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A B S T R A C T   

Category learning groups stimuli according to similarity or function. This involves finding and attending to 
stimulus features that reliably inform category membership. Although many of the neural mechanisms under-
lying categorization remain elusive, models of human category learning posit that prefrontal cortex plays a 
substantial role. Here, we investigated the role of the prelimbic cortex (PL) in rat visual category learning by 
administering excitotoxic lesions before category training and then evaluating the effects of the lesions with 
computational modeling. Using a touchscreen apparatus, rats (female and male) learned to categorize distri-
butions of category stimuli that varied along two continuous dimensions. For some rats, categorizing the stimuli 
encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For other rats, categorizing 
the stimuli required divided attention towards both stimulus dimensions (i.e., 2D tasks). Testing sessions then 
examined generalization to novel exemplars. PL lesions impaired learning and generalization for the 1D tasks, 
but not the 2D tasks. Then, a neural network was fit to the behavioral data to examine how the lesions affected 
categorization. The results suggest that the PL facilitates category learning by maintaining attention to category- 
relevant information and updating category representations.   

1. Introduction 

Categorization is the process of grouping perceptually or function-
ally related objects and events. Abundant evidence from neuroimaging 
(Kumaran, Summerfield, Hassabis, & Maguire, 2009; Bowman & Zei-
thamova, 2018) and physiology (Freedman, 2001) experiments supports 
the recruitment of prefrontal cortex (PFC) in categorization tasks. The 
PFC is also important for transitive inference, a mechanism that infers 
new information and promotes generalization by extrapolating over-
lapping information across multiple episodes (Koscik & Tranel, 2012; 
Zeithamova, Dominick, & Preston, 2012). 

Accordingly, theories of categorization predict that the PFC plays a 
substantial role in learning new categories. COVIS (COmpetition be-
tween Verbal and Implicit Systems) posits that the PFC governs a 
declarative system that learns new categories by testing explicit cate-
gory rules (Ashby et al., 1998). The COVIS framework has been tested 
empirically by training participants to categorize distributions of visual 
stimuli that vary along two continuous dimensions (Maddox, Ashby, & 

Bohil, 2003; Smith et al., 2012). In one condition, only one stimulus 
dimension is category-relevant, and learning involves selective attention 
to that dimension (1D tasks; Fig. 1B). In a second condition, both 
stimulus dimensions are relevant, and learning requires divided attention 
to both dimensions (2D tasks; Fig. 1C). COVIS predicts that the declar-
ative system (and the PFC) is important for learning 1D tasks, as they can 
be solved by a unidimensional category rule (Ashby & Maddox, 2011). 
This prediction is supported by neuroimaging experiments (Nomura 
et al., 2006). 

Rodents have become great models to examine mechanisms under-
lying complex behavior (Zoccolan, Oertelt, DiCarlo & Cox, 2009; 
Vinken, Vermaercke & Op de Beeck, 2014). We recently developed ro-
dent versions of the 1D and 2D tasks using a touchscreen apparatus to 
investigate rat category learning (Broschard, Kim, Love, Wasserman, & 
Freeman, 2019). The current experiment extends this work by exam-
ining the contributions of the prelimbic (PL) area of the rat PFC. Bro-
schard et al., 2019 concluded that rats use selective attention to learn the 
1D tasks and bias attention towards the category-relevant dimension. 
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We predict that this is mediated by the PL; therefore, inactivating the PL 
will impair learning for the 1D tasks. This prediction is supported by 
calcium imaging in the mouse medial frontal cortex during a go/no-go 
version of the 1D task (Reinert et al., 2021). This prediction also 
aligns with Love & Gureckis (2007), who proposed that the PFC is 
synonymous to the selective attention mechanism of the neural network 
model SUSTAIN (Supervised and Unsupervised STratified Adaptive In-
cremental Network; Love, Medin, & Gureckis, 2004). The current 
experiment tested this prediction directly. 

There is contention regarding whether rodent PL is comparable to 
the primate PFC (Laubach, Amarante, Swanson, & White, 2018). PL 
satisfies early definitions of PFC by exhibiting bidirectional communi-
cation with the medial dorsal thalamus (Rose & Woolsey, 1948). Addi-
tionally, some functions of PL are analogous to primate PFC, including 
working memory (Horst & Laubach, 2009), goal directed behavior 
(Ostlund 2005), response conflict (Wit, Kosaki, Balleine, & Dickinson, 
2006), behavioral flexibility (Ragozzino 2007), and attention (Tait, 
Bowman, Neuwirth & Brown, 2018). However, anatomical in-
vestigations conclude that PL may be homologous to cingulate cortex in 
primates (Heilbronner et al., 2016). Furthermore, all of rodent frontal 
cortex is agranular, highlighting large differences in the cellular makeup 
between rodents and primates (Uylings & Eden, 1991; Seamans, Lapish 
& Durstewitz, 2008). Therefore, generalizing the results of the current 
experiment to primate PFC requires careful consideration of anatomical 
and functional comparisons. 

Here, we investigated the role of the PL in visual category learning in 
rats. Rats underwent stereotaxic surgery to lesion the PL with NMDA. 
After recovery, the rats were trained to learn the 1D or 2D categorization 
tasks. Then, we fit the neural network SUSTAIN to the behavioral data to 
further examine the role of the PL, specifically as it pertains to selective 
attention. Together, the results suggest that the PL maintains attention 
to category-relevant information and updates category representations 
according to recent exemplars. 

2. Materials and methods 

2.1. Subjects 

Male (n = 16, mean weight: ~350 g) and female (n = 16, mean 
weight: ~250 g) Long-Evans rats were studied. Upon arriving in the 
animal colony, rats were put on a 12-hour light/dark cycle and given ad 
libitum access to food and water. After acclimating to the new environ-
ment for a week, food was restricted. Weights were recorded daily to 
ensure weights did not go below 85% of the rats’ free feeding weight. All 
procedures were approved by the Institutional Animal Care and Use 
Committee at the University of Iowa. 

2.2. Touchscreen apparatus 

For all experimental sessions, rats were placed within custom-built 
touchscreen chambers (Fig. 1A; 36 × 41 × 36 cm). The chambers con-
tained a computer monitor (Model 1550 V, NEC, Melville, NY) mounted 
on one wall to present visual stimuli to the rats. A touchscreen (15-in, 
Elo Touch Systems, Fremont, CA) was placed in front of the computer 
monitor so that the rats could interact with the screen. On the wall 
opposite from the monitor, a food tray (6.5 × 13 × 4.5 cm) delivered 
food pellets to the rat via a rotary pellet dispenser (Med Associates Inc., 
Georgia, VT, model ENV-203IR) that was controlled by an electrical 
board (Model RS-232, National Control Devices, Osceola, MO). A house 
light above the food tray was always on during experimental sessions. 
White noise within the room was also always on to minimize distrac-
tions. Custom MATLAB scripts controlled all experimental sessions and 
procedures (MathWorks, Natick, MA). Finally, a camera (model ELP- 
USB100W05MT-RL36) was mounted to the ceiling of the chamber and 
faced the computer screen so that the rats’ behavior could be observed 
and recorded. 

Fig. 1. A, Behavioral testing was conducted in custom-built chambers. Each chamber contained a computer monitor and a touchscreen panel so that the rats could 
interact with the visual stimuli. A feeder delivered food pellets into a food tray to reinforce behavior. B-C, Rats were randomly assigned to learn one of four category 
tasks. For each task, category exemplars contained gratings that varied in their spatial frequency and orientation. Categories were created by placing normal dis-
tributions on this two-dimensional stimulus space. B, For the 1D tasks, category distributions were perpendicular to a stimulus axis. Consequently, one stimulus 
dimension was category-relevant (i.e., the dimension perpendicular to the distributions); the second dimension was category-irrelevant. We predicted that would rats 
use selective attention to learn 1D tasks by shifting attention towards the relevant dimension. B, For the 2D tasks, category distributions were not perpendicular to a 
stimulus axis. Therefore, both stimulus dimensions were category-relevant. C, The typical trial sequence for all training and testing sessions. Rats initiated each trial 
by touching the star stimulus at the center of the screen (Star phase). Then, an exemplar was randomly generated from the category distributions and placed at the 
center of the screen (Cue phase). The rat touched this exemplar three times, at which point copies of the exemplar were presented at the left and right sides of the 
screen (Choice phase). These copies acted as report keys. Members of category ‘A’ required a touch to the left report key, and members of category ‘B’ required a 
touch to the right report key. For correct responses, a white box appeared on the screen (Reward phase); one touch of the white box delivered a food reward. For 
incorrect responses, a correction trial was initiated, where the trial repeated from the Cue phase after a timeout. 
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2.3. Pre-training procedures 

Once food restriction began, each rat was handled daily for 1 week. 
This reduced the stress of interacting with experimenters. Then, each rat 
underwent cart training, which encouraged the foraging of food pellets 
in an open field. Each rat was placed on the surface of a laboratory cart, 
and twenty 45-mg pellets were scattered on the cart’s surface. This 
procedure was repeated daily until the rat consumed all pellets within 
15 min, which usually took about 7 days. After cart training, rats un-
derwent a daily shaping procedure to learn to interact with the 
touchscreen (Broschard, Kim, Love, & Freeman, 2020). This procedure 
included three separate phases; each phase was incrementally similar to 
the trial sequence used during training and testing sessions. Phase I 
required a minimal touch requirement and was used to orient the rats to 
the screen. Each trial began with the presentation of a star at the center 
of the screen. After 15 s (or one touch of the screen), the star was 
replaced by a white box appearing on the left or right side of the screen. 
A food pellet was delivered if the rat touched anywhere on the screen 
while the white box was presented. Otherwise, the trial aborted after 45 
s, and the trial was considered a miss. This procedure was repeated until 
the rat completed at least 55/60 trials within 25 min. In Phase II, the 
touch requirement was increased. Specifically, the rats were required to 
touch both the star stimulus and the white box to receive a food reward. 
Similar to Phase I, the trial phases timed out (i.e., 15 s for the star 
stimulus and 45 s for the white box) in the absence of a response. Ses-
sions continued until the rat completed at least 55 trials within 30 min. 
Phase III was identical to Phase II except that the trials did not time out. 

Sessions continued until the rat completed all 60 trials within 25 min. All 
shaping procedures required about 14 days. 

2.4. Surgery 

After shaping was complete, rats underwent stereotaxic surgery. 
Under isoflourane (1% − 4%) anesthesia), a Hamilton syringe (1 uL; 26 
gauge) was lowered into the PL bilaterally (AP: +3.0; ML: ±0.7; DV; 
− 3.5). Upon reaching the target site, 0.4 µL of either NMDA (20 mg/ml; 
10 µL/h; Sigma-Aldrich, St. Louis, MO) or PBS was infused. After sur-
gery, rats were placed on a heating pad until awake and mobile to 
prevent hypothermia. Meloxicam (1 mg/ml) was administered as anal-
gesic both during surgery and 24 h after surgery. Rats were allowed at 
least one week to recover. 

2.5. Behavioral testing: An overview 

After a week of recovery, rats were given multiple training and 
testing sessions to learn to categorize visual stimuli. Briefly, on each 
trial, a single stimulus appeared on the screen, and the rat decided its 
category membership (i.e., category ‘A’ or category ‘B) by pressing one 
of two report keys (Fig. 1D). Food reinforcement was delivered after 
correct responses to guide learning. 

2.6. Category stimuli 

The category stimuli (239 × 239 pixels) presented to the rats con-
tained black and white gratings (Fig. 1B-D). Across stimuli, these grat-
ings varied along two continuous dimensions: spatial frequency and 
orientation. The spatial frequency of the gratings ranged from 0.2532 
cycles per visual degree (cpd) to 1.2232 cpd, and the orientation of the 
gratings ranged from 0 rad to 1.75 rad. These values were obtained from 
pilot experiments and are within the perceptual limits of rats (Crijns & 
Op de Beeck, 2019). Linear transformations of these dimensions were 
made so that both dimensions had a common range (i.e., 0 to 100). 
Specifically, 

Normalized frequency =
cpd

0.0097
− 26.10  

Normalized orientation = radians*
180
pi 

A two-dimensional stimulus space was created using these trans-
formed stimulus dimensions (Fig. 1B-C). 

2.7. Category tasks 

Category tasks were created by placing bivariate normal distribu-
tions on this transformed stimulus space (Fig. 1B; Category A: µX = 30, 
σX = 2.5, µY = 50, σY = 20; Category B: µX = 70, σX = 2.5, µY = 50, σY =

20; Broschard et al., 2019; Broschard et al., 2020; O’Donoghue, Bro-
schard, & Wasserman, 2020). Each distribution constituted a category, 
and each point within a distribution represented a category stimulus. 
Three additional category tasks were created by rotating these distri-
butions in 45-degree increments (Fig. 1B-C). Importantly, rotating the 
distributions did not affect any physical properties of the distributions 
(Ashby, Smith, & Rosedahl, 2019; e.g., standard deviation, mean 
between-category distance, etc.). However, these rotations changed how 
the distributions were oriented in relation to the axes of the stimulus 
space. 1D tasks had distributions that were perpendicular to one of the 
stimulus dimensions (Fig. 1B). Because of this orientation, only one 
dimension (i.e., the perpendicular dimension) was category-relevant 
and had to be considered when deciding category membership. The 
dimension parallel to the distributions was category-irrelevant and 
could be ignored. Conversely, 2D tasks had distributions that were not 
aligned with either stimulus axis (Fig. 1C). For these tasks, both 

Fig. 2. A, A representative example of the location and spread of the PL lesions. 
B, A comparison of lesion size and location for the smallest lesion (light gray) 
and the largest lesion (dark gray) for rats learning a 1D task (left) and rats 
learning a 2D task (right). All lesions were centered in the PL and were con-
tained within bregma + 4.3 and + 2.2. Lesions rarely extended into cingulate 
cortex and infralimbic cortex. 
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Fig. 3. Excitotoxic lesions of the PL impaired learning 1D tasks, but not 2D tasks. A-B, Mean session accuracy of rats learning 1D tasks (A) and 2D tasks (B) (n = 8 per 
group). Compared to controls, rats with PL lesions had impaired accuracy for 1D tasks, but not for 2D tasks. Impairments were greatest at the beginning of category 
training. C-D, Mean number of correction trials from rats learning 1D tasks (C) and 2D tasks (D). Compared to controls, rats with PL lesions learning the 1D tasks, but 
not the 2D tasks required more correction trials. E-F, Mean number of perseverative errors for rats learning the 1D tasks (E) and 2D tasks (F). Compared to controls, 
rats with PL lesions learning the 1D tasks, but not the 2D tasks made more perseverative errors, where a choice was repeated after receiving negative feedback. All 
error bars indicate the SEM. 
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Fig. 4. Excitotoxic lesions of the PL affected reaction time and choice anticipation during category learning. A-B, Mean time to observe and categorize each exemplar 
(Cue RT) for rats learning 1D tasks (A) and 2D tasks (B). Compared to controls, rats with PL lesions learning the 1D tasks, but not the 2D tasks exhibited a longer Cue 
RT. C-D, Mean time to execute a category decision (Choice RT) for rats learning the 1D tasks (C) and 2D tasks (D). Compared to controls, PL lesions did not affect 
Choice RT. E-F, Touch separation used the x-coordinate of the three touches during the Cue phase to estimate choice confidence. Positive touch separation indicates 
horizontal movement of the rat towards the correct side, whereas negative touch separation indicates horizontal movement towards the incorrect side. Compared to 
controls, rats with PL lesions learning the 1D tasks (A), but not the 2D tasks (B) exhibited lower touch separation across category learning. All error bars indicate 
the SEM. 
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dimensions were category-relevant, and deciding category membership 
involved combining information from both dimensions. 

2.8. Category training 

Rats were randomly assigned to learn one of the four category tasks 

(Broschard et al., 2019, 2020). Rats were given 15 training sessions; 
each session contained 80 training trials. On each trial, a star stimulus 
was presented at the center of the screen (Fig. 1D; Star Phase). After one 
touch of the star, a category exemplar was randomly selected from the 
training distributions (Fig. 1B-C) and replaced the star stimulus (Cue 
Phase). After three touches of this exemplar, copies of the exemplar were 

Fig. 5. The PL lesions impaired category generalization in rats trained on the 1D tasks, but not the 2D tasks. A, Each rat was given five testing sessions to examine 
category generalization. Testing distributions had the same category means as the training distributions, but the standard deviation along the relevant dimension was 
expanded to cover novel portions of the stimulus space. Each dot within the distributions represents a unique Gabor patch presented during testing. Testing dis-
tributions were split into three trial types: exemplars that overlapped with the training distributions (Trained), novel exemplars closer to the category boundary 
(Proximal), and novel exemplars farther from the category boundary (Distal). B, Mean accuracy across trial types. Generally, accuracy increased according to the 
distance from the category boundary. PL lesions impaired generalization in rats that learned the 1D tasks, but not rats that learned the 2D tasks. C, Mean Cue RT 
across trial types. Cue RT was larger for rats with PL lesions and had learned the 1D tasks than all other groups. There were no significant interactions across trial 
types. D, Mean Choice RT across trial types. Generally, Choice RT was larger for Proximal trials. The PL lesions did not affect Choice RT. E, Mean touch separation 
across trial types. Touch separation was reduced for rats with PL lesions that learned the 1D tasks. There were no significant interactions across trial types. All error 
bars indicate the SEM. 
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presented on the left and right sides of the screen, acting as report keys 
(Choice Phase). Rats touched either report key depending on the cate-
gory membership of the exemplar. The categories were mapped 
spatially, such that the left report key was chosen for members of 
category A, and the right report key was chosen for members of category 
B. If the correct side was chosen, a white box replaced the report key 
(Reward Phase). One touch of the white box delivered a food reward. If 
instead the incorrect side was chosen, then a correction trial was initi-
ated. Here, the trial repeated from the Cue Phase after a 5 to 10 s time- 
out. Correction trials were repeated without reinforcement until the 
correct side was chosen. Inter-trial intervals ranged from 5 to 10 s. 

2.9. Category generalization 

After category training, rats were presented with five testing sessions 
to examine category generalization (Broschard et al., 2019, 2020). Each 
session contained 80 trials. The trial sequence was identical to training 
sessions except that correction trials were not administered after 
incorrect responses (and therefore all choices were reinforced). Exem-
plars were randomly sampled from testing distributions (Fig. 5A). 
Testing distributions were identical to the training distributions, except 
that the standard deviation along the relevant dimension (or axis for the 
2D tasks) was increased (σX = 10; Broschard et al., 2019; O’Donoghue 
et al., 2020). With this manipulation, some exemplars overlapped with 
the training distributions (i.e., Trained; within two standard deviations), 
but some exemplars sampled from novel portions of the stimulus space. 
Among the novel exemplars, about half were closer to the category 
boundary than the training distributions (Proximal), and half were 
farther from the category boundary (Distal). Generalization to the novel 
stimuli ensures that the rats did not simply memorize single exemplars 
during training. 

2.10. Simple discrimination 

After category testing, rats were trained to learn a simple discrimi-
nation task. This acted as a control task to ensure that any differences 
across groups were not caused by deficits in movement, motivation, 
perception, etc. Instead of categories of stimuli, only two images were 
presented during training sessions (i.e., a light box and a dark box; 
Fig. 6A; Kim, Castro, Wasserman, & Freeman, 2018). Both images con-
tained a common pattern of dots to add perceptual complexity. The trial 
sequence was identical to categorization sessions. The white stimulus 
was mapped to the left report key, and the black stimulus was mapped to 

the right report key. Each session contained 72 training trials. Sessions 
continued until the rat reached a learning criterion (i.e., at least 75% 
accuracy for both images on two consecutive sessions). 

2.11. Histology 

After all behavioral testing, rats were perfused to verify lesion 
placements. Rats were given a lethal dose of euthanasia solution (so-
dium pentobarbital) and then perfused with ~ 400 mL PBS and ~ 400 
mL of 10% formalin. Brains were stored at 4◦ C in a solution containing 
10% formalin and 30% sucrose. A sliding microtome collected 50 µm 
coronal sections of the target area. Brain sections were then stained with 
thionin (Sigma-Aldrich, St. Louis, MO). A close investigation of the tis-
sue was conducted under a light microscope to characterize the size of 
each lesion within the PL and how much it extended dorsally and 
ventrally. The boundary of the PL was defined according to Paxinos and 
Watson (1998). 

2.12. Statistical analysis 

Multiple dependent measures quantified performance for training 
and testing sessions. First, session accuracy was defined as the propor-
tion of correct responses during the Choice phase. Second, perseverative 
errors were calculated and were defined as a repeated incorrect response 
after receiving negative feedback. Third, reaction time was calculated 
during the Cue phase and Choice phase to quantify the amount of time to 
1) observe the stimulus and 2) make a category decision. Reaction times 
from incorrect trials were excluded from all analyses. Additionally, re-
action times that exceeded two standard deviations of the mean were 
excluded from all analyses, a criterion that is commonly used to elimi-
nate outliers (O’Donoghue et al., 2020). These outliers rarely occurred. 
Fourth, touch separation used the pixel location of touches during the 
Cue phase of correct trials to quantify choice confidence. Prior experi-
ments demonstrated that as accuracy improves, the x-coordinate of 
touches during the Cue phase deviate towards the correct side in 
anticipation of the rats’ choice (Kim, Castro, Wasserman, & Freeman, 
2018). Touch separation is calculated by comparing the x-coordinate of 
a touch to the average x-coordinate of all three touches from that trial. 
Positive touch separation indicates deviation towards the correct side, 
and negative touch separation indicates deviation towards the incorrect 
side. 

These dependent measures were analyzed using linear mixed effects 
modeling (R, version 3.4.2). Models used for training sessions included 

Fig. 6. Rats were presented training sessions to learn to discriminate a dark box from a light box. All groups reached learning criterion (75% accuracy for both 
stimuli) in an equal number of training sessions. All error bars indicate the SEM. 
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fixed effects for experimental group, training session, and a quadratic 
function across training sessions, as well as random effects for slope, 
intercept, and the quadratic function. Models for testing sessions 
included fixed effects for experimental group, trial type (Distal, Trained, 
and Proximal), and a quadratic function across trial types, as well as 

random effects for slope, intercept, and the quadratic function. 
Quadratic functions were used because they best fit the data, and higher 
order terms did not significantly improve these fits. Sex was added as a 
covariate for all models to check whether there were any significant 
differences between male and female rats. To find the simplest model 

Fig. 7. A, A diagram of the neural network model SUSTAIN, which contains three distinct layers: the input layer, cluster layer, and decision layer. SUSTAIN also 
contains a mechanism of selective attention (i.e., the feature tuning mechanism) that weights stimulus information according to category relevance. B, Descriptions 
of the five SUSTAIN models that were fit to the learning data to test the effects of the PL lesions on category learning. These models were compared to a control model 
which assumed the lesions had no effect on learning. C, The best fitting model was determined by comparing the estimated AIC values. The model that best fit the 
data (Model 5) assumed that the PL maintains attention to category-relevant information and updates category representations. All models produced a better fit than 
the control model that assumed the lesions had no effect on learning (not graphed: AIC = 278). D, SUSTAIN’s predictions using the best fitting model for rats learning 
the 1D (left) and 2D tasks (right). All error bars indicate the SEM. E, Mean number of clusters recruited by SUSTAIN using the best fitting model. Generally, SUSTAIN 
recruited two clusters (one per category) to learn the 1D tasks and multiple clusters (3–4 per category) to learn the 2D tasks. For the rats with PL lesions, the number 
of recruited clusters was reduced. F, The feature tuning mechanism of the best fitting model. For rats learning the 1D tasks, the attention weight for the relevant 
dimension increased across training, whereas the attention weight for the irrelevant dimension decreased across training. This differentiation was impaired for rats 
with PL lesions. For rats learning the 2D tasks, the attention weights were equivalent between dimensions and across training. This was true for both control and 
lesioned rats. 
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that fit the data, we used a model simplification strategy (Crawley 
2007). We started with the full model and then systematically removed 
random effects one at a time. This continued until the estimates were 
significantly different from the larger model before it. 

2.13. SUSTAIN model fitting 

SUSTAIN is a neural network model of human category learning and 
has been used in multiple contexts to map neural activity to specific 
cognitive processes (e.g., Love & Gureckis, 2007; Mack, Love & Preston, 
2016). Here, we used SUSTAIN to further examine the role of the PL by 
simulating the effects of the PL lesions on category learning. We were 
particularly interested whether the PL serves a function similar to 
SUSTAIN’s attention mechanism (Love & Gureckis, 2007). 

SUSTAIN assumes that similar training experiences cluster together 
in memory (Love et al., 2004). Categories are represented by one or 
multiple clusters; each cluster reflects a learned group of similar training 
experiences and is stored in a hidden layer (Fig. 7A; the cluster layer). 
On each learning trial, the current stimulus is compared to existing 
clusters, and each cluster is activated according to its similarity to the 
stimulus. SUSTAIN’s attention mechanism modulates the stimulus 
before entering the cluster layer (Fig. 7A; the feature tuning mecha-
nism). Each stimulus dimension is multiplied by an attention weight. 
These weights bias the perception of the stimulus according to category- 
relevant information and affect how clusters are activated. Cluster ac-
tivations then project to a decision layer, which makes a probabilistic 
decision regarding the category membership of the stimulus (Fig. 7A; 
decision layer). 

At the beginning of training, the model contains one cluster centered 
on the first training stimulus, and attention weights are equivalent 
across all stimulus dimensions. Then, feedback is provided after each 
trial, and SUSTAIN updates accordingly. First, category representations 
within the cluster layer update, such that the current trial stimulus is 
either integrated into an existing cluster or becomes the center of a 
newly recruited cluster. New clusters are created in response to stimuli 
that are ‘surprising.’ The decision to recruit a new cluster is initiated if 
the model incorrectly classifies a stimulus and the cluster activations 
exceed the value of a threshold parameter, indicating that the model is 
relatively confident in its choice. The feature tuning mechanism is also 
updated so that attention is shifted towards category-relevant di-
mensions. This is controlled by two parameters. First, a selective 
attention parameter determines the amount of attentional focus that can 
be applied in the category task. Second, an attention learning rate 
parameter determines how quickly this attention resource can be shifted 
towards relevant dimensions. 

Love & Gureckis (2007) proposed a framework by which the func-
tions of the PFC map onto elements of the SUSTAIN model. Specifically, 
they posit that the PFC functions as the feature tuning mechanism and 
shifts attention towards category-relevant information. Second, the PFC 
updates category representations by initiating the decision to recruit a 
new cluster. To test these predictions, we created three experimental 
manipulations that simulate the effects of the PL lesions. The first two 
manipulations disrupted the feature tuning mechanism to test whether 
the PL is critical for shifting attention to relevant dimensions. First, we 
lesioned the feature tuning mechanism by setting the two parameters 
that control the feature tuning mechanism (i.e., the selective attention 
parameter and the attention learning rate parameter) to 0. As a result, 
the model could not update its attention weights, rendering the model 
unable to shift attention to category-relevant dimensions. Second, we 
permutated the attention weights before each trial. With this manipu-
lation, the model could update its attention weights normally; however, 
on any given trial, attention may be directed towards category- 
irrelevant information. Therefore, the model could learn to identify 
relevant information, but its ability to maintain selective attention to 
that information across trials was impaired. The third manipulation 
tested the prediction that the PL initiates the decision to recruit a new 

cluster in response to ‘surprising’ stimuli. This was accomplished by 
increasing the cluster threshold parameter that determines when a new 
cluster is recruited. 

Using combinations of these manipulations, we generated five ver-
sions of SUSTAIN that each simulated how the PL lesions affected 
category learning (Fig. 7B). We also added a control model that assumed 
the lesions had no effect on learning. Each model was optimized to the 
rats’ averaged learning curves using the MATLAB function fmincon. 
Then, Akaike’s Information Criterion (AIC) was calculated for each 
optimized model to quantify its goodness-of-fit (Akaike, 1974). The 
model with the smallest AIC value was determined as the model that best 
fit the behavior. The function(s) of PL can be inferred from these results. 

2.14. Perceptual recency effect 

With the current design, each rat completed a large number of 
training trials. This afforded us the ability to examine category learning 
on a trial-by-trial basis. Importantly, this sensitivity was leveraged to 
further test the prediction that the PFC updates category representations 
(Love & Gureckis, 2007). We examined the effect of the PL lesions on 
perceptual recency effects, which characterize how category perfor-
mance is influenced by the identity of the most recent training exemplar 
(Jones, Love, & Maddox, 2006). Recency effects suggest that category 
decisions are biased towards recent exemplars, which would imply that 
the learner regularly updates category representations. Assuming 
representational updating is a function of the PFC, we predicted that 
recency effects are mediated by the PL. 

Recency effects often interact with the perceptual similarity between 
exemplars. For example, performance is facilitated if the exemplar is 
perceptually similar to the most recent exemplar (Jones et al., 2006). 
Therefore, we binned the accuracy1 of training trials according to the 
perceived similarity between the current exemplar (n) and the most 
recent exemplar (n-1; Nosofsky, 1986). Perceptual similarity between 
exemplars i and j was calculated as: 

sij = e− dij  

where d is the psychological distance between exemplars i and j. Psy-
chological distance was defined as, 

dij =
∑M

m=1
wm*

⃒
⃒xi − xj

⃒
⃒

where wm was SUSTAIN’s estimated attention weight for dimension m 
on trial n, and x was the physical value of the exemplar along dimension 
m. Trial effects were isolated by subtracting the binned accuracies by the 
average of 1,000 permutations where trial order was shuffled. There-
fore, positive recency scores indicate increased accuracy due to trial 
order, negative scores indicate decreased accuracy due to trial order, 
and 0 indicates no effect of trial order. 

3. Results 

3.1. Histological assessment of PL lesions 

Representative lesions are shown in Fig. 2. Each lesion was examined 
under a light microscope to ensure that it was contained within the PL. 
PL boundaries were determined according to Paxinos & Watson (1998). 
All lesions were centered within the PL, and the data from all rats were 
included in all analyses. Along the rostral/caudate axis, all lesions were 
contained between bregma +4.3 and +2.4. There were no significant 
differences in lesion size and location between the males and females. 
The lesions of three rats (one rat learning a 1D task and two rats learning 
a 2D task) extended dorsally into the cingulate cortex and ventrally into 
the infralimbic cortex. However, there were no differences in behavior 
between rats with these lesions and rats with more selective lesions. 
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3.2. PL lesions impair category learning for 1D tasks but not 2D tasks 

All rats completed 15 training sessions to learn either a 1D task or a 
2D task. We used linear mixed effects models to examine accuracy, the 
number of correction trials, and the number of perseverative errors 
across category training (see Materials & Methods). The full models 
included fixed effects for group, training session, a quadratic function 
(across sessions), random effects for the intercept, slope, and the 
quadratic function, and a covariate for sex. For all measures, there was a 
significant main effect for training session (Fig. 3). Session accuracy 
increased across training, and the number of correction trials and 
perseverative errors decreased across training (Accuracy: t(27.11) =
5.20, p < .001; Correction trials: t(27.04) = 5.81, p < .001; Perseverative 
errors: t(27.27) = 5.12, p < .001). There were no significant differences 
between male and female rats (Accuracy: t(22.01) = -1.64, p = .116; 
Correction trials: t(19.25) = 0.67, p = .513; Perseverative errors: t 
(29.01) = 0.46, p = .649), suggesting that sex did not affect category 
learning. There were also no significant differences between controls 
learning the 1D tasks vs. the 2D tasks (Accuracy: t(26.55) = 0.05, p =
.963; Correction trials: t(26.78) = 0.04, p = .971; Perseverative errors: t 
(27.02) = 0.46, p = .647). This replicates our previous work and sug-
gests that rats normally learn 1D tasks and 2D at the same rate (Bro-
schard et al., 2019). 

Compared to controls, rats with PL lesions were impaired in learning 
the 1D tasks. Specifically, accuracy was impaired, and the number of 
correction trials and perseverative errors were larger (Fig. 3A-F; Accu-
racy: t(27.40) = 2.43, p = .022; Correction trials: t(27.33) = 2.31, p =
.028; Perseverative errors: t(27.54) = 2.56, p = .030). Conversely, PL 
lesions did not affect category learning for the 2D tasks (Accuracy: t 
(27.01) = 0.62, p = .541; Correction trials: t(26.94) = 0.21, p = .838; 
Perseverative errors: t(26.87) = 0.33, p = .742). Together, these results 
indicate that the PL lesions impaired category learning for the 1D tasks, 
but not the 2D tasks. The 1D tasks, but not the 2D tasks, involve 
category-irrelevant information, and therefore encourage a shift in 
attention to a single stimulus dimension. Therefore, our results suggest 
that the PL is important for shifting attention towards category-relevant 
dimensions and away from irrelevant dimensions (i.e., selective atten-
tion). Without the PL, attention may be divided between the relevant 
and irrelevant dimensions. Under this interpretation, the PL lesions did 
not affect learning the 2D tasks because, without the PL, rats were biased 
toward deploying the optimal strategy (i.e., divided attention) as both 
dimensions were relevant. 

3.3. Rats with PL lesions learning 1D tasks require more time to categorize 
exemplars 

Next, we examined the amount of time to evaluate each stimulus 
(Cue RT) and to execute a category decision (Choice RT) using linear 
mixed effects models (fixed effects: group, training session, a quadratic 
function (across sessions); random effects: intercept, slope, and the 
quadratic function; covariate: sex). There were significant main effects 
of training session for both Cue RT and Choice RT, such that reaction 
time decreased across training (Fig. 4; Cue RT: t(26.31) = 3.47, p = .002; 
Choice RT: t(27.02) = 2.51, p = .018). There was no significant differ-
ence between male and female rats (Cue RT: t(37.89) = 0.62, p = .538; 
Choice RT: t(28.78) = -0.36, p = .720). For controls, Cue RT and Choice 
RT were not significantly different between rats learning the 1D tasks 
and the 2D tasks (Cue RT: t(26.96) = 2.09, p = .045; Choice RT: t(27.00) 
= 0.26, p = .796). For rats with PL lesions, Cue RT was significantly 
larger than the controls for rats learning the 1D tasks (Fig. 4A-B; t 
(27.02) = 3.92, p < .001; Fig. 3C), but not the 2D tasks (t(26.97) = 1.25, 
p = .223). However, there were no significant group differences in 
Choice RT (Fig. 4C-D; 1D tasks: t(27.04) = 1.55, p = .133; 2D tasks: t 
(26.89) = 0.99, p = .329). Together, these results suggest that the rats 
with PL lesions learning the 1D tasks required more time to evaluate 
each stimulus. However, there were no significant differences in the 

amount of time to execute a category decision. These results are task- 
specific, which suggests that this impairment is a consequence of the 
1D tasks having both relevant and irrelevant stimulus information. 

3.4. PL lesions impair choice confidence for rats learning 1D tasks but not 
2D tasks 

We then examined the effect of PL lesions on touch separation, a 
measure of choice confidence during the Cue phase (see Material and 
Methods). A linear mixed effects model (fixed effects: group, training 
session, a quadratic function across sessions; random effects: intercept, 
slope, the quadratic function; covariate: sex) examined touch separation 
for the third touch across training sessions. First, there was a main effect 
of training session, such that touch separation increased across sessions 
(Fig. 4; t(27.02) = 4.71, p < .001). There was no significant difference in 
touch separation between male and female rats (t(26.16) = -0.93, p =
.360) as well as controls learning the 1D tasks and 2D tasks (t(26.95) =
0.30, p = .840). For rats with PL lesions, touch separation was impaired 
for the rats learning the 1D tasks (Fig. 4E; t(27.38) = 2.82, p = .009), but 
not 2D tasks (Fig. 4F; t(26.96) = 0.53, p = .601). These results support 
the role of PL in learning 1D tasks and suggests that these rats were less 
confident in their category decisions. 

3.5. PL lesions impair category generalization for 1D tasks but not 2D 
tasks 

After category training, each rat was presented with five testing 
sessions to examine category generalization. Testing distributions had 
identical category means as the training distributions but had increased 
variance along the relevant dimension (or relevant axis for the 2D tasks) 
to sample from novel portions of the stimulus space (Fig. 5A). We 
segregated the testing distributions into three trial types: stimuli that 
overlapped with the training distributions (Trained), novel stimuli 
farther from the category boundary (Distal), and novel stimuli closer to 
the category boundary (Proximal). 

Linear mixed effects models (fixed effects: group, trial type, a 
quadratic function; random effects: intercept, slope, and the quadratic 
function; covariate: sex) examined accuracy, Cue RT, Choice RT, and 
touch separation during testing sessions. Generally, performance was 
poorer for Proximal stimuli compared to Trained stimuli, suggesting that 
the rats perceived stimuli closer to the category boundary as more 
difficult (Broschard et al., 2019). Specifically, accuracy and touch sep-
aration for Proximal stimuli were significantly lower than Trained 
stimuli, and Choice RT for Proximal stimuli was significantly larger than 
Trained stimuli (accuracy: t(52) = 8.22, p < .001; touch separation: t 
(52) = 2.49, p = .016; Choice RT: t(52) = 2.76, p = .008). Cue RT did not 
differ significantly between Proximal stimuli and Trained stimuli (t(52) 
= 2.0, p = .057). Conversely, rats could easily generalize to the Distal 
stimuli, and there were no significant differences between Distal stimuli 
and Trained stimuli (accuracy: t(52) = 1.96, p = .055; Cue RT: t(52) =
0.94, p = .353; Choice RT: t(52) = 0.85, p = .400; touch separation: t 
(52) = 0.89, p = .377). Finally, there were no significant differences in 
all dependent measures between controls that learned the 1D tasks and 
2D tasks (Fig. 5B-E; Accuracy: t(26) = 0.77, p = .448; Cue RT: t(31.08) =
0.73, p = .470; Choice RT: t(30.23) = 0.33, p = .747; touch separation: t 
(38.54) = 0.04, p = .966). 

PL lesions impaired accuracy and touch separation for rats that 
learned the 1D tasks (Fig. 5B,E; accuracy: t(26) = 2.51, p = .019; touch 
separation: t(38.54) = 2.95, p = .039), but not the 2D tasks (accuracy: t 
(26) = 0.43, p = .667; touch separation: t(38.54) = 0.41, p = .684). 
Furthermore, Cue RT was significantly larger for rats with PL lesions that 
learned the 1D tasks, but not the 2D tasks (Fig. 5C; t(31.08) = 2.61, p =
.014; t(31.08) = 0.72, p = .480, respectively). PL lesions did not affect 
Choice RT (Fig. 5D; 1D tasks: t(30.23) = 0.27, p = .787; 2D tasks: t 
(30.23) = 0.97, p = .341). There were no significant interactions be-
tween trial types (all ps > 0.05). There also were no significant 
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differences between male and female rats (all p > .05). Together, these 
results are consistent with the results from training. PL lesions impaired 
category generalization for rats that learned the 1D tasks, but not the 
rats that learned the 2D tasks. Rats with PL lesions learning the 1D tasks 
had lower accuracy, required more time to categorize each stimulus, and 
had less confidence in their category decisions. 

3.6. Simple discrimination 

After category generalization, rats were trained to learn a control 
discrimination task. The trial sequence was identical to category 
training, except only two objects were presented (instead of categories 
of stimuli; Fig. 6A). This procedure was added to ensure the PL lesions 
did not cause general deficits that were not specific to categorization (i. 
e., motivational, perceptual, motor, etc.). Using a 2x2 between ANOVA, 
there were no significant differences in the number of sessions to reach 
the learning criterion across groups (Fig. 6B; F(3,25) = 0.37, p > .05). 
These results support the conclusion that the observed impairments 
were specific to categorization. 

3.7. SUSTAIN modeling: PL affects selective attention and category 
representations 

Using the neural network SUSTAIN, we created three manipulations 
that simulated potential functions of the PL (Love & Gureckis, 2007). 
Two of these manipulations disrupted SUSTAIN’s feature tuning mech-
anism, which learns to shift attention to category-relevant dimensions. 
These included 1) lesioning the feature tuning mechanism so that 
attention weights are static across training and 2) shuffling the attention 
weights before each trial so that attention was not consistently directed 
towards category-relevant dimensions. The third manipulation tested 
the prediction that PL lesions limited the ability to recruit new clusters; 
this was modeled by increasing a cluster recruitment threshold param-
eter. Five models were created using combinations of these manipula-
tions (Fig. 7B & 7D). Each model was fit to the averaged group data 
(Fig. 7B & 7D). These models were compared to a control model that 
assumed the lesions had no effect on learning. The rats’ behavior was 
best explained when we shuffled the attention weights before each trial 
and increased the cluster recruitment threshold for the lesion groups 
(Fig. 7C; Model 5). These results suggest that the PL is important for 
maintaining attention to category-relevant dimensions as well as 
building category representations. All models produced a better fit than 
the control model that assumed the lesions had no effect on learning. 

We then examined the best fitting model in Fig. 7D (Model 5) to 
ascertain how the lesions affected the cluster representations. Fig. 7E 
shows that, for the controls, SUSTAIN recruited two clusters (one per 
category) to learn the 1D tasks, but multiple clusters (~3–5 per cate-
gory) to learn the 2D tasks (Broschard et al., 2020). These results suggest 
that 1D categories are normally represented by single prototypes, 
whereas 2D categories are normally represented by multiple exemplars 
(Posner & Keele, 1968; Nosofsky, 1986, respectively). Rats with PL le-
sions recruited fewer clusters compared to controls to learn the 2D tasks, 
a direct consequence of increasing the cluster recruitment threshold. 
These results imply that rats with PL lesions learning the 2D tasks may 
have had sparser category representations compared to controls, even if 
performance was intact across training (Fig. 7E). 

We then examined the feature tuning mechanism of the best-fitting 
model to characterize how the PL lesions affected selective attention. 
Fig. 7F demonstrates that 1D tasks were learned by incrementally 
shifting attention towards the category-relevant dimension (Broschard 
et al., 2020). Specifically, the attention weight of the category-relevant 
dimension increased across training trials, whereas the attention weight 
to the category-irrelevant dimension decreased across training trials. 
Importantly, this differentiation was much slower and reached lower 
levels for rats with PL lesions (Fig. 7F). This finding verifies that shuf-
fling the attention weights across trials reduced selective attention by 

impairing the model’s ability to maintain attention to the relevant 
dimension. Conversely, the 2D tasks were learned by dividing attention 
between stimulus dimensions (Fig. 7F; Broschard et al., 2020). The 
attention weights for both dimensions were equivalent across training, a 
pattern that was consistent for both controls and rats with PL lesions. 

3.8. PL lesions impair perceptual recency effects 

SUSTAIN was best fit to the averaged group data when it was 
assumed that the PL lesions reduced the ability to update category 
representations. Here, we tested this prediction further by examining 
category learning on a trial-by-trial basis. We predicted that if the PL is 
critical for updating representations, then the PL lesions should also 
impair perceptual recency effects, where the learner biases category 
decisions according to recent training experiences. To test this, we 
binned the accuracy of training trials according to the perceived simi-
larity between the current exemplar and the most recent exemplar (see 
Materials and Methods). Then, we subtracted the binned accuracies 
from iterations where trial order was randomized. Positive recency 
scores indicate that accuracy was facilitated because of trial order, 
negative scores indicate that accuracy was impaired because of trial 
order, and 0 indicates that trial order had no effect on category accuracy. 

For controls, trial order affected category learning and was modu-
lated by stimulus similarity (Fig. 8). One-sample t-tests were used to 
assess whether the perceptual recency scores were significantly different 
from 0. For controls learning the 1D and 2D tasks, scores were signifi-
cantly larger than 0 if the current stimulus was perceptually similar to 
the previous stimulus (i.e., above the median similarity; 1D tasks: t(7) =
3.16, p = .016; 2D tasks: t(7) = 2.86, p = .024). Conversely, scores were 
significantly smaller than 0 if the current stimulus was perceptually 
dissimilar from the previous stimulus (i.e., below the median similarity; 
1D tasks: t(7) = 2.97, p = .021; 2D tasks: t(7) = 3.01, p = .020). These 
results indicate that accuracy was facilitated if the current stimulus was 
perceptually similar to the most recent exemplar, but accuracy was 
impaired if the current stimulus was perceptually dissimilar from the 
most recent exemplar. For rats with PL lesions, none of the perceptual 
recency scores were significantly different from 0, indicating that trial 
order did not affect accuracy (Fig. 8; all p > .05). Together, these results 
indicate that rats normally bias their decisions according to recent 
training experiences, which implies that they regularly update category 
representations. This process is effectively absent in rats with PL lesions. 
This finding supports the SUSTAIN modeling and indicates that the PL is 
critical for updating category representations. 

4. Discussion 

Rats were trained to categorize stimuli containing black and white 
gratings according to one stimulus dimension (1D tasks) or two di-
mensions (2D tasks). Lesions of the PL impaired learning and general-
ization in rats trained on the 1D tasks. Without the PL, rats learning the 
1D tasks had lower accuracy, a larger number of correction trials, and 
more perseverative errors compared to controls (Fig. 3); they also 
needed more time to categorize each stimulus (i.e., Cue RT) and showed 
impaired choice confidence (i.e., touch separation; Fig. 4). The PL le-
sions did not affect performance on the 2D tasks or the simple 
discrimination task; therefore, impairments were specific to the 1D 
tasks. 1D and 2D tasks only differed in a simple rotation of the category 
distributions. This rotation did not change any physical properties of the 
categories (Ashby, Smith, & Rosedahl, 2019; e.g., discriminability, 
average category distance, etc.), but it did affect how the tasks were 
learned by changing the number of category-relevant dimensions. 

COVIS posits that humans have a PFC-mediated declarative system 
that learns new categories by testing rules (Ashby et al., 1998; Ashby & 
Maddox, 2011). This system is biased towards simple rules; therefore, 
COVIS predicts that the PFC is critical for learning tasks that can be 
solved by unidimensional strategies (i.e., 1D tasks, but not 2D tasks). 
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Using this logic, we could conclude that rats also have a PFC-mediated 
declarative system that is important for learning 1D tasks. However, 
there is little evidence that rats consistently apply category rules in the 
manner that humans do (Broschard et al., 2019). Rule-based learning in 
humans is best characterized by a step-wise learning curve, where ac-
curacy improves rapidly in a non-linear way (Ashby & Maddox, 2011). 
Presumably, this jump in performance is a consequence of the partici-
pant testing hypotheses about potential rules and selecting the correct 
rule. Category learning in rats is generally linear and incremental, even 
for the 1D tasks, suggesting that rats are not testing hypotheses in the 
same way. 

Instead, we propose that rodent PL mediates lower-level mechanisms 
that make up the building blocks of the primate declarative system. 
Specifically, the rodent PL biases attention to relevant stimulus infor-
mation, a mechanism important for learning 1D tasks, but not for 
learning 2D tasks. This interpretation is supported by SUSTAIN. The 
neural network model best fit the PL lesion data when we shuffled the 
attention weights before each decision, suggesting that the PL normally 
maintains attention to relevant stimulus information (Fig. 7). Shuffling 
the attention weights did not affect performance on the 2D tasks since 
attention was allocated to both dimensions equally. This interpretation 
converges with multiple studies implicating the PL in selective attention 
by orienting attention to cues that predict reward (Sharpe & Killcross, 
2015, 2018; Tait et al., 2014). 

Selective attention is foundational to categorization (Nosofsky, 
1986). At its core, category learning involves discriminating between 
relevant and irrelevant stimulus information. To illustrate this point, 
Rehder & Hoffman (2005) tracked eye movements while participants 
learned to categorize stimuli made from three binary dimensions; 
depending on the task, the number of category-relevant dimension(s) 
differed (Shepard, Hovland, & Jenkins, 1961). Eye fixations (and pre-
sumably attention) were initially distributed across all stimulus di-
mensions, but then became restricted to only the relevant dimensions 
(Rehder & Hoffman, 2005). Our results suggest that maintaining 
attention to a subset of stimulus dimensions is mediated by the PL, a 
function that becomes more critical as the number of relevant di-
mensions decreases. This interpretation also matches the results of Mack 
et al. (2020), who found that BOLD activity in the ventromedial PFC 
(vmPFC) tracked the number of relevant stimulus dimensions. They 
argued that the that vmPFC was critical for filtering out irrelevant 

stimulus information. 
Future experiments can investigate whether other prefrontal sub-

regions are also necessary for learning 1D tasks. A potential target is the 
anterior cingulate cortex (ACC), which has also been implicated in se-
lective attention in rats (Kim, Wasserman, Castro, & Freeman, 2016). 
COVIS posits that the ACC participates in the declarative system by 
switching attention to alternative category rules (Ashby et al., 1998). 
This can be tested directly by inactivating the rodent ACC before cate-
gory training. One interesting prediction would be that the PL and ACC 
serve similar but dissociable functions in selective attention. For 
example, whereas our results suggest that the PL is critical for main-
taining attention to relevant dimensions, the ACC may be critical for 
identifying dimensions that are category-relevant vs. irrelevant. In this 
example, the ACC would be critical for learning how to orient attention, 
and the PL would be critical in applying those learned attention weights. 

In addition to selective attention, the results from the SUSTAIN 
modeling suggest that the PL is also important for creating new category 
representations (i.e., clusters). SUSTAIN recruits new clusters in 
response to ‘surprising’ stimuli, where the model is confident in an ul-
timately incorrect decision (Love et al., 2004). In the current experi-
ment, SUSTAIN best fit the learning data when it was assumed that the 
rats with PL lesions had a higher threshold to recruit new clusters 
(Fig. 7). Consequently, without the PL, the category representations 
were much sparser. This was especially critical for rats learning the 2D 
tasks, where normally multiple clusters are recruited for each category. 
The role of the PL in updating category representations was also 
examined by analyzing category learning on a trial-by-trial basis 
(Fig. 8). We found that, for controls, category decisions were directly 
influenced by recent exemplars. Accuracy was facilitated if the current 
stimulus was perceptually similar to the previous exemplar, whereas 
accuracy was impaired if the current stimulus was dissimilar to the 
previous exemplar, suggesting that rats update category decisions 
regularly and bias their decisions according to recent information. 
Importantly, rats with PL lesions showed no effects of trial order. 
Without the PL, rats may be less sensitive to local changes within the 
category, which could lead to perseveration in the event of a task switch. 

We predict that the role of the PL in updating representations is 
related to the literature that credits the PFC in the development and 
maintenance of schemas, which are hierarchical representations of in-
formation that help organize memories (Koscik & Tranel, 2012). 

Fig. 8. Perceptual recency effects. Accuracy was binned according to the perceptual similarity between the current exemplar and the most recent exemplar. Then, 
these binned accuracies were subtracted from iterations where trial order was randomized. For controls learning both task types, accuracy was facilitated if the 
current stimulus had high perceptual similarity to the previous trial (i.e., a positive recency score). Accuracy was impaired if the current stimulus had low perceptual 
similarity to the previous trial (i.e., a negative recency score). These effects of trial order were absent in rats with PL lesions. This was true for rats learning the 1D (A) 
and 2D tasks (B). All error bars indicate the SEM. 
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Schemas extrapolate common elements from distinct episodes (Morton, 
Sherrill, & Preston, 2017; Pudhiyidath, Roome, Coughlin, Nguyen, & 
Preston, 2019) and rely on an interaction between the PFC and hippo-
campus (Zeithamova, Dominick, & Preston, 2012; Schlichting & Pres-
ton, 2016). We predict that the PL uses these mechanisms in our 
categorization tasks to update and elaborate category representations. 
Indeed, a growing literature suggests that the hippocampus stores 
category representations that are similar to the clusters described by 
SUSTAIN (Theves, Fernandez, & Doeller, 2020; Mack, Love, & Preston, 
2016; Mack, Love, & Preston, 2018). For example, Mok and Love (2019) 
was able to fit a clustering model to the neural activity of place cells and 
grids cells as a rat navigated an environment. This implies that updating 
and building category representations involves a close interaction be-
tween the PL and hippocampus. Future experiments can examine this 
interaction directly. 

Finally, it is important to note that although the PL facilitates cate-
gory learning, it may not be necessary for categorization to occur. 
Indeed, accuracy impairments in the 1D tasks largely occurred during 
the initial training sessions, and rats with PL lesions were able to learn 
the 1D tasks after extensive training. This implies that other neural re-
gions were able to compensate. COVIS predicts that a second learning 
system, the non-declarative system, takes over when the PFC-mediated 
declarative system cannot successfully find a category rule (Ashby 
et al., 1998; Ashby & Maddox, 2011). Importantly, key features of this 
non-declarative system were present in rats with PL lesions. For 
instance, the non-declarative system does not employ executive func-
tions like selective attention. Additionally, learning in the non- 
declarative system is thought to be more static and habitual, relying 
on repetition and consistent feedback. We suspect that in the absence of 
the PL, a learning system synonymous to the non-declarative system of 
COVIS compensated. We hypothesize that the dorsolateral striatum (the 
tail of the caudate nucleus in primates) supports categorization in the 
absence of the PL, as this region is important for supporting habitual 
behaviors in rats (Balleine, Delgado & Hikosaka, 2007). 

To conclude, a general function of the PFC is to guide behaviors in an 
adaptive way (Miller & Cohen, 2001). In the context of category 
learning, we conclude that the rodent PL accomplishes this function 
through two mechanisms. First, the PL maintains attention to relevant 
stimulus information (i.e., selective attention); this prevents the incor-
poration of irrelevant information into category decisions. Second, the 
PL regularly updates category representations and biases decisions ac-
cording to recent information; this allows for dense, flexible represen-
tations and primes the organism for changes in the category structure. 
Together, these mechanisms allow for category representations that are 
both flexible and adaptive. 
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