypes

generally increased as data were collected (Fig-

ure 3); part of this was due to learner assigning new phenotypes to account for these hypervariable

experiments. Interestingly, the expected reward for not performing any experiments in a quad is

positive; this is consistent with there being additional similarities beyond those resulting from the

duplications (e.g., some of the clones or compounds are similar enough that some unmeasured

quads can be accurately predicted from others).

Video 1. Experiment selection and accuracy of

predictions during the active learning process. Each

drug and clone were duplicated in a manner hidden to

the active learner (96 x 96 experiments) and are

grouped for display purposes together (as 48 x 48).

These four biological replicates (which we call a

“quad”) are outlined in black, and each is shown

separately as a sub-box (not outlined) in its quad. The

first frame shows the starting point: unperturbed

experiments were measured for all clones (white boxes

in a single subcolumn for drug 48) and the model

predicted that all drugs lead to the same phenotypes.

Each model’s classification accuracy on unseen data is

displayed for each 96 x 96 experiment (sub-boxes) in

green when correct, and purple when not. For

example, the first frame shows that the phenotypes for

most drug treatments differed from their

corresponding unperturbed condition, and so the

overall accuracy was low (more purple than green). By

design, the active learner chose the second batch of

experiments to evenly sample each drug and clone

(sparse white boxes). Those data led to a model with

lower accuracy because emphasis was placed on

ultimately spurious correlations in phenotypes. In

general, the active learner always chose to perform

experiments to test presumed correlations in

phenotypes, and so there was a substantial increase in

accuracy from round 2 to round 3. As additional rounds

were performed, the accuracy gradually increased and

most quads were only measured once. By round 20,

many of the experiments had been correctly predicted

and the learner focused on learning the remaining

ones. By the last round, most predictions were correct,

but the predictions for a few drugs remained largely

incorrect.

DOI: 10.7554/eLife.10047.006
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Estimated accuracy from random learning
Active learning methods are often characterized in computer simulations relative to a learner that

chooses experiments uniformly at random. We can construct an estimate of the expected perfor-

mance of a random learner if it is assumed that, as with the actively learned data, generalization

accuracy can also be predicted by the extent of quad coverage. This assumption avoids the compli-

cation (and computational expense) of having to simulate what data would have been acquired in

the 96 x 96 space from the data that was actually acquired (i.e., generating new images or feature

vectors).

We therefore simulated, at each round, how many experiments would have been chosen at ran-

dom from each quad (i.e., how many balls randomly thrown into a 96 x 96 grid would have ended

up in each quad of four bins). Applying the regression fit above to these randomly sampled 96 x 96

experiments (see Materials and mMethods) produces a lower rate of learning (Figure 2, red line);

the final accuracy predicted for random sampling was 40% lower than that achieved by the active

learner. While we cannot know that this estimate is correct (given the complicated process of pheno-

type estimation at each round), it is clear that the active learner chose highly nonrandom subsets of

experiments to perform (P<0.05, analytical distribution, see Materials and methods) and that the

resulting accuracy was much higher than expected from random choice.

Identifying perturbations
Taken together, the previous analyses show that the active learner in able to accurately learn com-

plex localization phenotypes, some of which may be quite subtle (see Figure 4 for an overview). In

other discovery contexts, such as drug screening, efficient identification of acute phenotypic changes

is the goal. To accomplish this while incorporating the efficiency of active learning, we can imagine a

process by which an active learner is first used to learn all phenotypes until some stopping criterion

is met, and then the acute phenotypes are identified as a secondary task from the actively collected

data. For this two-step process, we can apply more stringent quality control after data collection has

ceased, in order to remove from consideration low quality images not caught by the initial auto-

mated quality control. We performed second step filtering as described in Materials and methods.

Figure 3. Number of phenotypes identified at each round in the learning process.

DOI: 10.7554/eLife.10047.007
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Figure 4. Contrasts between phenotypes identified by the active learner. The last actively learned model identified 51 ’phenotypes,’ each phenotype of

which is defined by a set of imaged fields. To independently assess the extent to which these phenotypes were different, a logistic regression classifier

was trained to distinguish the actively learned phenotypes and evaluated by cross-validation; the classifier was able to distinguish all 51 phenotypes in

fields not used for training with 75% accuracy. To give a sense of the spread of each phenotype, a randomly chosen cell from a field in the source

phenotype (row) that had the median classification accuracy against another phenotype (column) is shown; this field that is chosen can be considered

representative of the source phenotype when considered relative to the other phenotype. In this way, visually across a row one sees examples from

each phenotype reflective of differences between it and other phenotypes. Phenotypes have been reindexed (Supplementary file 2 shows both

indices for each drug-clone combination) and placed into groups to facilitate comparisons between visually similar phenotypes; within-group

comparisons are outlined by orange squares (the human assigned labels corresponding to each group are shown in Supplementary file 3). Each

phenotype was assigned to one or more drug-clone combinations; groups are ordered from most (top) to least (bottom) frequently assigned to

experiments, and likewise within groups, phenotypes are ordered by frequency (right column, color coded by percentile bins: magenta for 1

experiment (25th percentile), cyan for 2–14 experiments (25–75th percentiles), and gold for the remainder). 20 phenotypes (39%) are assigned to a single

combination of drug and clone; these account for just 1% of the combinations assessed by the learner. These rarely exhibit acute localization, and in

only one case (phenotype 37) is this likely due to an experimental artifact (overly confluent fields). For example, in the third group from the top (mostly

nucleolar localization), phenotype 9 appears to have condensed nucleolar localization relative to more popular phenotypes 5–8, and phenotype 10

appears to reflect smaller nuclei. Phenotype 11 contains some out-of-focus examples, but otherwise has greater cytosolic localization than the other

nucleolar phenotypes. Phenotypes 35–43 appear to be enriched in cytotoxic responses, and include two phenotypes with confluent fields (36 and 37),

however not all fields in those phenotypes are confluent. Some phenotypes are complex, such as phenotypes 20–27, which show a range of nominal

secretory localization and cell body collapse or block in secretory localization. In general, cells sampled within phenotypes (across rows) are more

visually similar to each other than between phenotypes, and phenotype differences are generally due to bona fide (albeit often subtle) localization

differences rather than artifacts. The figure is best viewed on a computer to allow zooming; a full resolution version of the figure (400 MB) is available at

http://murphylab.web.cmu.edu/software/2016_eLife_Active_Learning_Of_Perturbations/Figure4Full.pdf.

DOI: 10.7554/eLife.10047.008
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Figure 5. Degree of perturbation for all experimental combinations. The amount of perturbation for each combination of drug and clone is shown, with

deeper shades of blue indicate larger degrees of perturbation (larger distances from the mean feature values for a clone and drug combination to the

mean feature values of the vehicle-only control for that clone; feature values are contained in Supplementary file 4). Images were subjected to

additional quality control for this analysis; diagonal red lines mark experiments failing this stricter quality control. Clones are grouped by the labels

assigned to the unperturbed (control) subcellular localization patterns; the mean perturbation of all proteins with a given label is also displayed for each

drug. Drugs were clustered with average linkage using the mean perturbation data. Different tagged variants of the same protein (labeled with clone

identifier in parenthesis) sometimes have distinguishably different responses to drugs (e.g. Rps27a clones 29 and 44). Beyond cytotoxic conditions (e.g.

Latrunculin B at 1.25 mM) few dominating patterns are apparent; neither unperturbed subcellular compartment nor known targets of drugs are major

predictors of the degree of perturbation of most experiments.

DOI: 10.7554/eLife.10047.009
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To assess the learner’s ability to find acute changes, we divided experiments into those for which

the learner predicted large effects (compared to unperturbed) and those predicted to have small or

no change. When we measured the actual effect sizes, the experiments with large predicted effects

were indeed observed to have larger effect sizes (P<0.001, Mann-Whitney U). Furthermore, for those

predicted to have an acute change, the predicted extent of change was modestly correlated with

the observed effect magnitude (Pearson’s r = 0.53).

One difficulty with this analysis of effect sizes is that the scale of feature distances are likely differ-

ent for distinct unperturbed patterns (e.g., nucleolar vs. Golgi), a fact not appreciated by us when

we began this work. To correct for this, we formed a 48 x 48 matrix of the degrees of perturbation

by grouping the clones by visual assessment of the unperturbed phenotypes (i.e., grouping by

apparent subcellular pattern). These groups were placed on a common scale by normalizing features

within each group by their maximum response. The results are shown in Figure 5, in which for dis-

play purposes we clustered the drugs using the average perturbation of each group of clones for

each drug. This provides a summary of the extent to which each drug affected the spatial distribu-

tion of each tagged protein. Beyond the strong perturbations of the cytotoxic drug conditions

(drugs between Latrunculin B 1.25 mM and 0.31 mM), the most striking aspect is that nearly all drugs

elicited noticeable changes to protein localization patterns in most experiments. These include

effects of perturbagens commonly used in cell biology, such as Brefeldin A, on targets other than

their intended compartment (e.g. on nucleoplasmic proteins). A two-way ANOVA model fit to these

perturbations (taking each drug cluster as a factor, and each group of clones as an independent fac-

tor) indicates that these drug and clone groups are all significantly different (P<0.05, Tukey’s range

test, Bonferroni corrected).

To confirm and illustrate one of the top-ranked predictions, we reimaged cells expressing tagged

Fa2h with and without various treatments using a spinning disc confocal microscope. The active

learner predicted that both cycloheximide and Econazole would affect Fa2h localization, and that

they would have different effects. Fa2h has been previously suggested to be localized to the endo-

plasmic reticulum (Eckhardt et al., 2005), and has been observed to also occasionally localize within

the nucleus in MDA-MB-231 cells (Takeda et al., 2013) although no conclusive evidence has been

presented. In our images, we have observed a broad range of phenotypes encompassing these and

other localizations. We imaged Fa2h localization over a 4 hr period (from +2h to +6h after treat-

ment) in a manner otherwise closely resembling the active learning experiment protocol (see Materi-

als and methods). Images of treated vs. vehicle treatments were readily classified by logistic

regression (85% accuracy, n = 73, P<0.001, one-sided Binomial test against p = 0.33, the class-pro-

portional null); see Figure 6A. Furthermore, cycloheximide and Econazole treatments were also dis-

tinguishable above random guessing (68% accuracy, n = 47, P = 0.006, one-sided Binomial test

against p = 0.51, the class-proportional null). Projecting these data onto the two classifiers gives rise

to Gaussian distributions for each treatment; consistent with the active learning predictions (and

clustering method used), these three conditions have distinguishable distributions. That these classi-

fications are independent of treatment duration suggests that these distributional shifts may be rap-

idly attained in the first (unmeasured) 2 hr; we do not have statistical power to reject the possibility

that they are in steady state from 2–6 hr thereafter. Taken together, these results confirm our predic-

tions of differences as a result of treatment.

As shown in Figure 6A, Fa2h condition-dependent alterations to localization are not acute (as

measured by our image features), nor did they appear to completely restrict or translocate between

well-defined compartments. While our analysis hereto has deliberately avoided the complications

and inconsistencies of human-assessed labels, we now wished to provide a description of the Fa2h

localization differences in those terms. To do this, we performed an analog of archetypal analysis

(Cutler and Breiman, 1994) in which we sought to identify a small number (five) of archetypical cells

(single-cell fields), each with some human-assessed description of localization pattern, and then

described the remainder of the cells as linear combinations of these archetypes; this process is car-

tooned in Figure 6B (see Materials and methods). As shown in Figure 6C, these archetypes are not

trivially described. Two exhibit both extra- and subnuclear localization (but curiously are not colocal-

ized with nucleoi, and objects are too large to likely be Cajal bodies). Even the secretory localization

patterns are unusual: in several cells a nonuniform perinuclear and early ER pattern appears present,

without concomitant late ER or Golgi-associated structures, and with vesicles seemingly too small to

be microsomes. Without further evidence of the other contents of these structures, these
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Figure 6. Complex phenotypes arising in top-ranked translocations discovered by the active screen. EGFP-tagged

Fatty acid 2-hydroxylase (Fa2h, clone number 23) expressed in NIH-3T3 cells exhibits a broad range of localization

patterns in two top-ranked treatments, cycloheximide (drug 4), and Econazole (drug 16). (A) Image features

calculated from confocal images (60X) of two treatments (orange squares and green triangles, respectively) as well

as the vehicle treatment (purple dots) are reasonably well classified by logistic regression. The resulting 2D

projection of the 173-dimensional feature space transforms the distribution of each treatment into a 2D Gaussian

(95% confidence intervals as colored ellipses). Consistent with the active screen results, drug treatments are

distinguishable from vehicle and from each other. Fa2h exhibits an unusual spread of secretory-associated, or

Figure 6 continued on next page
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assessments are of course speculative. Nonetheless, the overall visual decomposition analysis sug-

gests that phenotypic differences are concordant with the known mechanism of action of the two

drugs. We emphasize that these issues of phenotype label ambiguity were completely immaterial to

the active learner, which merely required that roughly similar images have roughly similar feature

vectors.

Discussion
Thanks largely to the emergence of ’-omic’ approaches, efficiencies of scale in experimentation have

received considerable attention (Ideker et al., 2001; Kitano, 2002; Westerhoff and Palsson,

2004). Our work directly benefits from and leverages modern solutions that reduce the cost of per-

forming a set of experiments: automated microscopy, liquid handling robots for cell culture and

compound management, and automated image analysis (Abraham et al., 2004; Boland et al.,

1998; Macarron et al., 2011). Our findings extend these benefits into the regime of efficiencies of

scope.

We have shown that our active learner – previously only characterized through simulation of ideal-

ized data – was able to efficiently learn an accurate model of how drugs alter protein subcellular

localization in a practical setting. To do this the learner had to overcome several real-world obstacles

including extensive variation within and between experiments and the requirement that the set of

phenotypes had to be learned as experiments progressed. The results showed not only that an accu-

rate model could be learned in this setting without exhaustive experimentation but that the model

could generalize to proteins that it had not observed previously.

The final model contained over 50 clusters, which we have considered to be distinguishable phe-

notypes. Of these, 31 were observed for more than one clone and drug combination. Figure 4

allows a visual comparison of the clusters, although it can be very difficult to visually distinguish sub-

cellular patterns that are reproducibly distinguished by numerical features (Murphy et al., 2003).

Whether these clusters are “biologically relevant” is a difficult question. For example, a drug may

cause a slight swelling in an organelle (such as lysosomes or mitochondria) that would be picked up

by our numerical features. Is this a unique, biologically relevant phenotype, especially since the

extent of the swelling may be difficult to see visually and may depend on the concentration of the

drug used? Regardless of what term we use, we can conclude with confidence that that drug affects

that organelle (and perhaps that other drugs may have similar effects). To avoid the issue of nomen-

clature, we can simply consider the clusters to be what they are: changes induced by drugs that

were observed frequently enough to be considered significant. Demonstrating the feasibility of auto-

matically and efficiently finding such effects for large sets of drugs and targets was one of the major

goals of our study. It is beyond the scope of our study to further characterize each of these changes,

but we suggest that a detailed characterization of each of our observed effects be carried out when

using any of the drugs we have studied.

Future work on active learning for problems such as ours should account for several methodologi-

cal shortcomings we identified after completing our experiments. Most importantly, image quality

Figure 6 continued

subnuclear (but not nucleolar), and sometimes both localizations in single cells. (B) In order to visually assess the

distributional differences between treatments, we can extend the usual visual vocabulary of coarse localization

phenotypes (e.g. ’Golgi,’ ’ER’ and the like) by decomposing the feature vectors of each single-cell image in terms

of a fixed set of single-cell images. Each image can be expressed as an additive combination; for example, a cell

exhibiting both a subnuclear and small vesicular localization can be linearly approximated by adding together

feature vectors of a subnuclear and a separate small vesicular cell. Subtractive cases (B, bottom row) are false

colored with red instead of green for EGFP signal. (C) Archetypal cells (top row), chosen by minimax clustering

(Bien and Tibshirani, 2011), can be approximately added in different weighted combinations to reveal nuanced

differences in condition-dependent localization (see Materials and methods). For each treatment (pair of rows),

two cells (leftmost column) and their additive description in terms of the archetypes are displayed. White arrows

highlight dim subnuclear signal where visually subtle. Overall, Econazole appears to have the effect of generally

enhancing post perinuclear/ER secretory structure localization, whereas cycloheximide generally suppresses ER

localization in favor of presumably later secretory vesicular localization.

DOI: 10.7554/eLife.10047.010
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control was based only on images taken in the first round of experimentation, and so poor quality

images of types seen later were not eliminated during the active experimentation. Our concern was

that human quality control might bias the experimentation (e.g. subtle phenotypes not obvious to a

human might be missed); however our results, particularly phenotype identification, would have

likely been improved had we allowed ourselves to monitor the data being collected. Our results also

suggest that future active learning projects of this type should directly assess differences in the varia-

tion in measurement results for different experiments (i.e., different drug-target combinations),

which may require making decisions (i.e., during acquisition) about which combinations require addi-

tional image collection.

Given the small size of the experiment space that our budget allowed us to study, we cannot

claim that our findings generalize to all proteins or all possible perturbagens. The results suggest

that the model is not simply learning a solution to the problem given (that of 96 clones and 96

drugs) and that these predictions are well correlated to underlying biological pathways represented

here by subcellular localization. Future experiments exploiting this generalization of the learned

model could result in accurate predictions for novel drug/target pairs to further reduce the cost of

discovery for potential drug/target interactions. This is a major benefit of our approach compared to

the typical single-target based approaches that are widely used today.

Materials and methods

Availability
All images collected and software used for this work will be made available upon publication at

http://murphylab.web.cmu.edu/software.

Clone generation, storage and preparation
Clones expressing different EGFP-tagged proteins were generated as previously described

(Coelho, 2013; Garcia Osuna et al., 2007). The tagged gene was identified by sequencing the

region near the retroviral insertion (Kangas et al., 2016). 48 clones were chosen; see

Supplementary file 1. To ensure consistency of tagged protein expression, localization and drug

responsiveness across rounds of imaging, clones were grown to large quantities in cell culture facto-

ries (Nunc) per manufacturer instructions and stored in 1 mL cryotubes (Corning) at -80˚C in freezing

media as described elsewhere (Hay, 1978). All clones were kept constantly available by periodic

replenishment from frozen stocks. Dishes were grown to ~90% confluence and used within four pas-

sages of thawing.

Compound library storage and preparation
Compounds (Table 1) were solubilized once in pure DMSO. 1.3 ml of each was individually pipetted

with the liquid handling robot into many Eppendorf tubes and stored at -4oC until needed. When

requested by the learner for an experiment a tube was taken out and placed in the liquid handling

robot. Room temperature imaging media (1 ml Opti-MEM (Invitrogen, Carlsbad, CA) supplemented

with 1.25 mg/ml Hoechst 33,342 (Invitrogen)) was pipetted by the robot directly into the tube to pro-

duce the media used both for drug treatment and imaging. This procedure was adopted to control

pipetting and dilution inaccuracies, and to form the final solution in one step. From these tubes, a

384-well microtiter plate (Nunc) was filled in correspondence to the experiment arrangement.

Imaging plate design
Clones were plated for imaging as follows: the contents of a 60 mm dish were trypsinized (0.1% v/v)

(Invitrogen), counted with a hemacytometer, resuspended in growth media, and ~250,000 cells were

pipetted into a 1.5 ml Eppendorf tube. These Eppendorf tubes were placed in a liquid handling

robot (Eppendorf, Hauppauge, NY) and plated under the control of a Python script that generated

commands for the robot. Each experiment well received ~6250 cells. Technical triplicates were ran-

domly arranged on the plate. The 96 x 3 experiment wells were augmented by 20 wells reserved for

imaging controls (a subset of the clones from the 48), also randomly placed. After allowing the cells

to attach for 24 hr, the medium was removed and replaced by the drug-containing media from the
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384-well drug microtiter plate using the liquid handling robot. Drug additions were timed so that

the period between the first and last wells was 6 hr.

Microscopy
All microscopy was performed using an automated microscope, the IC100 (originally manufactured

by Beckman-Coulter and maintained by Vala Sciences, San Diego, CA) equipped with a Nikon S

Fluor 40x/0.9 NA objective. Identical settings were used across all plates; in particular, camera gain

for Hoechst emission was set to 0.37, with a 16.6 ms integration time, camera gain for EGFP emis-

sion was set to 0.6, with a 4 s integration time. Mercury arc bulbs were exchanged after as close to

100 hr as possible to attempt to control illumination variation. The pixel size in the sample plane was

0.161 x 0.161 mm. For confirmatory experiments, an Andor (Concord, MA) Revolution XD System

spinning disk confocal microscope with a Nikon Plan Fluor 60x/1.4 NA objective and a pinhole diam-

eter of 50 mm was used. The pixel size in the sample plane was 0.174 x 0.174 mm.

The images for each experiment in the 96 x 96 space were kept separate, i.e., the images were

stored under the number of the clone and drug that the learner had requested and not mixed with

images for the other numbers of that clone and drug. Thus if the learner requested an experiment

for clone and drug numbers that corresponded to the same actual clone and drug as a previously

performed experiment, new images were collected rather than providing the existing images so that

the learner could not detect the correspondence between clones or drugs by exact matching of

images.

Image analysis and quality control
Images were individually contrast stretched and represented by SLF34 feature vectors (one per

image) as described previously (Coelho et al., 2010). These whole image (“field level”) feature vec-

tors describe the fluorescence patterns of protein and DNA stains relative to each other and are not

directly interpretable by humans as fixed subcellular locations. Automatic quality control was applied

to filter out poor quality images: e.g., fields that contained no cells, were overly confluent, or were

out of focus. This was done using a random forest classifier (Breiman, 2001) that was trained before

the beginning of the active learning experiments on data collected for the initial 96 (no-drug) experi-

ments from human labeling of 600 fields. If no images for an experiment passed quality control, the

experiment was considered as not having been performed. From raw data each round, for the sub-

set passing quality control, the collected features were column centered (i.e. set to zero mean and

unit standard deviation) and a subset of linearly independent features were identified (by the Gram-

Schmidt process) and used for subsequent analysis.

Phenotype determination by clustering
A form of agglomerative hierarchical clustering was used. The leaves of the cluster tree corre-

sponded to experiments; each experiment was associated with the set of feature vectors for the

images obtained for it, which varied in size depending on how many images passed quality control.

A single-linkage clustering over sets of experiments (as opposed to individual feature vectors) was

performed; internal nodes of the tree were associated with the union of the set of feature vectors of

their descendants. At every level of the tree, a score was computed between each pair of nodes.

This score ranged from one (1) (“totally intermingled point sets”) to zero (0) (“totally dissimilar point

sets”). The score for nodes A, B was computed by measuring the average performance of a 1-near-

est neighbor classifier (between A, B) taken over of five (5) independent draws (with replacement),

with at most 500 points chosen from each node, and equal numbers of points from each node. The

pair of nodes with the greatest score (ties arbitrarily broken) were merged to form a new node in

the next level of the tree. The pairwise scores had to be recomputed at each level in the tree for the

new node corresponding to the merged nodes; scores for pairs of nodes that were not merged

were unaffected. The merging process terminated with a single node, associated with the complete

data. The cutoff for the clustering tree was determined relative to five (5) independent data splitting

samples. That is, for each data splitting, each experiment was divided equally, randomly and dis-

jointly into two leaves; these were assumed to be equivalent distributions. The goal was to identify a

threshold such that experiments at least as similar as the variation within an experiment were clus-

tered together. For each of these data splits, the cutoff for the original clustering tree was set to the
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average (across data-splittings) score of the least level (greatest number of clusters) where at least

90% of the experiment data splits were coclustered. The original clustering tree was pruned using

this cutoff to identify clusters (phenotypes).

Active learning experimentation
In brief, the learning process initialized with observations of each clone under a no-drug condition in

technical triplicates. Each round of learning consisted of the following steps. First, the data passing

quality control were clustered as described above to form phenotypes. A list of the experiments and

their phenotypes were given to the active learner software (written in reFLect [Grundy et al., 2006]

and described previously [Naik et al., 2013]). To the active learner, experiments were abstractions

corresponding to ’Target,’ ’Condition’ – no specific information about these (e.g. their true identi-

ties, chemical composition or amino acid sequence, etc.) were used. The active learner used these

data make a predictive model, which was formed in stages by the following process. The “inductive

bias” of the model is that there are fewer distinct Target-types than targets (i.e. there are likely pro-

teins that exhibit the same phenotypes under similar conditions), and that there are fewer distinct

Condition-types than conditions (by similar reasoning). Each Target-type was a set of targets such

that they had the same measured phenotype for all conditions they were both measured in. In turn,

a Target-type predicted that all of its targets had the same phenotype for all conditions, even if they

had not been measured yet. Each target was in one Target-type. Condition-types were similar and

constructed using Target-types: between any two conditions in a Condition-type, Target-types did

not have different phenotype predictions. Condition-types were identified in one step by solving a

constrained logic program to find the smallest overall number of Condition-types, and Target-types

were identified by a greedy, iterative pairwise merging approach which first collapsed the greatest

overlapping conditions first, and then opportunistically compressed Condition-types if they were dis-

joint. Predictions – if they existed – were a matter of looking up the corresponding Target- and Con-

dition-type for a given target and condition. The active learner used this model to select

experiments by the following procedure. Overall, target and condition combinations that the model

did not have a prediction for were prioritized, and then the rest were treated equally. Repeatedly,

until 96 new experiments were chosen, a random high-priority experiment was chosen; all other

unobserved experiments in the same Target- and Condition-type as that experiment were temporar-

ily removed from consideration. If the remaining set was exhausted before selecting 96 new experi-

ments, those unobserved experiments which had been removed from consideration were put back

into consideration, and the same process was applied again. In this way, the set of experiments over-

all maximized the diversity of Target- and Condition-types, which presumably would best test their

predictions, given new data. Models were learned anew each round, and so the only ’history’ the

active learner was made aware of was the aggregate effect of having selected some experiments

previously, but not their ordering.

Accuracy assessment by classification of predictions
The model at each round was based on observing a subset of the total set of experiments. The

images corresponding to each observed experiment were associated with a phenotype by clustering

of their SLF34 features, as described above. Each model also made phenotype predictions for

thereto unobserved experiments, data for which were collected later. For each feature vector U cor-

responding to an image from an unobserved experiment, we determined which observed image O

was closest to it (in the Euclidean metric). We then associated that feature vector U with the pheno-

type assigned to O. This is the nearest-neighbor classification of the unobserved data. These classifi-

cations were used to determine, for each unobserved experiment, if the phenotype with the plurality

of classifications matched the model prediction.

Model generalization to novel clones
The six clones not in the 96 x 96 experiment space, which were never used during active learning,

allow us to make an independent assessment of how well the model generalizes predictions to

unseen and/or novel targets. To do this we collected images and calculated features for the full

6 x 48 space of these six clones for all drugs. Given just the features for the no-drug condition, we

matched each novel clone to the clone (or group of clones) from the 48 x 48 space whose no-drug
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features were closest. We then predicted phenotypes for each drug for each novel clone (using the

model for the matching clone(s) from the last active learning round) and compared them to the mea-

sured features as described for unobserved experiments.

Minimum number of experiments required in an ideal case
Consider an experimental space consisting of n drugs and n clones. Assume the n2 experiments

have distinct phenotypes. Organize the (2n, 2n) (duplicated) experiment space by indexing drugs

and clones in repetition in a matrix; that is the sequence 1,..,n,1..n is represented as 1,..,n,n+1,..2n.

By observing the upper left submatrix (1..n x 1..n), all of the phenotypes have been observed.

Observing the diagonal (1,..,n x n+1,..2n) enables determining the identity of drugs n+1,..2n. Simi-

larly, observing the diagonal (n+1,..2n x 1,..,n) enables determining the identity of clones n+1,..2n. If

one knew that the drugs and clones were duplicated but did not know which duplicates corre-

sponded to each other, one would only need to sample n2+2n out of 4n2 experiments to obtain a

model with perfect accuracy. Note that our active learner did not know in advance that there was

any duplication.

Estimation of random sampling performance
1,000 simulations of random experiment selection were performed. In each, matching the number of

experiments the active learner observed per round, experiments were chosen without replacement

from the 96 x 96 experiment space. In each simulation, and at each simulated round, histograms of

quad coverages were computed, from which an estimated accuracy was calculated by using the

regression coefficients identified from the actively learned data. The proxy for random learning accu-

racy was constructed by taking average of these 1000 simulations per-round.

Estimation of non-randomness of sampling of quads observed in active
learning
Denoting the coefficient of the monomial of the umbral variable x to the nth power as [xn] we can

use generating functions to compute the number of ways of throwing z many indistinguishable balls

into up to b many distinguishable bins so as to hit f many bins, each with a capacity of up to 4 balls

as:

ð
b

f
Þ½xz�ðxþx2 þx3 þx4Þf

½xz�ð1þxþx2 þx3 þx4Þb

This can be understood as counting the number of ways of not hitting (b-f) many bins out of b,

and then putting at least one ball into f many bins with a total of z throws. The total number of ways

of throwing balls without fill constraints is the denominator for this case of distinguishable bins (bins

are the experiments, which are distinguishable). We then apply the formula above to compute a p-

value for the chance that the coverage of quads observed for the actively learner could have been

achieved at random. For the last actively learned model, there were z = 2697 ’balls’ thrown into

b = 2304 bins. Since that model covered f = 1670, we then sum the probabilities when covering

f = 1670..2304 bins to compute the probability that at least 1670 bins would have been hit by a ran-

dom process. We computed this with the aid of Mathematica.

Posthoc image quality control
SURF (Bay et al., 2006) features were calculated for each image using just the GFP channel, restrict-

ing the interest points to be within ~10 mm (150 pixels) of a segmented nucleus. The distributions of

these interest point features per image were the atoms of classification in a nearest neighbor two-

class classifier (whether or not an image was out-of-focus or contained artifacts), where inter-atom

distances corresponded to a kernelized two-sample test as described elsewhere (Gretton et al.,

2012). To label these data, repeated and nearly exhaustive manual annotation over many iterations

were performed.
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Confirmatory Fa2h localization analyses
Fa2h-tagged cells were plated at the same density as for the active learning study, with the excep-

tion of being plated in 96-well plates (Nunc) in order to accommodate the confocal microscope. The

same previously generated drug aliquots from stock were used to match the active learning condi-

tions as closely as possible. The automated microscope used in the active learning study did not

align image fields to center cells, and so to simulate comparable imaging conditions (and any field

level feature artifacts) no attempt was made to center cells in fields or to adjust imaging settings

(0.4 s and 0.8 s exposure for 440 and 488 nm, fixed gain at 300 (arb. units)). Five (5) fields were taken

per well. Sequential wells cycled through each of the three treatments (drugs 16, 4, and 48). 106

fields were acquired over 4 hr, a period starting from +2 hr after drug addition, through the +5 hr

timepoint used for the active screen, to +6 hr. 33 fields were discarded for being low contrast, gen-

erally occurring at time points immediately after laser and microscope restarts due to hardware and

software faults. SLF34 features were calculated per field as before, and Gram-Schmidt process fea-

ture selection was used to select 71 features for further use. Classification was by three-fold cross-

validated L2-penalized logistic classification and used all 73 fields passing quality control (1–2 cells

or cell fragments/field). Archetypical cells were chosen as the centers of the minimax hierarchical

clustering (Bien and Tibshirani, 2011) of the SLF34 features of each image containing one cell; the

highest level of the cluster tree containing 5 nontrivial (nonsingular) clusters was used. Archetype

decompositions of the other fields (including polynucliated and multiple cell fields) was calculated by

Lasso regression by Mairal’s method (Mairal, 2013) with the penalization term (set to 1.0) chosen

heuristically to force sparse decompositions.
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