
RESEARCH ARTICLE

Evaluation of linear and non-linear activation

dynamics models for insect muscle

Nalin HarischandraID
1,2¤, Anthony J. Clare3, Jure Zakotnik1, Laura M. L. Blackburn4,

Tom Matheson3, Volker DürrID
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Abstract

In computational modelling of sensory-motor control, the dynamics of muscle contraction is

an important determinant of movement timing and joint stiffness. This is particularly so in

animals with many slow muscles, as is the case in insects—many of which are important

models for sensory-motor control. A muscle model is generally used to transform motoneu-

ronal input into muscle force. Although standard models exist for vertebrate muscle inner-

vated by many motoneurons, there is no agreement on a parametric model for single

motoneuron stimulation of invertebrate muscle. Although several different models have

been proposed, they have never been evaluated using a common experimental data set.

We evaluate five models for isometric force production of a well-studied model system: the

locust hind leg tibial extensor muscle. The response of this muscle to motoneuron spikes is

best modelled as a non-linear low-pass system. Linear first-order models can approximate

isometric force time courses well at high spike rates, but they cannot account for appropriate

force time courses at low spike rates. A linear third-order model performs better, but only

non-linear models can account for frequency-dependent change of decay time and force

potentiation at intermediate stimulus frequencies. Some of the differences among published

models are due to differences among experimental data sets. We developed a comprehen-

sive toolbox for modelling muscle activation dynamics, and optimised model parameters

using one data set. The “Hatze-Zakotnik model” that emphasizes an accurate single-twitch

time course and uses frequency-dependent modulation of the twitch for force potentiation

performs best for the slow motoneuron. Frequency-dependent modulation of a single twitch

works less well for the fast motoneuron. The non-linear “Wilson” model that optimises

parameters to all data set parts simultaneously performs better here. Our open-access

toolbox provides powerful tools for researchers to fit appropriate models to a range of insect

muscles.
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Author summary

Insects are important study organisms in the neuroscience of sensory-motor systems.

Since the dynamics of muscle contraction and associated changes in force, torque or stiff-

ness are central to our understanding of sensory-motor systems in general, the choice of

the most appropriate model for insect muscle matters. Computational modelling of mus-

cle properties typically separates activation dynamics from contraction dynamics. The for-

mer models the development of muscle force in response to motoneuron activity, whereas

the latter describes how this force is affected by the current physical state of the muscle: its

length and contraction velocity. We evaluate five published activation dynamics models

for insect muscle. We explain differences between them, suggest how to decide which one

to use, and provide an open-source toolbox for activation dynamics modelling. We fur-

ther show that non-linear models are the best choice if: (i) the time course of a single mus-

cle twitch is slow, (ii) the spike frequency ranges between one and thirty spikes per

second, or (iii) the sensory-motor system tends to execute movements in a similar manner

even if the demand on joint torque or stiffness changes.

Introduction

The small number of motoneurons per muscle in insects has permitted detailed analyses of

context-dependent adaptation of motor patterns and behaviour in several model species.

Counter-intuitively, however, this small number of motoneurons poses a problem for the

modelling of sensory-motor control, and the computational neuroscience of behaviour in gen-

eral. This is because it necessitates accurate modelling of the spike-by-spike activation dynam-

ics of the muscle, rather than simpler modelling based on average motor spike rate. Several

muscle activation models have been proposed for insect muscle [1–4], but these have very dif-

ferent properties. Furthermore, although their published parameters were obtained from fits

to experimental data on the same leg muscle (extensor tibiae) and, in three of four cases, the

same leg and species (the metathoracic jumping leg of the locust Schistocerca gregaria [1, 3, 4]),

the models yield very different force time courses when driven with identical inputs. This calls

for a comparative evaluation. To identify the most reliable and computationally sound model

of insect muscle activation dynamics, we provide a comprehensive muscle activation model

toolbox for Matlab, comprising three linear and two non-linear models. We use this toolbox to

identify differences caused by the models themselves, as opposed to effects caused by differ-

ences in the sample data used to tune the published versions of the models. To this end, we use

a data set [5] comprising isometric force contraction time courses in response to metathoracic

fast extensor tibiae (FETi) and slow extensor tibiae (SETi) motoneuron stimulation in the

locust. In particular, we compare the model predictions of frequency-dependencies of maxi-

mum force, rise- and decay times using our own and published experimental data. Under-

standing arthropod muscle and being able to model its actions is important, because insects,

crustaceans and spiders are widely and increasingly being used as models for biomimetic and

robotic applications (e.g., flight: [6]; walking: [7, 8]; jumping: [9]). The active and passive prop-

erties of arthropod muscle provide remarkable solutions to the conflicting demands of flexibil-

ity and stability of movement, driven by relatively simple nervous control systems. Engineers

struggle to manufacture equally versatile actuators, in part because the properties of muscles

and their patterns of activation and modulation are still not fully understood.

Muscle models come in two types: ‘physiological’ and ‘conceptual’. Physiological models

describe the molecular mechanisms underlying muscle contraction, e.g., by formal description
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of calcium release dynamics, binding-unbinding kinetics and diffusion processes. Such models

can predict muscle forces accurately and reproduce effects such as potentiation and depression

[10,11], but often contain many parameters that are unknown or difficult to determine (indi-

rectly) from force measurements or behavioural data. Conceptual models, on the other hand,

estimate the transfer function from motoneuron spike activity (input) to muscle contraction

(output). Generally, they have fewer parameters because they do not model details of the

underlying physiological mechanisms. In some cases, they may not model any physiological

mechanism at all but instead implement an abstract transfer function [12].

The generation of muscle force is typically modelled as a two-stage process that separates

the activation dynamics of muscle from its contraction dynamics [13]. Contraction dynamics
describe how much force is produced given the active state and the current muscle length and

any length change, taking into account the force-length-velocity characteristics of the muscle,

and the elastic properties of muscle and tendon. In essence, the equations describing contrac-

tion dynamics scale the isometric force predicted by the activation dynamics model. Activation
dynamics describe the transform of the neural signal to the active state of the muscle, which

corresponds to the number of actin-myosin cross-bridges. This determines the muscular ten-

sion produced without muscle shortening, i.e., the isometric force. Given the finding that the

force-length dependency of contraction dynamics shifts with calcium concentration [14]

which, in turn, governs activation, the computational separation of the activation and contrac-

tion dynamics may be challenged. For example, Rockenfeller and Günther recently proposed a

model where muscle activation depends on the volumetric density of calcium binding sites,

which in turn is a function of muscle fibre length [15,16].

The present study focuses on conceptual models of muscle activation dynamics for typical

isometric force measurements (varying motoneuron firing frequency at constant muscle

length). A simple and very widely used model was proposed by Zajac [13]. It applies a first-

order low-pass filter to transform a rectified electromyogram (EMG) signal into a force output.

The “Zajac model” is sufficient for many studies in vertebrate muscle, where muscle activation

is largely determined by the number of motoneurons recruited. Other first-order models have

been applied to the smooth muscle of Aplysia [17,18], or to the stomatogastric system of crus-

taceans [19]. Variants of these first-order models have also been applied to the mesothoracic

extensor tibiae muscle of the stick insect Carausius morosus [2].

In contrast to these first-order models, models that use higher-order differential equations

can create a delayed response to a pulsed input such as an action potential [20,21]. The “Hatze

model” uses a pair of non-linear second-order differential equations, based on theoretical

assumptions regarding the transformation of the neural signal to force [20]. Zakotnik [1]

introduced a variant of this model for locust extensor tibiae muscle that includes a frequency-

dependent modulation of twitch shape (Fig 1). More recently, Wilson and co-workers applied

a set of different models to experimental data from the same insect muscle, finding that a linear

third-order model captured well the activation dynamics following slow motoneuron stimula-

tion [3]. Subsequently, they found that a non-linear fourth-order model was still better-suited

to modelling the responses to different—slow and fast—motoneuron types [4].

Three of the five models compared in the present study, including our own former work

[1] and that of Wilson [3,4], have focussed on the extensor tibiae muscle of the locust hind leg,

so we have used exemplar data from that muscle for this comparative analysis. The physiology

and the underlying neuronal control of this muscle have been well studied [22–25]. Time con-

stants for force production, and descriptions of history-dependent effects such as potentiation

are available [26]. The muscle consists of slow, intermediate and fast fibre types and is inner-

vated by two excitatory motoneurons, one inhibitory motoneuron, and a neuromodulatory

dorsal unpaired median (DUM) neuron [26–28]. The fast extensor tibiae motoneuron (FETi)
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usually fires 12 to 17 spikes at up to 70 s-1 as part of a stereotyped motor sequence during

jumping and kicking [29,30], but is generally not active in walking [31]. It fires up to 9 spikes

during each cycle of a scratching movement [32]. In contrast, the slow extensor tibiae moto-

neuron (SETi) is active during both fast (jumping and kicking) and slower behaviours: for

example only 2 to 3 SETi spikes per step allow the muscle to produce forces sufficient for pro-

pulsion [31]. During rhythmical scratching, SETi fires bursts of up to 30 spikes at a median

instantaneous rate of 96 sp s-1, with transient peak frequencies up to approx. 400 s-1 [33]. The

locust metathoracic extensor tibiae muscle is thus used in a range of natural behaviours,

including walking, scratching, kicking and jumping. While the hind leg is adapted for jump-

ing, this adaptation has more to do with muscle volume, biomechanical specialisation of the

joint and motor patterns than with muscle fibre physiology. Its innervation by fast, slow and

common inhibitory motor neurons is the same as that of the stick insect mesothoracic exten-

sor tibiae muscle modelled by Blümel et al. [2].

The activation dynamics model of a muscle becomes critical when the time course of force

generation is not a simple function of average motoneuron spike rate. This is the case not only

for the hind leg extensor muscle of locusts: but also for insect muscles in general, which are

typically innervated by only a small number of motoneurons, and where single muscle poten-

tials can generate considerable force. We present a detailed comparative evaluation of three

linear and two non-linear activation dynamics models that is important for the use of insect

model systems in neuroscience. We explain why non-linear models are clearly superior when-

ever low and intermediate spike rates up to 30 Hz are of interest; and we demonstrate how

Fig 1. Twitch shape parameters of the Hatze-Zakotnik model. Black to grey curves show changes in single-twitch

shape with variation of parameters θ3 (A) and θ4 (B) in Eq 2. Parameter θ3 modulates the twitch peak force and decay

rate at a constant area under the twitch, whereas θ4 jointly modulates peak force and single-twitch duration. Zakotnik’s

extension to Hatze’s original model includes a spike-frequency-dependent modulation of parameter θ4 (see Eq 5).

https://doi.org/10.1371/journal.pcbi.1007437.g001
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suitable the two available non-linear models are in accounting for the properties of different

motoneuron and muscle types. Moreover, we present an open-source muscle activation

dynamics toolbox for research and education.

Results

Modelling realistic time courses of muscle contraction in insects requires appropriate consid-

eration of the characteristic properties of insect muscle, including the importance of single

twitches, the long-lasting twitch force, and non-linear force potentiation. As these properties

may differ considerably among particular muscle activation dynamics models, we present a

comparative evaluation of five models that have been proposed in the literature. We do so in

four steps. First, we focus on the time course of the single twitch because it can be considered

the elementary muscle contraction event. Second, we relate the properties of the single twitch

to those of isometric muscle contractions in response to arbitrary motoneuron spike rates.

Third, we compare and evaluate the properties of five published models. To illustrate the dif-

ferences of the models in exactly the way that they were proposed originally, we initially adhere

to the published parameter sets. Fourth, we evaluate the properties of the two most accurate

models after optimising their parameters to one exemplar experimental data set.

Single twitch

Single twitch contractions of insect muscle are generally fairly slow: for both slow and fast

motoneurons, a single action potential may lead to a change in isometric muscle force for 200

ms or longer (Fig 2). In response to an SETi action potential (Fig 2A and 2B), the time course

of force development in the extensor tibiae muscle was of sigmoid shape with maximum rising

velocity at approximately 25 ms. The time to peak force was on average 67 ms (SD: 9 ms) so

force development was always faster than force decay, which could take up to 1 s. In response

to an FETi action potential (Fig 2C and 2D) the overall shape of the isometric force time course

was similar to that following an SETi action potential, but peak force was considerably higher.

The time to peak force was on average 61 ms (SD: 6 ms). In some experiments on FETi stimu-

lation, a single stimulus caused additional weak contractions of unknown origin that followed

the initial strong twitch (Fig 2C and 2D).

In Fig 2, both the Hatze-Zakotnik and the non-linear Wilson models were fitted to experi-

mental recordings of single twitches. In the case of the Hatze-Zakotnik model, this involved

only four parameters (θ1-θ4) because no parameters were needed to model force potentiation

(see Eqs 1, 4 and 6: c(f) = 1 for f = 1, irrespective of K1 and K2). In contrast, Wilson’s model

requires optimisation of six parameters. Both models achieved very good fits. For example, the

Hatze-Zakotnik model accurately captured single twitch force time courses with an average

root mean square error (RMSE) of 1.1% of peak twitch force for SETi stimulation, and 6.6%

for FETi stimulation (solid black lines in Fig 2). For comparison, modelling the twitch

response with a first-order model (e.g., [13]) leads to an exceedingly short rise time and lacks

the rounded peak observed in experiments (dashed lines in Fig 2). The third-order, linear Wil-

son model can reproduce the delayed, sigmoid increase and rounded peak [3].

Modelling force potentiation (i.e., the supra-linear increase of peak force with increasing stim-

ulation frequency) requires a non-linearity. One way to incorporate such a non-linearity is to

alter the shape of a single twitch in a frequency-dependent manner. In the case of Hatze’s model

(Eqs 1 and 2), this can be achieved by varying parameters that affect not only the peak twitch

force, but also the rates of increase and decay (θ3) or the duration of the twitch (θ4, see Fig 1). In

the Hatze-Zakotnik model, θ4 is modified by the frequency-dependent factor c(f)). As a result,

summation of twitches is adjusted so as to capture frequency-dependent force potentiation.

Evaluation of activation dynamics models for insect muscle
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Hatze’s model and its variants

The effect of non-linear force potentiation is best observed in the Hatze-Zakotnik model when

increasing the motoneuron spike rate from 10 Hz to 50 Hz, for both slow (SETi) and fast

(FETi) motoneuron stimulation (Fig 3). The increase in peak force was much larger when the

stimulus frequency was changed from 10 Hz to 20 Hz than when it was changed from 20 Hz to

50 Hz. At stimulus frequencies above 20 Hz, single twitches fused into a smooth tetanic con-

traction for both SETi (Fig 3A) and FETi (Fig 3B).

Two extensions of Hatze’s model have been proposed to account for non-linear force

potentiation. For vertebrate muscle, van Zandwijk and colleagues [34] suggested scaling the

peak twitch force by a sigmoid function. However, application of this Hatze-van-Zandwijk

model to the insect data shown in Fig 3 proves insufficient. S2 Fig shows the result after opti-

mising the sigmoid function parameters A and γ0 of Eq 3 by fitting force traces of all stimula-

tion frequencies with constant coefficients θ1 to θ4. While the Hatze-van-Zandwijk model

Fig 2. Modelling a single twitch. Top row shows an isometric twitch response to a single SETi spike (blue) and corresponding model

simulation results for that single twitch (solid black) using the Hatze-Zakotnik model (A) and non-linear Wilson model (B). Force is

normalised to the maximum SETi-induced force of the extensor tibiae muscle of this particular animal. The spike onset is at time t = 0. The

grey lines in A and C show the force responses predicted by Zajac’s first-order model, where the rise time is much shorter than in a real twitch.

C, D show an isometric twitch response to a single FETi spike (red) and corresponding simulation results (black) for the same two models.

Force is normalised to the maximum FETi-induced force of the extensor tibiae muscle of this particular animal. Note that for this figure, model

parameters were optimised to fit the single twitch response only. In the Hatze-Zakotnik model, there were four parameters only (parameters

K1 and K2 were kept constant). In the Wilson non-linear model, there were six.

https://doi.org/10.1371/journal.pcbi.1007437.g002
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performs reasonably well for low stimulation frequencies (S2 Fig), it fails to replicate the exper-

imental data for higher stimulation frequencies. The time taken to reach maximum tetanic

force is shorter in the model than in experiments. For example, a full tetanus for SETi stimula-

tion at 50 Hz is generated after approximately 300 ms in the model, but only after 600 ms in

the experiment. In addition, force values in the model are too low at SETi frequencies above 10

Hz. Furthermore, the tetanus fuses only at frequencies above 25 Hz.

A much better fit to experimental data was obtained when the sigmoid relationship was

replaced with a non-linear, frequency-dependent force potentiation. Fig 3 shows a direct com-

parison of measured and simulated force profiles for a representative SETi stimulation experi-

ment, with a constant set of parameters θ1 to θ3 (optimised to single twitch) and frequency-

specific optimisation of parameter θ4 (see Eq 4). The resulting model predictions match the

experimental data extremely well across all stimulation frequencies. Fig 3 thus demonstrates

the concept of the Hatze-Zakotnik model that scales parameter θ4 by the frequency-dependent

factor c(f) (Eq 5). Table 1 lists the improvement achieved by optimisation of θ4. The fit quality

improved in all cases tested. Although additional optimisation of θ3 improved fit quality

Fig 3. Frequency-dependent modulation of single twitch shape can explain non-linear force potentiation. Measured isometric force traces in response to SETi

(blue, A) and FETi stimulation (red, B) and corresponding simulation using Hatze-Zakotnik model (black). Stimulation frequencies (Hz) are indicated to the right.

Parameters θ1 - θ4 were optimised for the single twitch (as in Fig 2A and 2C) and then θ4 was optimized separately for each spike frequency. Each SETi time course

could be fitted extremely well except for the first three twitches at 10 and 12.5 Hz. For FETi, the model slightly overestimates the rise time at high frequencies and

underestimates the rise time at low frequencies.

https://doi.org/10.1371/journal.pcbi.1007437.g003

Table 1. RMS error values for three kinds of optimization runs for the Hatze-Zakotnik model prediction for SETi

data (11 frequencies of 1 s duration from each animal). Optimising θ4 (middle column) always improves fit quality

compared to the reference parameters of Zakotnik (2006). Additional optimization of θ3 (right column) may or may

not further improve fit quality.

Animal Fixed—θ1, θ2, θ3, θ4,

K1 and K2

Fixed—θ1, θ2, θ3

Varying—θ4

Fixed—θ1, θ2

Varying—θ3, θ4

A 0.0925 0.0643 0.0345

B 0.2327 0.2188 0.2225

C 0.5224 0.5198 0.0719

D 0.0605 0.0256 0.0224

https://doi.org/10.1371/journal.pcbi.1007437.t001

Evaluation of activation dynamics models for insect muscle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007437 October 14, 2019 7 / 30

https://doi.org/10.1371/journal.pcbi.1007437.g003
https://doi.org/10.1371/journal.pcbi.1007437.t001
https://doi.org/10.1371/journal.pcbi.1007437


substantially in one test data set, it led to much less improvement or even lead to worse results

in other cases. To show how factor θ4 needs to be modulated with spike frequency, Fig 4 plots

the optimal values of c(f) relative to the inter-spike interval 1/f, superimposed on the time

course of a single twitch. Potentiation factor c(f) is 1 for a single twitch (i.e., no potentiation)

and less than 1 for higher stimulus frequencies. For both SETi and FETi stimulation, c(f) was

lowest at an inter-spike interval of 0.05 s, equivalent to f = 20 Hz (dotted line in Fig 4). The

overall shape of the function graph c(1/f) resembles the shape of an inverted twitch, with its

minimum approximately 15 ms before peak twitch force. During a spike train, force potentia-

tion is thus largest if a spike occurs just prior to the maximum twitch force caused by the pre-

ceding spike. In the experimental data, this effect was consistent across all preparations.

The frequency-dependent potentiation factor c(f) in the Hatze-Zakotnik model is imple-

mented as a Michaelis-Menten function (Eq 6). The two parameters of this function were

obtained by least-square fits to the experimental data from four preparations (two SETi, and

two FETi stimulation experiments). As shown in Fig 5, Eq 6 approximated well the deter-

mined values for c: it was 1 for a single twitch (equivalent to t = 1 s) and reached a minimum

at about t = 0.04s (24.9 Hz). Mean parameter values for SETi were K1 = 1.46�10−2 (SD:

2.3�10−3) and K2 = 3.9�10−4 (SD: 2.6�10−4). For FETi, mean parameter values were K1 =

7.8�10−2 (SD: 2.6�10−2) and K2 = 8.0�10−4 (SD: 1.8�10−4). For an overview of all model

parameters see Table 2.

Comparison of published models

To quantitatively compare the properties of available muscle activation models “as published”,

we examined their responses to constant-frequency stimulation of the slow motoneuron SETi

(Fig 6, normalised to single twitch force), the corresponding responses to more natural ran-

dom spike trains (Fig 7), the dependence of maximum isometric force on stimulation

Fig 4. Frequency-dependent scaling of single twitch force. Values of function c(t) of Eq 6 for different SETi

stimulation frequencies. Black circles and solid vertical lines indicate medians and inter-quartile ranges. Smaller values

indicate a stronger potentiation of twitches, with a minimum at 20 Hz (dashed line). The smaller this value, the

stronger is force potentiation (see Fig 1). As a reference, the values are superimposed on a single twitch (black curve

and shaded area indicate mean and inter-quartile range of experimental data, n = 5). Maximum potentiation was

achieved when a spike occurred approximately 15 ms before peak twitch force generated by the preceding spike

(displacement of dashed and dotted lines). The lower scale relates frequency to inter-spike interval because in Eq 5

factor c is a function of frequency, whereas in Eq 6 it is a function of time.

https://doi.org/10.1371/journal.pcbi.1007437.g004
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frequency (Fig 8A), and the rise and decay rates in response to a step onset or offset of stimula-

tion (Fig 9A and 9C). Additionally, we compared the properties of the two non-linear models

with parameter sets for a fast motoneuron (constant-frequency stimulation: S4 Fig; random

stimulation: S5 Fig; peak force: Fig 8B; rise and decay rates: Fig 9B). Note that these compari-

sons were based on the parameter sets that were published in the original model descriptions.

Accordingly, differences may, to some extent, depend on the particular properties of the exper-

imental data sets that had been used to obtain these parameters sets in the first place.

The two first-order linear models (Zajac and Blümel) stand out in three ways: first, they

cannot replicate the typical rounded peaks of muscle twitches (Fig 6C and 6D; Fig 7); second,

they imply perfectly linear force potentiation with increasing spike frequency (Fig 8A); third,

they show very little frequency-dependence in rise time to half-maximal force (Fig 9A)—and

none at all for decay time (Fig 9C). With regard to all of these properties, they clearly differ

from the properties of muscle. Examining the properties of the third-order linear Wilson

model shows that some of these short-comings are a consequence of the first-order dynamics

of the Blümel and Zajac models, whereas others are a consequence of linearity. For example,

Fig 5. Values of force potentiation factor c as a function of inter-spike interval. Both SETi (A) and FETi (B) panels

show data from two animals (different symbols for different animals). For each symbol, factor c was calculated after

frequency-specific optimisation of θ4 to measured force traces, as shown in Fig 3. Fits are Michaelis-Menten-type

functions according to Eq 6 (solid and dashed lines). Each function fit was weighted by the stimulus frequency,

improving fit quality at small inter-spike intervals.

https://doi.org/10.1371/journal.pcbi.1007437.g005
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the linear Wilson model produces natural looking rounded twitch peaks (Fig 6E; Fig 7) and

shows a strong change of rise time for stimulation frequencies between 10 and 20 Hz (Fig 9A).

Both of these properties are related to the third-order dynamics of the model. In contrast, the

Table 2. Estimated model parameters for six locusts when fitting to SETi data (animals A, B, and D) or FETi data (animals 2, 3, and 4), using both the Hatze-Zakot-

nik and Wilson non-linear models. Published model parameters are shown for comparison.

Model Hatze-Zakotnik Model Wilson non-linear Model

Motoneuron Locust θ1 θ2 θ3 θ4 K1 K2 Error τc τ1 τ2 k A m Error

SETi A 101 2.956 1.858 34.666 1.77e-2 8.37e-4 0.0877 0.088 0.095 -0.027 1.45 47.65 2.34 0.0491

B 105 4.970 3.697 61.239 1.05e-2 2.03e-4 0.1693 0.059 0.186 -0.210 2.33 48.42 2.59 0.1119

D 72 2.019 6.770 70.464 1.30e-2 7.04e-4 0.0498 0.152 0.005 0.103 1.57 25.59 1.59 0.0400

Zakotnik et al. 2006,

mean

79 2783 4919 78.582 1.46e-2 3.90e-4 - - - - - - - -

Wilson et al. 2013,

mean

- - - - - - - 0.11 0.05 0.00 6.55 24.39 1.91 -

FETi 2 28 1696 9.303 71978 4.70e-2 2.1e-3 0.2706 0.072 0.013 0.080 0.77 19.31 3.05 0.0560

3 34 1687 5.385 37357 0.76e-2 2.6e-3 0.4788 0.093 0.067 0.040 1.05 25.74 2.16 0.0509

4 51 1010 3.577 120970 1.06e-2 7.0e-4 0.1582 0.083 0.069 0.019 1.08 30.12 3.37 0.0525

Wilson et al. 2013,

mean

- - - - - - - 0.070 0.083 0.10 0.57 5.8 1.8 -

https://doi.org/10.1371/journal.pcbi.1007437.t002

Fig 6. Constant frequency responses of five muscle activation models “as published”. A, B show the time course of isometric SETi contractions at different stimulation

frequencies (1–50 Hz) for two kinds of second-order, non-linear models: the Hatze-Zakotnik model [65] and the non-linear Wilson model ([4]. Note that, for immediate

comparison, model output was normalised to maximum force of the single-twitch. This was set to 0.1. C-E show corresponding time courses of three published linear

models: (C) [13], (D) [2] (both first order), and (E) [3] (third order). Constant frequency stimulation started at t = 0 s and persisted for 2 s. For comparison with FETi

contractions see S4 Fig.

https://doi.org/10.1371/journal.pcbi.1007437.g006
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linear Wilson model behaves the same as the other linear models in that it has perfectly linear

force potentiation (Fig 8A) and lacks frequency-dependence of decay time (Fig 9C). Only the

non-linear muscle activation models can capture the latter two properties of insect muscle.

With their parameter settings “as published”, the two non-linear models have considerably

different properties. For example, the tetanic force for 50 Hz stimulation of a slow motoneuron

reached more than thirty times the peak force of a single twitch in the non-linear Wilson

model (Fig 6B), whereas it was less than ten times peak twitch force in the Hatze-Zakotnik

model (Fig 6A). Differences between models are most prominent where force potentiation is

strongest, i.e., when the spike frequency is around 20 Hz (Fig 7A). This is very similar for both

the SETi stimulation (Fig 6) and the FETi stimulation (S4 Fig). The difference is reflected in a

supra-linear (saturating) frequency dependence of maximum isometric force for the Hatze-

Zakotnik model, and a sub-linear dependence for the non-linear Wilson model (Fig 8). Note

that in the linear force-potentiation range (i.e., at low stimulation frequencies), the linear Wil-

son model behaves in a similar way to the non-linear Hatze-Zakotnik model (Fig 7A). For ran-

dom FETi stimulation, the overall time courses of the two non-linear models were similar,

though with considerably higher peak force for the Hatze-Zakotnik model (S5 Fig).

Although all of the higher-order models have a very similar frequency-dependence of half-

maximal rise time (Fig 9A), they differ strongly in their frequency-dependence of decay time.

At the end of a spike train of either SETi or FETi, measured extensor tibiae muscle force

decayed in an exponential manner (S6 Fig). Similarly, all muscle activation models show an

exponential decay after stimulus offset (Fig 6). The half-maximal decay time of the Hatze-

Zakotnik model is strongly frequency-dependent (Fig 9C and 9D), whereas in the non-linear

Fig 7. Response to random activation. Comparison of simulated isometric SETi contraction forces in response to two Poisson spike trains with mean

frequencies of 20 Hz (A) and 5 Hz (B). The same models and model parameters are used as in Fig 6. Differences between models are most prominent

where force potentiation is strongest, i.e., when inter-spike intervals are approximately 50 ms. The time courses predicted by the Hatze-Zakotnik and

linear Wilson models are relatively similar, as are those of the two first-order models. The non-linear Wilson model deviates most strongly from the

others. For comparison with FETi contractions see S5 Fig.

https://doi.org/10.1371/journal.pcbi.1007437.g007
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Wilson model it is hardly frequency-dependent in the case of SETi stimulation (Fig 9C), and

shows nearly opposite behaviour to the Hatze-Zakotnik model for FETi stimulation (Fig 9D).

In the latter case, decay time peaked at 10 Hz and then decreased with increasing frequency in

the Hatze-Zakotnik model, whereas it reached a minimum at 5 Hz and then increased with

increasing frequency in the non-linear Wilson model.

Finally, the tested muscle activation models differ strongly with regard to computational

efficiency (Table 3). Whereas the two linear-first order models clearly outperform all other

models, the third most efficient model is the iterative solution of the Hatze-Zakotnik model. It

is only fifteen times slower than the linear first-order models, more than ten times faster than

the linear Wilson model and almost 50 times faster than the non-linear Wilson model.

Model comparison with same experimental data

Given the considerable differences among the published models, it was important to deter-

mine the extent to which these differences are due to the computational properties of the mod-

els, or rather due to differences in the experimental data for which the published parameter

sets had been optimised. To resolve this issue, we fitted the two non-linear models to the same

experimental data set, obtaining three particular solutions per model for both SETi and FETi

stimulation (see Table 2 for model parameters and performance measures). Owing to the limi-

tations of the linear models, as mentioned in the previous section, we did not consider them

further.

The overall fit quality of the two models is shown in Fig 10. Both models can simulate iso-

metric force time courses similarly well for SETi stimulation (Fig 10A and 10B). The core of

the Hatze-Zakotnik model is an accurate model of a single twitch response that is then modu-

lated in a frequency-dependent manner, so the model’s fit quality is best for low stimulation

Fig 8. Frequency dependence of peak isometric force. As a summary of Fig 6 (A: SETi) and S4 Fig (B: FETi), normalised peak isometric force was

plotted as a function of spike frequency for constant stimulation. Data were normalised to the peak force for a stimulation frequency of 50 Hz. For

linear models, peak force linearly depends on stimulation frequency. With the published parameter sets, the Hatze-Zakotnik model has a saturating,

supra-linear non-linearity for SETi stimulation, whereas the non-linear Wilson model has a sub-linear non-linearity. For FETi stimulation, both

models are supra-linear, with stronger saturation for the Hatze-Zakotnik model.

https://doi.org/10.1371/journal.pcbi.1007437.g008
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frequencies. With increasing frequency it tends to overestimate the half-maximal rise time,

such that force build-up is slightly slower than in the experimental data (Fig 10A). In contrast,

parameters of the non-linear Wilson model are optimised across all spike frequencies simulta-

neously, such that fit quality is similar for all stimulation frequencies. As a consequence, the

fits to the single twitch and to responses to low-frequency stimulation are less good than those

of the Hatze-Zakotnik model. For intermediate SETi stimulation frequencies, the non-linear

Wilson model tends to underestimate rise time (Fig 10B). With regard to FETi stimulation,

the Hatze-Zakotnik model performs less well than for SETi stimulation. It underestimates

Fig 9. Half-maximal rise and decay times. Rise time to 50% of peak force at a given constant stimulation frequency for SETi (A) and FETi (B) is shown

in the top row. C, D: Decay time from peak to 50% of peak force for SETi and FETi, respectively. The results were derived for the same models as used in

Figs 6–8. Linear models show no frequency-dependence of decay time, and only the third-order Wilson linear model has frequency-dependent rise time.

The two non-linear models differ most strongly with regard to their decay time, particularly for FETi stimulation.

https://doi.org/10.1371/journal.pcbi.1007437.g009

Table 3. Comparison of maximum CPU-time for simulating a 40 Hz spike train of 2 s followed by a relaxation time of 1 s (n = 10). The iterative version of the

Hatze-Zakotnik model is only fifteen times slower than the linear first-order models, and nearly 50 times faster than the non-linear Wilson model.

Model Hatze-Zakotnik model Wilson non-linear model Zajac linear model Blümel linear model Wilson linear model

Iterative ODE

CPU-time (s) 0.065 1.321 3.156 0.004 0.003 0.838

https://doi.org/10.1371/journal.pcbi.1007437.t003
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both the rise time and the maximum force for intermediate stimulation frequencies (Fig 10C).

In comparison, the non-linear Wilson model achieves a better fit of the maximum force, while

slightly overestimating rise time (Fig 10D). When comparing fit quality across experimental

data sets, both non-linear models prove to capture the frequency-dependent force potentiation

equally well for SETi stimulation (Fig 11A). Regarding FETi stimulation, the non-linear Wil-

son model achieves better fits (Fig 11B, compare model results with shaded area of experimen-

tal data). Despite the fact that the Hatze-Zakotnik model could replicate the saturating force

potentiation curves well for SETi, optimisation did not lead to a similarly good match for FETi

stimulation.

As described above for the models ‘as published’ (Fig 9), frequency-dependent change of

half-maximal rise time is similar in both optimised models (Fig 12A: SETi, 12B: FETi). For low

frequency stimulation of two SETi data sets, the non-linear Wilson model overestimated rise

time by more than 100 ms (Fig 12A). The Hatze-Zakotnik model overestimated rise time to a

similar degree for one FETi data set (Fig 12B). Concerning the half-maximal decay time, the

Fig 10. Comparison of non-linear models optimised to the same experimental data. Model fits (black) to experimental data sets for SETi (A, B, blue) and

FETi (C, D, red) stimulation. Both models have six free parameters. Since the non-linear Wilson model optimises the complete parameter set for all force

traces simultaneously, its single-twitch fit is worse than that of the Hatze-Zakotnik model. In the latter, four parameters are optimised for the single twitch,

and the remaining two describe the frequency-dependent modulation of the single-twitch time course. Constant stimulation frequencies used were: 1, 7, 10,

12.5, 15, 20, 25, 30, 40 and 50 Hz for SETi, and 1, 10, 20, 30 and 50 Hz for FETi.

https://doi.org/10.1371/journal.pcbi.1007437.g010
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two models differ in much the same way as described for Fig 9. Whereas the Hatze-Zakotnik

model shows the longest decay times for low to medium stimulation frequencies, with faster

decay after high-frequency stimulation (Fig 12C and 12D), five parameter sets of the non-lin-

ear Wilson model lead to increasingly slower decay with increasing stimulation frequency.

When comparing the models with experimental data, the Hatze-Zakotnik model underesti-

mated decay time at high frequencies, whereas the non-linear Wilson model underestimated

decay at intermediate frequencies of SETi stimulation (Fig 12C). S6 Fig compares the decay

time courses of the Hatze-Zakotnik model with experimental data. For SETi stimulation, the

model fit is very good for low frequencies (5 and 10 Hz). At higher stimulation frequencies (20

and 40 Hz) the main difference between model and experimental data was the delayed onset of

decay in the experiment. As a consequence, the decay time course of the model looks very sim-

ilar to the experimental time course, but the former leads the latter by approximately 70 ms.

For FETi stimulation, the model differed from the experimental data in two ways: for stimula-

tion at 50 Hz, the experimental decay again lagged the model decay; the decay of the experi-

mental data was also considerably slower than in the model for stimulation at 10 and 20 Hz

(S6 Fig).

In summary, the non-linear models are similarly capable of replicating the properties of

slow motoneuron (SETi) induced isometric contraction, with the Hatze-Zakotnik model being

slightly superior with regard to the half-maximal decay time. For stimulation of the fast moto-

neuron (FETi), the non-linear Wilson model achieves better fits, particularly with regard to

frequency-dependent force potentiation.

Discussion

The choice of an appropriate muscle activation model is important whenever dynamic proper-

ties of movement sequences are of interest. In the simplest case, muscle activation is a function

of the number of motoneurons recruited and can be related to the overall instantaneous firing

Fig 11. Frequency-dependent force potentiation. Both non-linear models were fit to data from six preparations, three for SETi (A) and three for

FETi (B). The experimental data range (N = 3) is shown in grey. Values were normalised to peak force obtained for stimulation at 50 Hz.

https://doi.org/10.1371/journal.pcbi.1007437.g011
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rate. This is the rule in vertebrates, where Zajac’s linear first-order model of muscle activation

[13] is usually appropriate, and isometric muscle force can be considered a low-pass transform

of the rectified EMG. Although first-order muscle activation models have been applied also to

muscles of molluscs, crustaceans and insects [2,17–19], they can capture neither the delayed

slow rise and rounded peak of a single twitch, nor the non-linear force potentiation observed

in the frequency range between 10 and 30 Hz. Our model comparison (Figs 6–9) illustrates

that rounded twitch peaks and the frequency-dependent increase in half-maximal rise time

typical of invertebrate muscle require the activation model to have higher-order dynamics. On

the other hand, frequency-dependent potentiation and change in decay time require a non-lin-

earity. The two models that fulfil these criteria require three times more parameters than first-

order linear models, and may require considerably more computation time (Table 3). For this

reason, it is worth considering when the properties of higher-order non-linear models are of

particular relevance, which one of the models is preferable, and what other aspects require con-

sideration when modelling insect muscle. The following sections address these three questions

when, which and what:

Fig 12. Half-maximal rise and decay times. A, B: Rise time to 50% peak force at a given constant stimulation frequency for SETi (A) and FETi (B). C, D:

Decay time from peak to 50% peak force for SETi (C) and FETi (D). Both models were fit to the same experimental data sets as used for Fig 11. The

experimental data range is shown in grey (N = 3). No experimental data are available for frequency dependence of FETi decay. Continuous and dashed

colour lines depict best-fit results for the Hatze-Zakotnik and non-linear Wilson models, respectively.

https://doi.org/10.1371/journal.pcbi.1007437.g012
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When is the choice of muscle activation dynamics model relevant?

Given the strong, sustained force of a single twitch (Fig 2), and the pronounced non-linear

force potentiation for stimulation frequencies between 10 and 30 Hz (Fig 3), one may argue

that a muscle activation model should account for these properties whenever the system to be

modelled commonly experiences motoneuron frequencies below 30 Hz. On the other hand,

even under these conditions, model-dependent differences in isometric force may be small

compared to the strong attenuating effects of changes in muscle length and contraction veloc-

ity [13]. Thus, in movement sequences where limb kinematics require the use of a wide range

of muscle lengths and contraction velocities, variation in muscle force is likely to be governed

more by muscle contraction dynamics than by activation dynamics. However, animals often

execute the same movement sequence with very similar kinematics, despite marked changes of

the mechanical demand. For example, insects can compensate for changes in load without sig-

nificant changes in kinematics. In this case, length- and velocity-dependent changes in force as

described by a muscle contraction dynamics model cannot counter the altered mechanical

demand. Similarly, passive muscle properties, which have a strong effect on the dynamics of

limb movements in insects [1,35–38] cannot account for the compensation of altered load

without an associated change in kinematics. In other words, if load compensation occurs with-

out a corresponding change in kinematics, an appropriate change of muscle activation is

strictly necessary. For example, scratching locusts can compensate for substantial additional

loads to the hind leg with essentially no change in joint angle time courses [39]. They control

the target-specific movement by appropriate activation of antagonist muscles [32]. In response

to a change in load, the associated change in motoneuronal spike number per burst is very

small, but this causes a substantial change in co-contraction of antagonist muscles and, as a

consequence, a change in net joint torque [1].

In walking or climbing insects, changes in load occur naturally whenever the animal

changes its body attitude or encounters a change in inclination of the substrate. For example,

during steady-state walking on upward and downward slopes (±45˚), stick insects neither

change their average speed nor do they show strong changes in leg kinematics. Nevertheless, at

the same time, joint torques change drastically with the change in body weight distribution

among legs [40]. As for scratching locusts, walking stick insects alter the relative activation of

antagonist muscles during the early stance phase, suggesting that they maintain similar kine-

matics by regulating joint stiffness rather than joint angle or velocity. In both cases, antagonist

muscles tend to be activated by alternating bursts of motoneuron activity; but the onset and

offset of bursts is not always well defined, and a burst of motoneuron activity in one muscle

may be opposed by only a few, or sometimes even a single spike of an antagonist motoneuron.

Moreover, owing to the strong and long-lasting time course of a single twitch force, antagonist

muscle co-activation can arise even without co-activity of antagonist motoneurons. Thus, even

if intermittent spikes between “typical bursts” are rare, the effect of non-linear force potentia-

tion may be substantial because the decay of force after a motoneuron burst may last well into

the force build-up cause by an antagonist motoneuron burst. As a consequence, the choice of

an appropriate muscle activation model is particularly relevant if the motor behaviour involves

co-activation of antagonist muscles, for example for context-dependent regulation of joint

stiffness or net torque.

Which activation dynamics model should be chosen?

The first decision to make when selecting an activation dynamics model should be whether or

not a linear model is sufficient for the purpose of modelling. As outlined in the previous sec-

tion, this decision should depend on whether or not low to medium motoneuron spike rates
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(1–30 Hz) commonly occur in the movement being modelled. If so, this would call for appro-

priate consideration of non-linear force potentiation that is most pronounced in this frequency

range. On the other hand, if antagonistic motoneurons are consistently firing bursts in alterna-

tion and at high frequency (>50 Hz), and temporal separation of antagonistic bursts suggests

little or no overlap in the activation time courses of antagonistic muscles, neither non-linear

force potentiation nor non-linear effects on force decay would be expected and a linear muscle

activation model is likely to be sufficient. Whenever context-dependent modulation of antago-

nist co-activation occurs (see examples on load compensation above), non-linear force poten-

tiation will be an issue.

Comparing the properties of the two non-linear models, Table 3 shows that the Hatze-

Zakotnik model is much more efficient computationally than the non-linear Wilson model.

Figs 10 and 11 suggest that modulating a single parameter of the single-twitch model works

very well for activation by the slow motoneuron SETi, while revealing considerable mismatch

for activation by the fast motoneuron FETi (Table 2; S9 Fig). Apparently, the transition from

single twitch to tetanus does not follow the same physiological principles for SETi and FETi

activation. Since the non-linear Wilson model does not depend on the modulation of a single

twitch, it is possible to find suitable parameter sets for both SETi and FETi activation.

For the slow motoneuron, the Hatze-Zakotnik model has the advantage of being based on a

physiologically plausible underlying concept. Twitches are maximally potentiated at a stimulus

frequency of 20 Hz (Fig 4), which corresponds approximately to the time from twitch onset to

twitch maximum; i.e. maximal potentiation occurs when the following twitch is triggered at

the maximum of the preceding twitch. This can also be observed in cat gastrocnemius muscle

[40, 41]. Here, potentiation occurs if an additional spike is triggered during the twitch-falling

phase, due to reaction kinetics of calcium dynamics, and this leads to increased twitch ampli-

tude and slower force decay. Studies of calcium dynamics in single barnacle muscle fibres

show that enhanced release of calcium is the main reason for twitch potentiation [41].

In the Hatze-Zakotnik model, calcium release is included in the second differential equa-

tion (Eq 2), in which a single parameter is modulated through a bi-sigmoid Michaelis-Menten

type equation (Eq 6). As a formal description of calcium release and removal, it is an intuitive

conceptual model of the process underlying the potentiation of twitch force. Frequency-

dependent modulation of twitch shape introduces only two additional parameters, and the low

complexity makes optimisation of the model parameters to experimental data feasible. This

leads to non-redundant solutions, which can be directly compared for different muscles or

motoneurons. An extension to the model of muscle force which includes more detail and addi-

tional observations can be implemented by including twitch potentiation state as a more com-

plex model parameter. For example, a framework for decomposition of tetanic forces into a

series of individual twitches of different sizes was proposed by [42].

As the present study focuses on properties of isometric force time courses under the

assumption of no change in muscle fibre length, it is important to note that muscle activation

dynamics gets more complicated as soon as muscle is allowed to shorten, or if isometric force

time courses are to be compared for different muscle lengths. This is because the force-length

dependency of contraction dynamics depends on the level of activation (e.g., [14]). In a recent

study, Rockenfeller and Günther discussed a range of activation dynamics models that include

length-dependency [16] that transform the normalised calcium concentration γ(t) (Eq 4) into

a length-dependent active state q(γ, l), where l denotes the relative fibre length. In their own

model and in all of Hatze’s own variants [20,43,44], the nonlinear transform q contains the

product of γ and a lever function (l) (see Table 2 and Eqs 2 and 3 of [16]). Thus, under the

assumption of constant fibre length, all of these length-dependent activation dynamics models

scale the normalised calcium concentration γ with a constant factor fix. Since none of the
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nonlinear transforms used in the three model variants discussed here includes length-depen-

dency (Hatze-Zandwijk, Eq 3; Hatze-Zakonik, Eq 5; Wilson non-linear, Eq 8) they can be

related to other models by setting (l) = fix = 1. Given the non-linear, frequency-dependent

force facilitation shown in Fig 11 or S7 Fig, a non-linear transform q(γ) is necessary even with-

out any change in muscle length. Future experiments will need to elucidate the potential inter-

action of motoneuron firing frequency on the one hand and muscle fibre length on the other.

What else should be considered when modelling insect muscle?

Both non-linear muscle activation models can account for frequency-dependent, non-linear

force potentiation (Fig 10), however, they do not include long-term potentiation of twitches.

For example, Brown and colleagues [46] modelled the sag effect, i.e., a slow decay in muscle

force with long stimulation times, by including increased calcium removal at different stimulus

frequencies. The effect of sag on twitches (cf. Fig 4 in [46]) resembles twitch modulation in the

Hatze-Zakotnik model, so future work could lead to an incorporation of long-term potentia-

tion into this model.

Another effect not included in current models is long term potentiation of force after a

break [26] and the catch-effect, i.e., a prolonged increase in force production resulting from as

few as one spike in an otherwise constant frequency stimulus sequence (p. 238 in [47]). Catch-

like tension is thought to be based on complex calcium dynamics in the muscle [10].

A critical aspect of muscle models in general is that even an optimal set of model parame-

ters can only account for the most typical behaviour in the face of very strong inter-individual

variation of muscle properties [48]. Blümel and colleagues showed that for stick insect extensor

tibiae muscle contraction dynamics, the use of individually fitted model parameters can halve

the error of model estimates [2].

Our own experimental data also suggest that inter-individual variation can result in a con-

siderable range of parameters of activation dynamics (see parameter ranges of the three per-

animal fits in Table 2). As a consequence, individually optimised parameter sets lead to differ-

ent half-maximal rise and decay times (Fig 11), whereas force potentiation appears to be

affected less (at least for a given type of model, Fig 10). The fact that the Hatze-Zakotnik and

non-linear Wilson models differ substantially more when using the parameters “as published”

(Figs 6 to 9; S4 and S5 Figs) than after parameter optimisation to the same data set (Figs 10–

12) also indicates that variation among experimental data is substantial. To illustrate this fur-

ther, we compared the peak forces and half-maximal rise and decay times among three experi-

mental data sets obtained from the same muscle in the same leg of the same insect species, i.e.,

the hind leg extensor tibiae muscle of the locust Schistocerca gregaria ([4,26] and our own

data). Frequency-dependent potentiation of peak force was different in our experimental data

compared to that of [4,26] for both SETi and FETi (S7 Fig). Our data showed stronger force

potentiation at low frequencies. The situation for half-maximal rise time was quite different

however: here, the data set of [26] stood out, with up to ten times slower rise and decay of

force for low and medium frequencies compared to the data of [4] and our own (S8A Fig).

Variation among data sets was smaller in the case of half-maximal rise and decay times during

FETi stimulation (S8B Fig).

Physiologically meaningful differences in experimental data both within and between stud-

ies may be attributed to a number of factors including inter-individual or genetic strain differ-

ences in neuromuscular function, diurnal changes in physiology, the effects of circulating

neuromodulators, or direct muscle inhibition. Differences in methodological procedures in

different studies could markedly affect modulatory effects in particular. For example, levels of

the insect neuromodulator octopamine are elevated following stress [49,50] which may vary
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among animals and between studies. Octopamine is also released peripherally from Dorsal

Unpaired Median (DUM) neurons during particular types of behaviour such as flight or kick-

ing [51,52]. Octopamine modulates both neuromuscular transmission and muscle contractile

properties [53]. Moreover, Common Inhibitor motoneurons (for review see [54]) release γ-

aminobutyric acid (GABA) onto insect skeletal muscles, which influences muscle contraction

and relaxation dynamics [55–57]. In the locust, Common Inhibitor activation reduces extensor

muscle relaxation times [58] and may reduce the force generated by excitatory motor spikes,

thus facilitating fast cyclical leg movements [56,57,59]. For pharmacological induction of mus-

cle relaxation related to inhibitory innervation see [60].

In summary, much of the difference between the two published non-linear activation

dynamics models is due to considerable differences between the experimental data sets, but

this inter-individual variation is an important aspect of muscle physiology. In the face of this

inter-individual variation, a test for generality of any computational model involving muscle

properties will require systematic variation of model parameters within the documented

parameter ranges. Our muscle activation toolbox for Matlab [61] and the corresponding

experimental data set [5] will facilitate the comprehensive and computationally efficient use of

different activation dynamics models, and will also help us to learn more about variation of

muscle properties in different preparations, types of muscle, and species.

Materials and methods

Muscle force recordings

Experiments were carried out on adult male and female Schistocerca gregaria, from crowded

colonies at the Department of Zoology, University of Cambridge, UK or Department of Biol-

ogy, University of Leicester, UK. Locusts were fixed in modelling clay, ventral side uppermost.

The right hind leg was immobilised with dental cement (Protemp, ESPE) with the femur at

right angles to the body, and the femoro-tibial angle initially set at 140˚ or 90˚, for SETi and

FETi experiments respectively to facilitate the subsequent attachment of the extensor muscle

to the force transducer. For SETi experiments, a window was cut in the distal end of femur,

and the accessory flexor muscle, overlying trachea and air sacs were removed. The end of the

apodeme of the extensor muscle was grasped with a pair of forceps attached to a force trans-

ducer (see below) and the apodeme was cut distal to the forceps. Stimulation of FETi causes

high extensor muscle forces that can fracture the extensor muscle apodeme at the point where

it is grasped by forceps. To avoid this in FETi experiments, the proximal tibia was first braced

in an aluminium sleeve which was then tightly attached to the force transducer with suture

thread, such that the attachment point was aligned with the axis of pull of the extensor muscle.

The distal femoral cuticle of the femoro-tibial joint was dissected away, so that the extensor

muscle remained attached solely to the transducer through its natural point of attachment to

the dorsal proximal tibia. For both SETi and FETi experiments, the extensor muscle length

was adjusted to correspond to 90˚ femur-tibia angle before stimulation.

Stimulation protocol

A window was cut into the ventral thoracic cuticle, and overlying air sacs were removed. Con-

tractions in the extensor tibiae muscle were elicited by stimulation of Nerve 3b (N3b) or Nerve

5 (N5) in the thorax, for SETi and FETi respectively, through a pair of 50 μm silver hook elec-

trodes placed under the nerve and insulated with petroleum jelly. Stimulation strength was set

just above the threshold for eliciting a single twitch reliably. The axon of common inhibitor

motoneuron CI1 runs in the same nerve as that of SETi, but it was not activated in these exper-

iments. This was confirmed by making intracellular recordings from slow extensor tibiae
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muscle fibres during N3b stimulation. Such recordings revealed excitatory junctional poten-

tials (from SETi) but no inhibitory potentials [62].

Stimuli were generated using a Master 8 stimulator (AMPI, Jerusalem, Israel). Series of

pulses at various frequencies were delivered for 10 s or 1 s, for SETi and FETi respectively,

with a 60 s gap between each stimulus train to allow the muscle to recover. FETi stimulus trains

were restricted to 1 s to prevent damage to the apodeme insertion point. Muscle forces were

measured using an isometric force transducer (Model 305C, Aurora Scientific, Canada), digi-

tised at 5 kHz using a micro1401 interface and Spike 2 software (both Cambridge Electronic

Design, Cambridge, UK).

Model implementation

To focus on the time course of muscle activation, measured forces were normalised to the inter-

val [0,1], where 1 corresponds to maximum measured force per animal. They were not filtered.

In the model, the stimulus protocol was shifted by a fixed delay (e.g. 10 ms) to account for the

time taken by neural signals to be conducted to the muscle from the point of nerve stimulation.

Either constrained Levenberg-Marquardt or trust-region-reflective optimisation algo-

rithms, implemented in Matlab (Mathworks Inc, Natick, USA), were used to fit the model

parameters. These algorithms minimised a least squares error function that captured the dis-

tance between the measured and stimulated forces. The fitting procedure was repeatedly initia-

lised with randomly distributed values to avoid local minima. Both algorithms were applied to

the same experimental data set, and the one with the better performance (lower error) used for

further analysis. This is mentioned in the data structures of the optimised data provided with

the supplementary MATLAB IMADSim toolbox [61]. In the following sections, we introduce

the five muscle activation models compared in this study.

Hatze-Zakotnik model

Hatze [20, 44] proposed a second-order model comprising a pair of coupled second-order

inhomogeneous differential equations, to capture two stages of signal processing (Eqs 16 and

17 in [20]; Eqs 3.21 and 3.22 with ρ�(ξ) = 1 in [44]). The first stage describes the transformation

of neural activity α(t) at the motor endplate to membrane potential β(t) in the T-tubular sys-

tem of a muscle. α(t) is zero except for 1 ms periods in which each motoneuron spike is mod-

elled as a half sine wave, idealising the depolarised portion of an action potential (S1 Fig).

When entering the T-tubular system, the action potential α(t) is transformed to signal β(t)

according to the differential Eq 1:

@2b

@t2
þ y1

@b

@t
þ y2b ¼ aðtÞ ðEq 1Þ

The second stage of the model transforms β(t) into the intracellular free ionic calcium con-

centration [Ca2+]i and therefore models calcium release and re-uptake by the sarcoplasmic

reticulum. Differential Eq 2 determines the calcium concentration γ(t):

@2g

@t2
þ y3

@g

@t
þ y4g ¼ bðtÞ ðEq 2Þ

Both processes can be viewed as over-critically damped, second-order systems, each with a

different parameter set [20]. See Part I of the Supplementary Appendix S10 for a numerical

solution for γ(t).

The relationship between the concentration of released calcium and the active state of the

muscle is typically described by a sigmoid function as measured in [63] and [64]. Hatze [20]
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proposed that the active state also depended on muscle fibre length (his Eq 14), and varied this

dependency in different versions (for a detailed treatise of this length dependence and its sig-

nificance, see [16]). Given the lack of experimental data with systematic co-variation of both

motoneuron frequency and muscle fibre length, the present study focuses on variants of the

Hatze model that assume muscle fibre length to remain constant. For example, van Zandwijk

and colleagues [45] expanded the Hatze model by including a sigmoid relationship between

the calcium concentration, i.e., γ(t), and the force-producing active state:

qðgÞ ¼
1

1þ exp½Aðlogg � logg0Þ�
; ðEq 3Þ

where A and γ0 describe the slope and offset of the sigmoid, respectively. Owing to an unsatis-

factory fit of the Hatze-van-Zandwijk model to isometric force measurements in insect muscle

(S2 Fig), Zakotnik [65] replaced van Zandwijk’s sigmoid (Eq 3) with a frequency-dependent

potentiation factor c(f) (hence the name Hatze-Zakotnik model). Reordering of Eq 2 shows

that the calcium concentration γ is divided by the parameter value θ4:

gðtÞ ¼
bðtÞ � @2g

@t2 � y3

@g

@t

y4

ðEq 4Þ

Therefore, if value θ4 is decreased, the twitch force γ increases and has a slower decay. In

contrast, parameter θ3 controls the twitch shape such that tetanic force does not change (Fig

1). To model force potentiation in the Hatze-Zakotnik model, θ4 is multiplied by a factor c(f)

that depends on the instantaneous motor spike frequency f:

gðtÞ ¼
bðtÞ � @2g

@t2 � y3

@g

@t

cðf Þ � y4

ðEq 5Þ

Assuming that there is no potentiation for a single twitch (f = 1, c(1) = 1), values for c(f) can

be determined by optimising parameter θ4 for each stimulation frequency independently and

dividing this value by the measured θ4 at single twitch stimulation. Note that, for this proce-

dure, the other three parameters, θ1 to θ3, remain fixed.

Because calcium kinetics are thought to be the main reason for force potentiation, a

Michaelis-Menten-type equation is used for c(f). It is related to a [Ca2+]i reaction process that

potentiates a twitch, and a calcium pump that reduces both [Ca2+]i and twitch size. The value

for c(t) depending on the time since the previous stimulus t = (1/f) is determined as:

cðtÞ ¼
t2

K1 þ t2
�

t2

K2 þ t2
þ 1 ðEq 6Þ

Eq 6 relies on two parameters K1 and K2, for which we assume that K1� K2 and K1, K2� 0.

Therefore, it is constrained to the interval [0, 1] and converges to 1 for t!1. The first term

can be related to the force-producing reaction; i.e., larger values of K1 produce an elevated and

prolonged twitch force. The second term can be related to the removal of calcium, i.e., larger

values of K2 reduce twitch potentiation.

The parameters, K1 and K2 were also optimized by using either constrained Levenberg-

Marquardt or trust-region-reflective algorithms, to fit the c(f) curve. It should be noted that if

the number of data points (here, the number of different stimulation frequencies) is small, the

fitted curve could deviate slightly more at certain frequency points (see the IMADSim optimi-

sation example given in the supplementary toolbox [61]). Ultimately, this will affect the perfor-

mance of the full six-parameter Hatze-Zakotnik model. For example, in Fig 10A and 10C, a
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larger deviation can be seen in FETi force prediction (where 5 frequencies were used for opti-

misation) compared to that of SETi (with 10 different frequencies).

Non-linear Wilson model

We compare the Hatze-Zakotnik model with another non-linear second order model that was

proposed by Wilson and colleagues [4]. The authors adapted and simplified the model of Ding

[66] to obtain second order dynamics, and used it to describe the isometric response of locust

skeletal muscle to SETi stimulation [4].

The Wilson model gives the muscle force F(t) and takes a pulse train u(t) as an input. The

model equations are:

dCNðtÞ
dt

þ
CNðtÞ
tc
¼ uðtÞ ðEq 7Þ

xðtÞ ¼
CNðtÞ

m

CNðtÞ
m
þ km

ðEq 8Þ

dFðtÞ
dt
þ

FðtÞ
t1 þ t2xðtÞ

¼ A � xðtÞ ðEq 9Þ

, where

uðtÞ ¼
Xn

i¼1

dðt � tiÞ ðEq 10Þ

Here, n defines the number of input pulses, t the time and ti the time at which the ith pulse

occurs. This accounts for the assumption that the input pulses can be approximated as

impulses. Therefore, the motoneuron spike is modelled as a square pulse or half-sine wave of

width 1 ms, scaled to have an area of 1 under the pulse. Like the Hatze-Zakotnik model, the

non-linear Wilson model has six parameters, but it consists of first-order differential equa-

tions. The variable x(t) is an intermediate stage in the model and represents a non-linear satu-

ration. The parameters m and k define the shape of this non-linearity. A measure of [Ca2+]i is

represented by the variable CN. The parameters τc, τ1 and τ2 are time constants, and A is a gain

[4]. Note that Eqs 7 and 8 are very similar to a computationally efficient approximation of the

original model as formulated by Hatze (see Eqs 3.27 and 3.29 to 3.31 in [44], where the nor-

malised calcium concentration CN(t) is the equivalent to γ(t) and the nonlinear transform x(t)

is equivalent to q(γ(t)) without length-dependency).

The parameter set for each animal (i.e. muscle) was estimated by minimising the least

squares error between the measured force and the model output for the entire set of trials per

animal, i.e., for single twitch and all stimulus frequencies. As described by Wilson et al. [4], the

fitting procedure was initialised repeatedly seven times, with random parameter values drawn

from a normal distribution. The optimisation was done using the MATLAB function lsqnonlin
and the trust-region-reflective algorithm was used to find the best fit to the data. The system of

differential equations was solved using a fixed step (0.0002 s or 5 kHz sampling rate), fourth-

order Runge-Kutta method.

Zajac model

In a reference work on muscle modelling, Zajac [13] proposed a linear first-order model for

activation dynamics. The envelopes of the rectified electromyogram (EMG) and of the low-
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pass filtered, rectified EMG, can be related to the neural-excitation input signal u(t) and the

state variable associated with muscle activation a(t), respectively. It is a two-parameter model

described by the following bilinear differential equation:

daðtÞ
dt
þ

1

tact
ðbþ ½1 � b�uðtÞÞ

� �

aðtÞ ¼
1

tact
uðtÞ ðEq 11Þ

0 < b ¼
tact
tdeact

< 1 ðEq 12Þ

where 1/τact is the higher rate constant (when u(t) = 1) and β is the ratio of that over the lower

rate constant, 1/ τdeact, when u(t) = 0 (relaxation). In other words, the model assumes that the

build-up of activation of a fully excited muscle is faster than relaxation after termination of

activation. In the case of the Zajac model, we use an iterative method for solving the differen-

tial equation numerically, as described in part II of the S1 Text.

Blümel model

Blümel and colleagues [2] proposed a simple model of activation dynamics for the stick insect

mesothoracic extensor tibiae muscle. First-order low-pass filtering reproduces many aspects of

isometric contractions in this muscle [67], so the activation dynamics are described by a sin-

gle-pole, first-order low pass filter. The standard recursion equation for such a filter was used

to obtain the following two-parameter model:

a½n� ¼ ð1 � filterÞ � ðscaling � u½n�Þ þ filter � a½n � 1�; ðEq 13Þ

where filter sets the decay amplitude per time step and scaling is a factor that multiplies the

input by a constant. u[n]and a[n] correspond to neural excitation and muscle activation,

respectively. The time constant, tconst, of the filter depends on the time step duration and is

related to the parameter filter according the following equation:

tconst ¼ �
Dt

lnðfilterÞ
; ðEq 14Þ

where Δt is the time step duration. In our case, Δt was 0.0002 s in all simulations.

Linear Wilson model

Wilson and colleagues [3], found that a third-order model was of optimal order for fitting iso-

metric force responses over a range of input pulse frequencies. Their linear third-order model

of activation dynamics is characterised as:

y3

d3aðtÞ
dt3

þ y2

d2aðtÞ
dt2

þ y1

daðtÞ
dt
þ aðtÞ ¼ y0uðtÞ; ðEq 15Þ

where a(t) is the muscle force and u(t) is the input pulse train. The model has four parameters,

θ1 to θ4. Here, we converted the third-order differential Eq 15 into a system of three first-order

differential equations and solved it by using a fixed-step (0.0002 s), fourth-order Runge-Kutta

method.

MATLAB Toolbox and sample data

For quantitative comparison of the five models described above, with particular focus on their

responses to constant frequency pulse trains, we developed a MATLAB toolbox IMADSim, or
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“Insect Muscle Activation Dynamics Simulation”. The toolbox consists of Matlab routines for

simulating the models for arbitrary pulse trains and arbitrary parameter combinations. It was

created in Matlab2009b (7.9.0) and comes with an additional installer file for Matlab versions

above 2014 [61].

A graphical user interface (GUI) is provided so that a user can select a muscle activation

model, adjust model or simulation parameters easily, and visualise the output (S3 Fig). The

GUI permits the selection of one of two motoneuron types (SETi or FETi), spike shapes (half-

sinusoidal or square) and spike generators (either constant frequency or Poisson). Arbitrary

spike trains may be loaded from a file (in .mat or .txt format, comprising spike times). For con-

stant spike frequencies, single or multiple spike frequencies can be set along with a relaxation

time. There are three displays showing: (i) the time course of isometric force generation, (ii)

the corresponding spike train, and (iii) the model equations. Users can save all graphs gener-

ated, as well as the corresponding data (Matlab file formats .fig or .mat).

The toolbox also includes parameter optimisation routines for the two non-linear models,

i.e. the Hatze-Zakotnik and non-linear Wilson model, which are based on the Matlab

LSQNONLIN solver for non-linear least squares problems. When calling the functions, several

arguments can be set to customise the optimisation. If no arguments are given, default values

are used. The toolbox assumes that experimental data are sampled at 5 kHz.

In addition to the toolbox, we provide experimental data from six adult female locusts

(Schistocerca gregaria), comprising isometric contraction force time courses of the metatho-

racic extensor tibiae muscle for spike trains with different frequencies (http://doi.org/10.4119/

unibi/2937068, [5]). In three animals, the slow extensor tibiae motoneuron (SETi) was stimu-

lated. For another three animals, the fast extensor tibiae motoneuron (FETi) was stimulated.

For more details about the toolbox, functional routines, and examples, the reader is referred

to the documentation file “IMADSim_Documentation.html” in the Supplementary Material

[61].

Supporting information

S1 Fig. Motor spike approximation. Stimulus shape recorded in experiments (solid line) and

used in the model (dashed line). The model stimulus is a half sine wave of length 1 ms and

approximates well the depolarising phase of the signal.

(TIF)

S2 Fig. The Hatze-van-Zandwijk model, with non-linear scaling of twitch force. Blue lines

show isometric force measurements for locust extensor muscle at different SETi stimulus fre-

quencies are shown in the left panel (same data as in Fig 3). Forces were normalised to maxi-

mum force at a stimulation frequency of 50 Hz. Note that the tetanic force level difference

between e.g. 10 and 20 Hz is larger than the difference between e.g. 40 and 50 Hz, which indi-

cates a non-linear summation of single twitch forces. Black lines show simulated forces using

the Hatze-van-Zandwijk model (Eq 1 to 3). The four parameters of Hatze’s original activation

dynamics model were optimised to the single twitch of A. Van Zandwijk proposed a sigmoid

scaling function (Eq 3, see inset on the right) to model the relationship between the calcium

concentration and the force-producing active state. Comparison with the experimental data

(blue lines) shows that the model fit is poor. For example, the tetanus fuses only at frequencies

above 25 Hz and the rise time at higher stimulation frequencies is too short.

(TIF)

S3 Fig. Graphical User Interface (GUI) of the insect muscle activation dynamics simulation

toolbox for Matlab. The main panel of the GUI permits the selection of one of five published
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muscle activation models (two non-linear and three linear). The user can manually alter all

corresponding model parameters, select one of two motor neuron types (SETi and FETi), tog-

gle between two spike shapes (sine and square) and select one of two methods for spike genera-

tion. Experimental spike time series may be loaded from an external Matlab or text file that

contains a list of individual spike times. For constant frequency stimulation, one or more spike

frequencies may be set (1, 5 and 20 Hz, in the example shown). Post-stimulation relaxation

time may also be set. Three displays show: (i) the time course of isometric force generation, (ii)

the corresponding spike train, and (iii) the model equations. Finally, “Hold on”, “Run” and

“Reset all” buttons are used to keep the multiple time courses on the display, run the simula-

tion, or reset to default settings, respectively. Generated graphs and the corresponding data

can be saved to Matlab figure (�.fig) and data (�.mat) files by selecting options in the toolbar.

(TIF)

S4 Fig. Comparison of the Hatze-Zakotnik and Wilson non-linear models with muscle

forces induced by fast motor neuron (FETi) stimulation. Time courses of isometric force

contractions for different trains of constant frequency stimulation are shown for the two non-

linear models with parameters ‘as published’ according to Hatze-Zakotnik (A) and Wilson

(B). Note that model output was normalised to maximum force of the single-twitch. This was

set to 0.1. Same figure details as in the top row of Fig 6, except that here the fast motor neuron

(FETi) was simulated.

(TIF)

S5 Fig. Model response to random activity of a fast motoneuron. Same figure details as in

Fig 7, except that here the fast motor neuron (FETi) is stimulated.

(TIF)

S6 Fig. Force decay predicted by the Hatze-Zakotnik model. Time courses of force decay

after 10 s of constant frequency SETi stimulation and 1 s of constant frequency FETi stimula-

tion were superimposed for the model (black) and experimental data (coloured). A: SETi,

blue. B: FETi, red. The onset of the last stimulus spike is set at t = 0. Numbers at the start of

decay indicate stimulation frequencies in Hz. Although the shape of the force signal is similar

in model and experiment for SETi stimulation, the experimentally measured decay after stimu-

lation with 20 or 40 Hz lags the onset of the modelled decay. The same is true for FETi stimula-

tion at 50 Hz. For stimulation frequencies of 10 and 20 Hz, the experimentally measured FETi

time courses show much slower decay than those computed by the model.

(TIF)

S7 Fig. Comparison of peak forces in different experimental data sets. Three different data

sets are compared for SETi (A) and FETi (B) stimulation at different frequencies. The data sets

comprise our own experimental data (black; 3 animals, per motoneuron), data published by

[26] (SETi: cyan; his Fig 3F for single twitch and Fig 20 for inner and outer muscle fibre bun-

dles; FETi: magenta; his Fig 3B for single twitch and Fig 15B for outer muscle fibre bundle),

and data published by [4] (SETi: dashed blue; their Fig 2E; FETi: dashed red; their Fig 2F).

Forces were normalised to the peak force at stimulation frequency 50 Hz separately for SETi

and FETi.

(TIF)

S8 Fig. Comparison of half-maximal rise and decay times in different experimental data

sets. Same three experimental data sets as used in S7 Fig.

(TIF)
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S9 Fig. Comparison of non-linear models optimised to the same experimental data. Model

fits (black) of the Hatze-Zakotnik model (top) and non-linear Wilson model (bottom) to

experimental data sets for SETi (blue) and FETi (red) stimulation. Plots for animal D (SETi)

and animal 4 (FETi) show the same data in Fig 10 except that forces were not normalised to

maximum force at 50 Hz stimulation frequency. For model parameter sets used see Table 2.

Constant stimulating frequencies used were: 1, 7, 10, 12.5, 15, 20, 25, 30, 40 and 50 Hz for

SETi, and 1, 10, 20, 30 and 50 Hz for FETi.

(TIF)

S1 Text. I. An implementation of Ordinary Differential Equations (ODE) for the Hatze-

Zakotnik model. II. Recursion equation to solve the ODE for the Zajac model.

(PDF)
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Visualization: Nalin Harischandra.

Writing – original draft: Nalin Harischandra, Jure Zakotnik, Tom Matheson, Volker Dürr.
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