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Abstract: 1,2-Benzisothiazolin-3-one (BIT) is a commonly used organic biocide containing an isothia-
zolone ring. However, it may have adverse effects on human health and its risk needs to be properly
evaluated. Dermal exposure is the main route of BIT exposure, and co-exposed substances may affect
its absorption. The dermal permeation profile of BIT has not been well-studied. This study aimed to
investigate the dermal permeation profiles of BIT with or without cosmetic use. Dermal permeation
profiles of BIT were investigated after infinite- (100 µg/cm2), or a finite-dose (10 µg/cm2) application
with or without cosmetics using a minipig skin and Strat-M®, an artificial membrane. A cream,
lotion, and essence (namely, face serum) were pre-treated as representative cosmetics on minipig
skin for 30 min, with BIT treatment afterward. After the treatment, BIT left on the skin surface was
collected by cotton swabbing, BIT in the stratum corneum, by sequential tape stripping, and BIT
retained in the remaining skin was extracted after cutting the skin into pieces before LC-MS/MS
analysis. When an infinite dose was applied, permeation coefficients (Kp, cm/h) for minipig skin
and Strat-M® were 2.63 × 10−3 and 19.94 × 10−3, respectively, reflecting that skin permeation was
seven to eight times higher in Strat-M® than in the minipig skin. BIT, in the presence of cosmetics,
rapidly permeated the skin, while the amount in the stratum corneum and skin deposit was reduced.
We performed a risk assessment of dermally applied BIT in the absence or presence of cosmetics by
calculating the skin absorption rate at 10 h based on the toxicological data from several references.
The risk level was higher in the presence of essence as compared to lotion, which was higher than
cream, which was higher than the control (non-treated). However, all of the margins of safety values
obtained were greater than 100, suggesting that BIT is safe for use in dermally exposed consumer
products. We believe that this research contributes to a greater understanding of the risk assessment
of isothiazolinone biocides.

Keywords: 1,2-Benzisothiazolin-3-one; isothiazolinones; skin absorption; cosmetics; risk assessment

1. Introduction

Isothiazolone biocides are widely used in a variety of industrial water treatment
applications to control microbial growth and biofouling [1]. They have also been recom-
mended as preservatives in leave-on and rinse-off cosmetics, aqueous household products
(e.g., water-based paints and cleaning and washing agents), and diverse manufactured
goods (e.g., paints, glues, adhesives, detergents, inks, polishes, and leathers) [2]. 1,2-
Benzisothiazolin-3-one (BIT) is one of the most commonly used preservatives in isothiazoli-
nones. In the Danish Product Register Database (PROBAS), thousands of products have
been registered as containing isothiazolinones, and BIT (contained in over 985 different
products) is the most widely used isothiazolinone, especially in paints and varnishes [3].

The physical, chemical, and biological reactions of most chemicals are determined by
their chemical structure [4]. Like all isothiazolinones, BIT is a heterocyclic compound char-
acterized by a nitrogen and sulfur-containing aromatic ring (1,2-thiazol-3-one), rendering
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it electrophilic [5]. Isothiazolinones can diffuse across bacterial cell membranes and the
cell wall of fungi [6]. In the intracellular media, the electron-deficient sulfur of the N–S
bond can react with the nucleophilic groups of the cellular components, such as the thiols
of cysteines in active sites, blocking their enzymatic activity and ultimately causing cellular
death [6,7].

With the widespread use of isothiazolinones, there is an increasing concern about
unwanted side effects, as biocides could harm human health and the environment [8].
Isothiazolinones cause airborne contact dermatitis, respiratory symptoms, including acute
asthma, and systemic allergic contact dermatitis [3]. BIT may also provoke allergic skin
reactions in humans [9]. BIT is not included in Annex 5 of the Cosmetics Regulation
1223/2009 of the EU, a positive list containing the preservatives that are allowed in cosmetic
products, while it is still allowed for use in cosmetics in the United States and Canada [10].
Additionally, in the United States, no federal regulations restrict the use of BIT except for
one regarding the manufacture of rubber gloves that contact food items, limiting it to below
0.05% in latex solids [11]. Indeed, a study demonstrated that BIT is contained at 0.0009%
and 0.0027% for sunscreen and dish soap samples in in the United States [12]. Additionally,
some illegal uses of isothiazolinones in personal care products (PCP) have been reported in
several studies [10,13], so people may be unwittingly exposed to BIT in daily life.

BIT exposure occurs through a variety of routes, including oral, inhalation, or dermal.
Oral exposure plays a minor role, exception for children mouthing contaminated objects,
because it cannot be added to food or food-related products. Inhalation exposure of BIT
may be more harmful [14], but it is expected to be negligible except for the inhalation
of aerosols containing BIT, since BIT has relatively low vapor pressure (6.3 × 10−5 Pa at
20 ◦C) [15]. Therefore, dermal exposure is the main route of human exposure to BIT. The
skin is the largest organ of the body and is multilayered and highly differentiated, with
a total area of about 20 square feet [16]. The various layers that form the epidermis and
dermis are composed of living tissue surrounding the body. For chemicals to absorb into
the bloodstream or the lymphatic system through the skin, they must pass through the
stratum corneum (SC), the rate-limiting step for skin permeation [17]. Many factors play
important roles in dermal absorption, including the molecular weight and charge of the
chemical ingredient, lipophilicity of the formulation, thickness of keratin and constituents
(dependent on the body part), duration of exposure, area of the skin onto which a chemical
was applied, the concentration of application, other substances pretreated on the skin, and
other factors [18]. Drugs and chemicals that are suitable for transdermal delivery have
a LogP > 1.5 and a molecular weight < 500 Da [19]. BIT has a small molecular weight
(MW 151.18) and has a log p value that is relatively close to 1 (0.76 at 30 ◦C, pH 7), allowing
it to readily permeate the skin barrier for systemic absorption.

The use of skin-care products, including cream, lotion, and essence, is one of the
significant factors affecting dermal absorption. Many of these products contain chemi-
cals that enhance dermal penetration [19]. These enhancers can remain on the skin and
incorporate into the skin surface. This, in turn, may alter the lipid domain of the skin
by interacting with barrier proteins, thereby increasing the partitioning of chemicals to
the SC [20]. Mixtures of dermal penetration-enhancing chemicals can act synergistically
to increase the dermal penetration of small lipophilic molecules by up to 100-fold [21].
Skincare products have been increasingly used in recent years. Furthermore, since the
COVID-19 pandemic, the use of hand sanitizers has increased prominently, and its market
has reached 200 million US dollars a year in the United States [22]. Hoffman et al. showed
that the dermal absorption of harmful substances in several products increases after the
use of hand sanitizers [19], indicating a significant impact of skincare products on the skin
penetration of harmful chemicals. However, few studies have examined the impact of
cosmetics on biocide skin absorption.

The lack of experimental data on human dermal absorption of BIT is a major research
gap hindering an accurate exposure assessment. Although the skin permeability coefficient
value (Kp), which is a key parameter in estimating dermal absorption, has been calculated
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for BIT using a mathematical model [10], it has not yet been experimentally verified. The
aim of this paper was to investigate the dermal absorption of BIT using two in vitro dermal
models, namely, minipig skin and Strat-M®. Porcine skin has been officially recognized as
a replacement for human skin for skin permeation studies [23] and it has also been used in
various dermatological studies [24]. Strat-M® is a multilayered synthetic membrane (300
µm thickness) similar to skin and made up of several tightly-packed layers of polyester
sulfone [25]. Uchida et al. evaluated the skin permeabilities of 13 compounds using Strat-
M® and compared them with animal skin, which found that the permeation coefficient
and diffusion parameters were well-correlated [26]. We also studied the effect of skincare
products (cream, lotion, and essence (or face serum)) pretreatment on the dermal absorp-
tion of BIT, and conducted a risk assessment of dermally exposed BIT with or without
skincare products.

2. Materials and Methods
2.1. Materials and Chemicals

We purchased 1,2-benzisothiazolin-3-one (BIT, CAS No. 2634-33-5, purity 97%), MEM-
based culture medium, and isopropanol (2-Propanol, CAS No. 67-63-0, 99.9%) from Sigma–
Aldrich (St. Louis, MO, USA). Methanol (CAS No. 67-56-1, purity 99.8%) was purchased
from Junsei Chemical Co., Ltd. (Tokyo, Japan). Analytical-grade water (CAS No. 7732-18-5)
was purchased from Duksan Co. (Gyeonggi-do, Korea).

2.2. Skin Preparation

Porcine skin (1.5 × 1.5 cm2) was obtained from Apures Co. (Pyeongtaek, Gyeonggi-do,
Korea). All porcine skins were obtained from the back of minipig skin, which was sacrificed
for research on drug delivery. The skin was stored at −20 ◦C to prevent denaturation.
Frozen skins were thawed at room temperature and equilibrated for 30 min in 6-well plates
containing 2 mL of MEM media before the experiment.

A Strat-M® membrane was purchased from EMD Millipore (Millipore, Burlington,
MA, USA). These membranes did not require any pretreatment and were used immediately
after removal from the packaging.

2.3. Dosing Solutions

Two different BIT concentration levels of (I) 0.05% (w/v) and (II) 0.02% (w/v) were
prepared in isopropanol according to the OECD guidelines [23]. Based on the exposed
surface area, a net dose of 100 µg/cm2 and 10 µg/cm2 was applied to each of the investi-
gated skin tissues using 200 µL/cm2 (infinite dose application) of dosing solution I and
50 µL/cm2 (a finite-dose application) of dosing solution II. Isopropanol was selected as the
dosing vehicle based on its ability to dissolve the test compound at the desired levels. It
better mimics finite exposure due to its higher volatility [27].

To study the possible effect of skincare products on the percutaneous penetration, BIT
was applied to the skin surface in a finite-dose application after the cream, lotion, and
essence (30 mg/cm2) were treated for 30 min. The skincare products were manufactured
as that generally used in Korea by Dermameal Co. (Gunpo, Gyeonggi-do, Korea). The
formulations are detailed in the Supplementary Materials.

2.4. Percutaneous Absorption Assay Protocol

A percutaneous absorption experiment was performed using a vertical diffusion cell
(VDC) test system model HDT 1000 from Copley Scientific Limited (Nottingham, United
Kingdom, 1.00 cm2 surface area; and stirred volume 6.5 mL) in compliance with the OECD
guidelines for in vitro dermal absorption testing [23]. Skin samples were mounted in
standard glass Franz cells with the stratum corneum facing up and equilibrated for 30 min.
Just before the application of the test chemicals, non-invasive trans-epidermal water loss
(TEWL) was measured using GPskin pro (Gpower, Inc., Seoul, Korea) to evaluate skin
barrier integrity. Skins with a TEWL value of 40 g/m2·h or higher were excluded from
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the experiment. The tested chemicals were applied onto the skin surface in the donor
compartment. A MEM-medium was used as the receptor fluid, maintained at 32 ± 1 ◦C
and magnetically stirred at 600 rpm. The experiment was conducted in open conditions.

At fixed time-points (0.5, 1, 2, 4, 6, 10, and 24 h), aliquots of the receptor fluid (0.2 mL)
were collected from the receptor compartment and immediately replaced with fresh fluid.
After 24 h, the receptor fluid aliquot was collected, and the skin surface and donor com-
partment were washed thoroughly with alcohol swabs (BDTM Alcohol Swabs, Becton
Dickinson Corp, Franklin Lakes, NJ, USA) three times to measure the unabsorbed dose.
The tape-stripping method was used to remove the remaining formulation from the SC. The
tape (Scotch 3M) was cut into 2.5 × 2.5 cm portions and applied to the skin surface (SC side
up) after washing, pressed down with forceps, and pulled gently from the skin. This was
repeated 10 times for each skin sample. The remaining skin was cut into 10 pieces using
surgical scissors and placed in solvent for extraction. Receptor fluid samples, skin wash
samples, tape strip samples, and skin deposit samples extracted from each step were put in
5 mL of (1:1) methanol: water or pure water, sonicated for an hour, and stored a −20 ◦C
until chemical analysis. To obtain a blank matrix for each sample, only dosing vehicles
without BIT were treated on the skin as per the above process. The overall schematic
diagram of the absorption assay is described in Figure 1.

2.5. Sample Extraction and Calibration Sample Preparation

We mixed 200 uL of the samples and 200 µL of methanol in a micro-centrifuge tube on a
vortex for 1 min. After centrifugation of the mixture at 13,000× g for 10 min, the supernatant
was filtered using a 0.22 µm polytetrafluoroethylene (PTFE) filter (ADVANTEC, Dublin,
CA, USA).

Calibration standards were prepared at 3.125, 6.25, 12.5, 31.25, 62.5, 125, 250, and
500 ng/mL by adding a standard solution to a blank matrix of receptor fluid samples, skin
wash samples, tape strip samples, and skin deposit samples. All calibration standards were
extracted in the same way as the other analytes before analysis.

2.6. Liquid Chromatography Instruments and Conditions

The levels of BIT were measured using high-performance liquid chromatography
(Agilent 1200 series HPLC; Agilent Technologies, Santa Clara, CA, USA) coupled with
a triple-quadrupole mass spectrometer (EVOQ Qube™; Bruker Daltonics, Billerica, MA,
USA). Separation was achieved using an Agilent ZORBAX Eclipse plus C18 column (2.1 mm
× 50 mm, 1.8 µm). The mobile phase composition used in the chromatographic separation
was optimized by binary mixtures of 0.1% formic acid in deionized water (solvent A) and
100% methanol (solvent B). Gradient conditions were as follows: 0–5 min, 30% B; 5–10 min,
30–100% B; 10–13 min, 100% B, and return to 30% in 13–15 min. The flow rate of the mobile
phase was 0.3 mL/min. Sample introduction and ionization were in the positive ion mode
by electrospray ionization. We injected 1 uL of each sample into the HPLC system.

2.7. Validation of the Analytical Method

The validation of the BIT analytical method was confirmed through linearity, recovery
rate, and precision using a calibration curve and QC samples. All calibration curves were
generated by a regression method of the peak area ratio among different concentrations of
calibration standards. The coefficient of determination (R2) for calibration curves ranged
from 0.993 to 0.999. The Method Detection Limit (MDL) was analyzed by the pre-treating
standard, and the value of the lowest concentration was selected where the signal-to-noise
ratio (S/N) of the detected analyte was 3 or more. The measured MDL value for BIT was
31.25 ng/mL at each blank matrix of receptor fluid sample, skin wash sample, tape strip
sample, and skin deposit sample.
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Figure 1. Schematic diagram of percutaneous absorption study by Franz cell. BIT, benzisothiazoli-
none, MT, methanol, DW, distilled water.

For recovery rate and precision between days, the samples (n = 3) spiked in each
blank matrix of receptor fluid sample, skin wash sample, tape strip sample, and skin
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deposit sample at concentrations of 62.5, 125, 250 µg/L were analyzed and performed on
three consecutive days. The precision was expressed as a percentage of relative standard
deviation (% RSD).

2.8. Absorption Parameters and Statistical Analysis

Absorption data were plotted as a cumulative absorption-time curve per skin area.
The steady-state flux (Jss) and lag time were determined from the linear portion of the
curve. Determination of the start and upper boundaries of the linear range (i.e., steady-state
conditions) was achieved according to the method shown by Niedorf et al. (2008) [28].

When using infinite-dose configurations in which the donor concentration (Cd) far
exceeds the concentration in the receptor fluid (Ca), the permeation constant (Kp, cm/h)
was calculated by dividing the steady-state flux (Jss, ng/cm2·h) by the concentration of the
applied chemical (Cd) as follows:

Kp =
Jss
Cd

For a finite dose, the flux could be normalized to be applied to the surface concentration
relative absorption rate as an operational metric.

The mass distribution was expressed as a percentage of the applied dose calculated
from the amount of chemical in each of the compartments of the diffusion cell in a finite
dose. For the distribution profile, “skin wash” was the sum of the proportions of the
dose recovered from the skin surface and donor chamber wash, and “tape strip” was
the proportion of the dose recovered from the stratum corneum. “Skin deposit” was the
proportion of the dose in both the epidermis and dermis after removal of the stratum
corneum, and “receptor fluid” was the proportion of cumulative dose measured in the
receptor fluid over 24 h.

Results are presented as the arithmetic mean of three or four replicates ± standard
deviation (SD) or standard error (SE). Statistical analysis was performed using Excel 2016.
Differences in skin permeation were evaluated by the Student’s t-test between two datasets.
Significance was determined by the p-value: * p < 0.05, ** p < 0.01.

2.9. Systemic Exposure Estimation and Risk Assessment

Systemic exposure dosage (SED) to the studied BITs via preservatives in cosmetics
after applying the skincare product (cream, lotion, and essence) was estimated using the
general equation [29]:

SED (mg/kg/day) =
D (g/day) × 1000 mg/g × C (w/v %) / 100 × Ap (%) / 100

BW (kg)

SED: Systemic exposure dosage of BIT
D: Amount of product used daily
C: The maximum allowable concentration of BIT
AP: Experimentally obtained skin absorption rate of BIT at 10 h in each case
BW: Average human body weight, 60 kg

The risk was determined by comparing the margin of safety (MoS) to the target margin
of safety obtained from the multiplication of uncertainty factors to account for the risks to
humans. MoS was calculated by the following formula [29]:

MoS =
NOAEL (mg/kg bw/day)

SED (mg/kg bw/day)

When the MoS was greater than the target MoS, the adverse health risk of BIT was
acceptable without harm under the current exposure levels.
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3. Results
3.1. Analytical Method Validation for the Receptor Fluid, Skin Wash, Tape Strip, and Skin
Deposit Samples

The BIT retention time was 2.051 min, and no interfering peaks were observed that
hindered the analysis (Figure 2). The limit of detection (LOD) for BIT was 7.812 µg/L and
the limit of quantitation (LOQ) was 25.779 µg/L. A typical calibration curve was obtained
by the sample containing the standard solution, exhibiting good linearity (R2 > 0.993).
Furthermore, the calibration curve for the receptor fluid sample, skin washes, tape strips,
and skin deposits showed good linearity from 31.25 to 500 ng/mL. Inter-day recovery rate
and precision were evaluated to determine the reliability of the current analytical method.
Recoveries ranged from 97% to 106% and were consistent and reproducible in all cases. The
precision values were between 1.17 and 14.04%, meeting the criteria (within 15%) of the
Ministry of Food and Drug Safety Korea guidelines [30]. Therefore, the recovery rate and
precision of the above-mentioned analytical conditions were appropriate for BIT analysis
(Table 1).
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Figure 2. Chromatogram of BIT in the standard solution.

Table 1. The inter-day recovery rate and precision of BIT analysis.

Matrix Concentration (µg/L)
Inter-Day a (n = 3)

Recovery Rate
(Mean ± SD)

Precision
(% RSD)

Receptor fluid
62.5 97.59 ± 13.70 14.04
125 104.79 ± 10.95 10.45
250 100.64 ± 0.68 0.67

Skin Wash
62.5 101.14 ± 5.33 5.27
125 98.12 ± 5.48 5.59
250 106.14 ± 3.03 2.86

Tape strip
62.5 98.03 ± 4.62 4.71
125 103.20 ± 4.16 4.03
250 102.15 ± 6.16 6.03

Skin deposit
62.5 97.46 ± 3.88 3.98
125 100.16 ± 1.17 1.17
250 101.08 ± 1.66 1.64

a Inter-day was evaluated for analysis on three consecutive days.

3.2. Percutaneous Absorption of BIT Applied as an Infinite Dose through Minipig Skin
or STRAT-M®

The cumulative skin permeation amounts of BIT with the minipig skin and Strat-M®

are shown in Figure 3. BIT showed the cumulative absorption with 30.70 ± 9.42 µg/cm2

(mean ± SE) in the minipig skin at 24 h was detected in the receptor fluid, while it showed
58.99 ± 4.22 µg/cm2 in Strat-M®. When comparing the permeation amounts between the
minipig skin and Strat-M®, BIT permeated higher in Strat-M® than in the minipig skin
at all time-points. Additionally, BIT did not reach a steady-state in the minipig skin but
reached a steady-state in Strat-M® at 6 h. When comparing the results from the two models,
BIT was significantly different at all time-points (p < 0.01 at 1, 4, 6, and 10 h, p < 0.05 at 2
and 24 h) except 0.5 h.
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Upper, Strat-M® membrane, Lower, minipig skin (300 µm). Values are mean ± SE for four cells.

A plot of the cumulative absorbed amount of BIT (µg/cm2) against time (hours) was
used to estimate the Jss (ng/cm2·h) for the target compound and the Kp (cm/h) for the skins
(Table 2). A test substance applied to the skin must partition into and diffuse through the
skin before reaching the receptor fluid. This results in a lag-time with non-detectable flux.
The lag time was represented by the time intercept of the regression line over the steady-
state region of the permeation curve. The absorption of BIT was delayed with a lag time of
0.63 h in the minipig skin and 0.43 h in Strat-M®. Jss was 1315 ng/cm2·h for the minipig skin
and 9969.9 ng/cm2·h for Strat-M®. This indicates that BIT showed higher skin permeability
in Strat-M® compared to the minipig skin. The Kp value was 2.63 × 10−3 cm/h for the
minipig skin and 19.94 × 10−3 cm/h for Strat-M®. The permeation coefficient for BIT
obtained with Strat-M® was 7.58 times higher than that of the minipig skin, indicating that
the minipig skin is more resistant to BIT penetration than the Strat-M®.

Table 2. Flux rates, permeation coefficients, lag times, and residual quantities of BIT applied to the
skin surface in infinite doses (100 µg/cm2).

Minipig Skin Strat-M®

Flux (Jss) (ng/cm2·h) 1315 9969.9
Permeation coefficient (Kp)
(cm/h) 2.63 × 10−3 19.94 × 10−3

Lag time (h) 0.63 0.43
Linear range (h) 1–24 0.5–6
Residual quantity in skin at 24 h
(µg/cm2) 7.87 ± 1.23 1.74 ± 0.51

The parameters were calculated using the mean of cumulative absorption data obtained. Otherwise, values are
mean ± SE for 4 cells.
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3.3. Percutaneous Absorption of BIT Applied as a Finite Dose after Pretreating Cream, Lotion, and
Essence through Minipig Skin

The cumulative permeation amount of BIT was evaluated using the minipig skin with
or without the pretreatment of a finite dose of skincare products for 30 min (Figure 4).
The 30 mg dosage of skincare products was applied as the maximum amount of basic
skincare products used on average per day for Koreans per the Korean Ministry of Food
and Drug Safety. BIT in a finite-dose condition without any skincare products showed
the lowest cumulative absorption with 3686.90 ± 406.71 µg/cm2 at 24 h as detected in the
receptor fluid. Higher amounts of 4137.83 ± 267.67 µg/cm2, 5925.13 ± 416.61 µg/cm2, and
6395.16 ± 295.18 µg/cm2 were observed for BIT after the pretreatment of cream, lotion,
and essence, respectively. Overall, the cosmetics formulation with lower viscosity showed
higher permeation. There was a significant difference in the permeated amounts of BIT
between the lotion and the control groups in 4, 6, 10, and 24 h (p < 0.05 at 4, 6, and 24 h,
p < 0.01 at 10 h). There was also a significant difference between essence and control at
10 and 24 h (p < 0.01), whereas no significant difference was found with the cream.
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for 24 h after pretreating cosmetics (30 min, 30 mg/cm2). Values are mean ± SE for 3 cells. * p < 0.05,
** p < 0.01 by Student’s t-test.

The cumulative absorbed amount curve in Figure 4 was used to estimate the Jss
(ng/cm2·h) and the relative absorption rate (cm/h) for each case of BIT (Table 3). Steady-
state flux and the relative absorption rate of the BIT were as follows: essence was greater
than lotion, which was greater than cream, which was greater than the control.

Table 3. Flux rates, relative absorption rates, and lag times of BIT applied to the minipig skin surface
in a finite dose (10 µg/cm2) after pretreating cosmetics (30 min, 30 mg/cm2).

Pretreated Skin
Care Product

Flux (Jss)
(ng/cm2·h)

Relative
Absorption rate
(Kp, cm/h)

Lag Time
(h)

Linear Range
(h)

None (control) 293.85 1.47 0.98 1–10
Cream 401.91 2.01 1.90 2–10
Lotion 545.08 2.73 1.23 2–10
Essence 611.66 3.06 2.18 4–10

The parameters were calculated using the mean of cumulative absorption data obtained.
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When the amounts of BIT in the skin wash, tape strips (SC), skin deposit, and receptor
fluid (permeated amount) were examined at 24 h (Figure 5), a significantly large amount of
BIT remained unabsorbed in the presence of cream. The pretreatment of lotion and essence
resulted in a lower amount of BIT left in the skin wash than the control. Of note, BIT in the
tape strips and skin deposits was significantly reduced by the pretreatment of all skincare
products. In contrast, the amount of BIT absorbed into the receptor fluid was increased
in the presence of all the skincare products. The total recovery of BIT was highest in the
cream, while lotion and essence pretreated groups were similar to the control group, as
shown in Figure 5.
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Figure 5. Distribution of BIT applied as a finite dose (10 µg/cm2) for 24 h after pre-treating cosmetics
in minipig skin. Skin wash: the dose remaining on the skin surface and donor compartment, Tape
strip: the dose in stratum corneum, Skin deposit: the deposit remaining in the skin after tape
stripping, Receptor fluid: the dose in the receptor fluid, Total: sum of all the compartments. Values
are mean ± SE for 3 cells. * p < 0.05, ** p < 0.01 by Student’s t-test.

3.4. SED and MoS Calculation of BIT after Pretreatment with Cream, Lotion, and Essence

We searched the results of BIT toxicity studies to conduct a risk assessment (Table 4).
The NOAEL from a two-generation reproductive toxicity test in rats was 50 mg/kg [31].
The target MoS was calculated by applying uncertainty factors to produce a human risk
assessment. The target MoS of BIT was 100, which was calculated by considering inter- and
intra-species variation, exposure duration, and LOAEL to NOAEL conversion values [32].

Table 4. Summary of the toxicological evaluation for BIT reported by references.

Study
Design

NOAEL
(mg/kg
bw/day)

Uncertainty Factor Target MoS Ref.
Inter-
Species

Intra-
Species

Exposure
Duration

LOAEL to
NOAEL

Rat, diet, two-
generation 50 10 10 1 1 100 [31,32]

NOAEL: no-observed-adverse-effect level, Target MoS: target margin of safety.

The SED (systemic exposure dose) values from cosmetic use when all cosmetics contain
BIT were summarized in Table 5. SED was calculated by obtaining the absorption rate at
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10 h as observed in Figure 4, which was increased when there was a pre-treated skincare
product (control < cream < lotion < essence). MoS values were determined to be 1092.41,
762.76, and 725.82 for cream, lotion, and essence pretreatment, respectively, which were all
smaller than the control but larger than the target MoS of 100.

Table 5. Risk assessment of BIT in the presence of skincare products.

Pretreated
Skin Care
Product

Total
Amount of
Cosmetic
Products
Used Daily
(g/day)

BIT Conc.
(%)

Estimated
Dermal
Absorption
Rate after 10
h (%)

SED (mg/kg
bw/day) * MoS

None
(control)

17.4 * 0.05

24.45 ± 3.39 35.46 × 10−3 1410.15

Cream 31.57 ± 2.00 45.77 × 10−3 1092.41
Lotion 45.21 ± 2.01 65.55 × 10−3 762.76
Essence 47.51 ± 2.80 68.89 × 10−3 725.82

* referred from the SCCS guidance [33]. SED: systemic exposure dose in mg/kg bw/day calculated as
17,400 mg/day × 0.05% (BIT conc.) × BIT skin absorption rate (%)/60 kg (default body weight), MoS: margin
of safety.

4. Discussion

Here, we aimed to use in vitro approaches to determine the profile of percutaneous ab-
sorption of BIT using a minipig skin and Strat-M® membrane based on OECD Test guidance
428. The Franz cell model, used to determine the cumulative dose per area of compound
across the skin, is an alternative method widely applied to study transdermal absorption of
various dermatological products, including cosmetics, chemicals, and drugs [34]. Suitable
operational conditions and discriminative criteria of the Franz cell diffusion process have
been well-evaluated [35].

BIT is one of the most commonly used isothiazolinone compounds. The permeation
coefficient (Kp) of BIT was calculated as the percutaneous penetration index when an
infinite dose was applied. The relative absorption rate was obtained when a finite dose
was applied, which showed a similar pattern with the Kp. Kp estimates vary widely
between the respective estimation methods. There are several mathematical models for Kp
prediction, such as PACEM-KD. According to Lian et al. (2008), the PACEM-KD model,
which includes a Kow factor in its prediction equation, performed the best among several
dermal mathematical permeability models for a large experimental dataset to assess the skin
permeability of biocides (124 chemical compounds) [10,36]. The calculated Kp value of BIT
according to the simulation model was 0.505 × 10−3 cm/h [10], which is about 5.21 times
lower than the measured Kp value of 2.63 × 10−3 cm/h at the infinite concentration in
our study. The reason for the difference in Kp values was that the data obtained only
by calculation has uncertainty compared to that obtained by the experiment [10]. The
Kp values for BIT have not yet been experimentally precisely measured. Our study has
contributed to predicting an accurate Kp value.

We compared the skin permeation values between a minipig skin and Strat-M® using
infinite doses. Pig skin is a reliable substitute for human skin, and it is frequently used
in skin absorption experiments. Gerstel et al. (2016) found that human skin and pig skin
showed similar distribution and bioavailability profiles in chemical permeation studies,
suggesting that pig skin is a good substitute for human skin [37]. Strat-M® is an artificial
synthetic, non-animal-based model for transdermal diffusion testing that is predictive of
diffusion in human skin without stability and storage limitations [38]. Arce Jr et al. [39]
compared the permeability of caffeine and rhododendrol between minipig skin and Strat-
M® using Franz cells. The cumulative dose of each membrane was similar under the
finite-dose condition. In contrast, we found that both the steady-state flux and permeation
coefficient of Strat-M® was 7.58 times higher than those obtained with the minipig skin
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for BIT. This may be because Strat-M® does not mimic the heterogeneous complexity
of SCs, which are highly organized intercellular structures, and fails to simulate barrier
properties similar to those of the SC to provide the ideal interaction of vehicles with SC
lipids [39]. Assessment of BIT permeation in infinite-dose conditions with the use of Strat-
M® could be misleading by overestimating the permeation parameters. Therefore, the
usefulness of Strat-M® in an absorption experiment may be limited only to identifying the
qualitative tendencies.

We selected isopropyl alcohol for the vehicle of BIT, since it has been widely used for
dermal permeation studies [27,40], and BIT was highly soluble and stable in it (data not
shown). Moore et al. suggested that isopropyl alcohol is a volatile amphipathic solvent
which volatilizes rapidly from the skin surface and mimics “real-life” exposure of the skin
to droplets of chemicals released into the air [27]. This may be ideal for the study of dermal
permeation of biocides including BIT since biocides are often used as spray forms [41].
However, significant evaporation of isopropyl alcohol and resultant crystallization of BIT
may be occurring on the skin surface, especially in a finite-dose application, which may
decrease the availability of BIT to permeate the skin [42,43]. Therefore, we consider that
further studies are necessary to examine the vehicle effects on the dermal permeation of
BIT in the future.

When cream, lotion, and essence were pre-treated, the cumulative absorption dose
was significantly increased compared to that of the control (31.57 ± 2.00%, 45.21 ± 2.01%,
47.51 ± 2.80%, respectively for cream, lotion, and essence vs control, 24.45 ± 3.39%), which
indicates that the chemicals can be absorbed more easily into the skin in the presence
of skincare products. Since the amounts of BIT in the tape strips were greatly reduced
when the skincare products were present (Figure 5), this suggests that skincare products
may interfere with the barrier function of the stratum corneum. Skincare products con-
tain various components, like surfactants, alcohols, polyols, and essential oils which can
affect the barrier function of the stratum corneum and function as chemical permeation
enhancers [44]. Pont et al. [45] showed that the dermal penetration of a herbicide, 2,4-
dichlorophenoxyacetic acid through hairless mouse skin in 24 h increased from 54.9 ± 4.7%
to 86.9 ± 2.5% in the presence of padimate-o-containing sunscreen, while Wang and Gu [46]
and Yiin et al. [47] demonstrated that the use of sunscreen, oxybenzone after application
of a repellent, and DEET (N,N-diethyl-m-toluamide) increases the absorption of DEET
through human skin. Along with these studies, our results corroborate that caution shall
be given to the concurrent uses of cosmetics and potentially toxic chemicals.

Interestingly, the total amounts of BIT recovered in the skin wash, tape strips (SC),
skin deposit, and receptor fluid (permeated amount) at 24 h were well-below 100% for all
groups. We suspect that since BIT is a thiol reactive isothiazolinone [48], some portion of it
may have reacted with cysteine residues of the skin, lowering the total recovery rate. To
verify this hypothesis, further study with radiolabeled BIT would be necessary.

To predict a more specific risk to humans, we calculated the SED for each exposure
case (Table 5). Since the average residence time of the substances adhered to the skin is
12 h [49], the absorption rate at 12 h had to be substituted for SED. Although there no
data were obtained at 12 h, the absorption rate at 10 h was used, as this was the longest
time value in the linear range. Risk assessment needs to consider a variety of foreseeable
exposure conditions and even worst-case exposure conditions at high concentrations and
high doses, so 0.05% was used for the BIT concentration, as this is the highest allowable
concentration. We employed two different BIT concentration levels of (I) 0.05% (w/v)
for the infinite dose and (II) 0.02% (w/v) for the finite-dose condition to assess the skin
absorption rate of BIT. As the maximum approved concentration of BIT is 0.05%, we believe
that the BIT concentration employed is within the same range as the worst-case exposure
scenario with respect to its risk to human health. However, possible under-estimation of
skin absorption in real-life exposure scenarios where lower concentrations of BIT are used
could not be excluded, since dermal exposure to lower concentration of chemicals may
lead to higher dermal absorption [50]. Nevertheless, our data indicates that BIT is highly
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absorbed dermally as compared to the conservative skin absorption default value of 50%
in the case of absence of data as described in SCCS guidance, indicating that the margin of
increases in skin absorption at lower concentrations may be minimal.

According to the SCCS, 17.4 g/day, the total human exposure to cosmetics of all
categories [33] was substituted into the amount of BIT used daily and further calculated into
SED (mg/kg bw/day) using the obtained skin absorption rates. As a result of conducting
the risk assessment with the above values, the risk priority was higher in the presence
of essence as compared to lotion, which was higher than cream, which was higher than
the control. Nevertheless, all the margin of safety values was greater than the target MoS.
BIT is safe in the dermal exposure pathway. However, MoS was significantly lowered
with skincare product pretreatment, so the effects on other skincare products or substances
harmful to the skin other than BIT must be studied.

Collectively, we established the dermal permeation profiles of BIT using a minipig
skin and Strat-M®, an artificial membrane. BIT was more permeable to Strat-M® than the
minipig skin (Kp, cm/h, 2.63 × 10−3 and 19.94 × 10−3, respectively). Dermal absorption
of BIT was relatively high (24.45 ± 3.39% at 10 h application on the untreated minipig
skin). We also demonstrated that BIT was more permeable in the presence of cosmetics,
while the amount in the stratum corneum and skin deposit was reduced. However, the
risk assessment for the dermally applied BIT in the absence or presence of cosmetics
revealed that all of the margins of safety values obtained were greater than 100. We believe
that this research may contribute to a greater understanding of the risk assessment of
isothiazolinone biocides.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10030108/s1, Table S1: Formulation of cream pretreated at
minipig skin, Table S2: Formulation of lotion pretreated at minipig skin, Table S3: The formulations
of essence pretreated at minipig skin.
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