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Abstract

E. coli bacteria move in streams freely in a planktonic state or attached to suspended partic-

ulates. Attachment is a dynamic process, and the fraction of attached microorganisms is

thought to be affected by both bacterial characteristics and particulate properties. In this

study, we investigated how the properties of cell surfaces and stream particulates influence

attachment. Attachment assays were conducted for 77 E. coli strains and three model par-

ticulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant

conditions. Surface area, particle size distribution, and total carbon content were determined

for each type of particulate. Among the three particulates, attachment fractions to corn sto-

ver were significantly larger than the attachments to 2-line ferrihydrite (p-value = 0.0036)

and Ca-montmorillonite (p-value = 0.022). Furthermore, attachment to Ca-montmorillonite

and corn stover was successfully modeled by a Generalized Additive Model (GAM) using

cell characteristics as predictor variables. The natural logarithm of the net charge on the

bacterial surface had a significant, positive, and linear impact on the attachment of E. coli

bacteria to Ca-montmorillonite (p-value = 0.013), but it did not significantly impact the attach-

ment to corn stover (p-value = 0.36). The large diversities in cell characteristics among 77 E.

coli strains, particulate properties, and attachment fractions clearly demonstrated the inade-

quacy of using a static parameter or linear coefficient to predict the attachment behavior of

E. coli in stream water quality models.

Introduction

Pathogens are the leading cause of water quality impairments in rivers and streams in the

United States. Currently, 178,048 miles of assessed rivers and streams in the US are contami-

nated due to elevated levels of pathogens or pathogen indicators [1]. Although not all E. coli
and enterococcus strains are pathogenic, E. coli and enterococci are used as indicators to
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predict when a risk to human health is present in fresh or marine water, respectively [2].

Therefore, improved understanding of E. coli fate and transport in the environment is needed.

In streams, microorganisms may move freely in water in a planktonic state or they may be

attached to suspended inorganic and organic particles [3–8]. To model bacterial fate and trans-

port, the fraction of E. coli that are attached to suspended particles needs to be estimated [9].

Previously, the fraction of attached E. coli has been estimated as a static parameter [10], or it

has been predicted based on a linear correlation of planktonic E. coli with the concentration of

suspended clay [11, 12]. However, bacterial attachment to particulates in aquatic environments

is a dynamic process, affected by bacterial characteristics, particulate properties, and environ-

mental factors.

Bacterial surface characteristics, such as net charge, hydrophobicity, and extracellular poly-

meric substances (EPS) can impact bacterial attachment to particulates [13, 14]. E. coli cells

typically have a net negative charge due to the carboxylate and phosphate groups present in

peptidoglycan and lipopolysaccharides that compose the cell walls. The surface charge can

impact attachment to particles by repulsion of similarly charged particles or by attraction to

particulates with an opposite charge [15, 16]. Surface hydrophobicity also affects attachment.

Hydrophobicity is determined by the functional groups of both extracellular residues and

structures on the surface of the cell; these can be either dominantly hydrophilic or dominantly

hydrophobic [17]. Some studies have found a positive correlation between bacterial attach-

ment to particles and hydrophobicity [18–22]. On this basis, it might be assumed that hydro-

phobicity of the bacterial surface would also regulate the transport of cells through soil

materials. However, neither Gannon et al. [23] nor Bolster et al. [16] reported a correlation

between measured hydrophobicity and transport of a variety of bacterial strains through soil

materials or packed quartz beds, respectively.

Extracellular polymeric substances (EPS) are mainly composed of polysaccharides and pro-

teins, but they may also include other macromolecules such as DNA, lipids, and humic-like sub-

stances [24]. EPS play an important role in cell aggregation, cell adhesion, biofilm formation,

and protection of cells from hostile environments [25]. The polysaccharide / protein ratio of

EPS is positively correlated with cell surface charge [26], and the presence of cellulose in EPS of

laboratory strains of E. coli has been found essential for attachment to plastic surfaces [27].

Omoike et al. [28] and Parikh and Chorover [29] have demonstrated the potential for phos-

phate/phosphonate and phosphodiester groups of EPS to form strong inner-sphere bonds with

Fe oxide surfaces at pH 6–7. On the other hand, researchers have found no correlation between

the presence of three EPS-associated genes (ompC, slp, and surA) and attachment to quartz [30].

Both size and shape of cell can impact E. coli attachment. Attachment decreases the total

surface energy of the cell-particle system in the aquatic environment by forming contact

regions with lower surface energy. Surface energy is the excess energy per unit surface area

and larger or highly spherical bacteria have lower surface energy. Therefore, smaller or non-

spherical bacteria have a higher preference of attaching to particles than larger or more highly

spherical bacteria [31]. Consequently, the fraction of bacteria attached to particles is typically

negatively correlated with particle size [32–38].

Previous research has also reported that the survival time of bacteria in water and soil can

range from a few days to several months [39]. The survival can be influenced by pH, tempera-

ture, nutrient availability, and competition from other microorganisms [40]. Attachment also

increases the survival of cells. Burton et al. [41] reported increased survival of E. coli in fresh-

water sediments, with higher survival when clay content increased. The populations of bacteria

surviving in bottom sediments are protected from ultraviolet radiation [3, 42]. It has also been

reported that E. coli survival in water bodies increases after attaching to mineral aggregates

with high sediment organic matter (SOM) concentration [43].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0184664 September 14, 2017 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184664


Given the importance of understanding E. coli transport in the environment, we explored

relationships between particulate surface and cell surface properties and attachment. The

objectives of this study were to: 1) identify the impact of particulate properties on E. coli attach-

ment fractions; 2) identify cell characteristics important for predicting E. coli particulate

attachment; and 3) construct and evaluate statistical models for predicting E. coli particulate

attachment fractions. The particulate properties considered were size, surface area, and

organic carbon content, and the cell properties included hydrophobicity, surface charge, zeta

potential, size, and EPS composition [44].

Materials and methods

E. coli strain selection and preparation

Strain collection, preparation, and rep-PCR have been described in detail previously [44].

Briefly, six times between 10/26/2012 and 6/18/2013, stream sediment and water samples were

collected from two locations along Squaw Creek in Ames, Iowa, U.S.A, from public access

points which do not require specific permissions to sample. The field studies did not involve

endangered or protected species. Two hundred strains each were isolated from stream sedi-

ments and water samples. A pathogenic strain was also investigated: ATCCTM 43888, a geneti-

cally modified version of E. coli O157:H7, with the genes that produce Shiga-like toxins I and

II removed. After isolation, the strains were inoculated in Luria-Bertani liquid media (BD Bio-

sciences; San Jose, CA), grown to the stationary phase, and stored at -80˚C in 15% glycerol.

Using primer (GTG)5 with the sequence of 5’-GTGGTGGTGGTGGTG-3’[45], we differenti-

ated the 400 E. coli strains by rep-PCR. Forty-five sediment strains (23% of the 200 strains) and

33 water strains (17% of the 200 strains) were considered genomically distinct on the basis of a

90% similarity criterion [44]. One sediment strain (No. 122) did not grow sufficiently in M9

minimal broth (Sigma-Aldrich, St. Louis, MO), so further analyses were based on 44 sediment

strains and 33 water strains.

Time to early stationary phase of the isolates was determined by absorbance at 600 nm

(spectrophotometer, HACH, Loveland, CO). E. coli isolates were inoculated in 10 mL of M9

broth and incubated to early stationary phase (1.0<OD600<1.5). To harvest the cells, the E.

coli suspension was centrifuged for 15 min at 4,000 rpm/1878 ×g (Centrifuge 5430R with

Rotor F-35-6-30, Eppendorf, Hauppauge, NY) at 4˚C. The supernatant was discarded, and the

cells were re-suspended in CaCO3 solution of pH 8.0 and ionic strength 10 mM (prepared by

diluting saturated CaCO3 solution with deionized water). The CaCO3 solution was used to

simulate typical aquatic conditions of the Upper Midwestern United States [46]. Electrical con-

ductivity was measured by a conductivity meter (Accumet AB30, Fisher Scientific, Asheville,

NC) and ionic strength was estimated by:

Ionic strength ðin mmol L� 1Þ � 0:015� Electrical conductivity ðin ms cm� 1Þ ð1Þ

Model particulates

We conducted attachment assays with three model particulates, chosen to represent common

particulates in streams of the upper Midwestern United States: an iron oxide mineral, a layer

silicate mineral, and an organic matter model. Poorly crystalline iron oxides are common in

stream sediments, and bacteria cells can potentially attach to them because of charge interac-

tions. At typical stream pH values, iron oxides such as 2-line ferrihydrite will carry a net

positive charge to which negatively charged bacterial cells are attracted. To prepare 2-line
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ferrihydrite, Fe(NO3)3�9H2O was added to 75˚C deionized water in a water bath, and the tem-

perature was maintained at 75˚C for 10–12 minutes. After the color changed from gold to

dark brown, which is the color of ferrihydrite, the container was cooled in ice water and the

solution was transferred into dialysis bags, followed by dialysis and freeze-drying of the resul-

tant solid [47].

Smectite is a ubiquitous clay–size layer silicate mineral in stream sediments of the upper

Midwest. We used Ca-saturated montmorillonite (purchased from The Clay Mineral Society,

Chantilly, Virginia) as a model smectite. Under typical conditions of pH and ionic strength,

Ca-montmorillonite occurs as low-density, stacked-layer quasicrystals, with large, low-charge

surfaces and spaces between substacks where bacterial cells can attach [48].

Last, we simulated the interactions of E. coli cells with a common constituent of stream par-

ticles, particulate organic matter (POM), by conducting experiments with ground corn stover

particles. Corn stover particles are dominated by primary and secondary cell wall materials

that contain cellulose (a beta-linked glucose polymer) and lignin (a biopolymer composed of

irregularly linked phenol monomers). These surfaces may be recognized by E. coli attachment

factors that bind to carbohydrate receptors. Dried corn stover was ground, passed through a

53-μm sieve, and stored at room temperature.

Analysis of particulate properties

Surface area of the dry particles was determined using N2 by the Brunauer-Emmett-Teller

(BET) method using a NOVA Surface Area Analyzer-4200 (Quantachrome Instruments,

Boynton Beach, Florida). The particle size distribution was analyzed by a Mastersizer 3000

laser particle size analyzer (Malvern Instruments Ltd, Worcestershire, UK). The total carbon

content of the particulate samples was determined by dry combustion using a LECO elemental

analyzer (LECO Corp., St. Joseph, Michigan).

Analysis of E. coli properties

We tested the hydrophobicity, zeta potential, EPS components, net charge at pH 8, and cell

acidity for each E. coli strain. Detailed methods have been described previously [44]. In this

previous publication, these E. coli property data were evaluated for differences associated with

stream and sediment environments, but the paper did not consider the role of these properties

in attachment to particulates. Briefly, the microbial adhesion to hydrocarbon (MATH) method

was employed to determine the hydrophobicity of E. coli cells [49, 50] using dodecane as the

hydrocarbon. The zeta potential (reported in mV) of an E. coli suspension with OD600 = 0.1

was measured at room temperature using a Zetasizer Nano-ZS (Malvern instruments Inc.,

Westborough MA). The total protein and the polysaccharide content (in µg (108 cells)-1) of

EPS was determined by using an ethanol-extraction method followed by spectrometric mea-

surements [51–53]. Potentiometric titration of E. coli suspensions was conducted to measure

the net charge (in meq (108 cells)-1) of the bacterial surfaces [54] at pH 8 as well as total cell

acidity (in meq (108 cells)-1).

Attachment assays

Attachment assays of E. coli to model particulates were investigated under conditions that rep-

resent typical stream environments of the upper Midwest: pH of 8, ionic strength of 10 mM,

and 22˚C. To be consistent with previous reports of suspended sediment concentrations,

model particulate concentrations were set at 1.06 mg L-1 for particulate organic matter, 1.06

mg L-1 for Fe oxides, and 108 mg L-1 for silicate clay [55–58]. The concentration of E. coli was

set at 103 cells mL-1, a relatively high but reasonable value based on the past record of E. coli

Properties influencing E. coli attachment

PLOS ONE | https://doi.org/10.1371/journal.pone.0184664 September 14, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0184664


concentrations in Squaw Creek [9]. The chosen E. coli and particle concentrations resulted in

particle: E. coli surface area ratios of 600 for samples with corn stover, 2.5×104 for samples with

ferrihydrite, and 2×106 for samples with Ca-montmorillonite.

Fig 1, modified from Liang et. al [59], shows a flow chart of the experimental procedure,

which was conducted in triplicate for each strain-particle interaction. Calculated volumes of E.

coli suspensions (1.0×103 CFU mL-1), particle suspensions (at the concentrations shown

above), and CaCO3 solution (pH of 8, ionic strength of 10 mM) were made up to 15 mL in 50-

mL centrifuge tubes and the samples were shaken at 80 rpm for 10 min on an orbital shaker to

enhance bacteria—particle interactions and attachment [60]. After shaking, each sample was

transferred to a 15-mL centrifuge tube, and the tubes were placed vertically in racks to allow

attached E. coli and particles to settle via gravity for the specified settling times as described

above. For samples with Ca-montmorillonite, the samples were placed at 4˚C to reduce the

possibility of E. coli regrowth during settling. After the E. coli cells attached to particles, they

settled out of suspension more quickly than freely suspended E. coli cells. For the 2-line ferri-

hydrite and corn stover particles, 1 min was sufficient for all particles to settle by visual obser-

vation. Ca-montmorillonite settled after 180 min, as reported previously [59]. After settling,

7.5 mL of supernatant, which contained the unattached bacteria, were extracted and placed in

a new conical tube. Then 1 mL of supernatant was removed and serially diluted twice in 9 mL

of CaCO3 solution. The final concentration was estimated to be within a countable range (20

to 80 colony-forming units per plate [61]), as recommended for the membrane filtration tech-

nique. Next, to estimate the bacterial concentration of remaining 7.5 mL, a combination of

chemical and physical dispersion techniques were applied. One drop of Tween 85 (a polyox-

yethylene non-ionic surfactant from Fisher Scientific, Fair Lawn, New Jersey) was added to the

remaining 7.5 mL and shaken at 300 rpm for 10 min with a handshaker (Fisher Scientific,

Asheville, NC) [62]. The serial dilution procedure was the same as described for the superna-

tant. The E. coli concentration (in CFU mL-1) in the original supernatant and in the remaining

suspension were enumerated by membrane filtration in duplicate on Luria-Bertani agar. The

concentration difference between the remaining suspension and the supernatant was

Fig 1. Flow chart describing the attachment assay. 1. E. coli concentration: 103 cfu/ mL; Ca-montmorillonite concentration: 108 mg/ mL; Corn

stover: 1.06 mg L-1; Ferrihydrite concentration: 1.06 mg/ mL; triplicate samples for each assay. 2. Solute: CaCO3; solvent: autoclaved deionized

water. This solution has pH 8, with 10mM as ionic strength.

https://doi.org/10.1371/journal.pone.0184664.g001
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considered the attached E. coli concentration (Fig 2). The attached fraction was calculated as

1 �
15� Cs

7:5� ðCr þ CsÞ
¼

Cr� Cs

Cr þ Cs
ð2Þ

where Cs is the supernatant concentration and Cr is the concentration in the remaining sus-

pension. Triplicate measurements were averaged to provide a single estimate of the attached

fraction for each strain-particle interaction.

Sometimes this attachment assay produced negative attachment fractions, meaning that

supernatant concentration was higher than the concentration in the remaining suspension,

possibly due to cell buoyancy [63]. According to Eq 2, some negative values could be due to

uncertainty associated with plate counting. Plate counting of colonies is accepted by most

researchers to estimate the concentration of viable bacteria in a sample. The countable range

in 45-mm petri dishes is 20 to 80 colonies [61]. To assess the uncertainty in our experimental

procedures, 5 E. coli strains were cultured, harvested, and diluted using the same procedures as

in Fig 1. Plating was repeated 6 times for each strain. We found that the coefficient of variation

(standard deviation divided by the mean) was 0.2 when the average count was 20 colonies, but

the coefficient of variation decreased to 0.08 when the average was 50 colonies. Based on the

results from the uncertainty analysis, 95% confidence intervals for each plate count were calcu-

lated and negative attachment fractions within the corresponding range were adjusted to zero.

In a related publication [64] additional replicates were included for a subset of strains

assessed for attachment to corn stover only. In this previous publication the negative values

were not adjusted to zero. The focus of this prior work was the role of outer membrane pro-

teins in attachment to corn stover.

Data analysis

The non-parametric Friedman test was used to compare the attached fractions among the

three particulate types after adjusting for differences between E. coli strains. The non-

Fig 2. Attachment assay depiction. The concentration difference between the remaining suspension (Cr) and the supernatant (Cs) was considered the

attached E. coli concentration.

https://doi.org/10.1371/journal.pone.0184664.g002
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parametric Kendall-tau correlation was calculated for combination of property and particle

type. The relationship between each E. coli property and the attached fraction was visualized

using LOESS (a non-parametric LOcal regrESSion model) to smooth the data. To predict the

attached fraction using multiple E. coli properties, a generalized additive model (GAM) was

used. The GAM is a semi-parametric extension of the generalized linear model in which the

response variable depends linearly on unknown but smooth functions of predictor variables,

and interest focuses on inferences about the smoothing functions. In general, the mean μ of a

response y is related to an additive function of the predictors (xi) via a link function g [65]:

gðmÞ ¼ aþ f1ðx1Þ þ . . .þ fmðxmÞ ð3Þ

Statistical analysis of data was performed using R project software (ver. 3.1.3, R Core Team,

Vienna, Austria). The GAMs were fit using the R package mgcv (Version 1.8) with gaussian

errors and a linear link function, i.e., g(μ) = μ. For single predictor variables, the smooth func-

tions were penalized regression splines; tensor product smooths were used to assess potential

interactions between two predictor variables. When a fitted smooth function for an E. coli
property was approximately linear, the smooth function, f(x), was replaced by a linear func-

tion, βx.

For each particulate type, models with different subsets of E. coli characteristics and their

interactions were generated to fit the attached fractions. Model assumptions were checked

using quantile-quantile plots of residuals, plots of residual vs. fitted values, and plots of

observed values vs. fitted values. Several criteria were used to evaluate model performance. The

coefficient of determination (R2) estimates the collinearity between observed and predicted

values, and ranges between 0 (no linear relationship) and 1 (perfect linear relationship). The

generalized cross validation (GCV) criterion was used to evaluate the models based on their

goodness of fit. The chi-square test was used to assess the statistical significant of individual

terms of a smooth. The preferred model was the one with the highest R2 and smallest GCV.

Results

Particulate properties and E. coli—Particulate attachment results

Measurements of carbon content, surface area, and size distribution for each of the particulates

are listed in Table 1. Fig 3 shows a detailed size distribution for each of the particulates.

Among the three particles, Ca-montmorillonite had the smallest size, while 2-line ferrihydrite

and corn stover had similar size distributions. However, the surface areas of 2-line ferrihydrite

and corn stover were different. The carbon content of corn stover was 38%, while the carbon

content of Ca-montmorillonite was 0.055%, and the carbon content of 2-line ferrihydrite was

zero.

For each E. coli strain, the attachment fraction to each particulate was obtained using the

settling method. E. coli—particulate attachment fractions ranged from 0.00 to 0.32. Particulate

Table 1. Measured particulate properties.

Size distribution (μm)

Particulate Carbon content (%) Surface area (m2/g) Dx
1(10) Dx(50) Dx(90)

2-line ferrihydrite 0 142 9 41 118

Ca-montmorillonite 0.055 111 1 4 12

corn stover 38 3 18 53 106

1 Dx under size distribution indicates the maximum diameter of particulates (in μm) in 10, 50, and 90% of the entire population (e.g., 10 percent of the

ferrihydrite particles have diameters < 9 μm)

https://doi.org/10.1371/journal.pone.0184664.t001
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type had an effect on E. coli attachment fractions (p-value = 0.0065). Fig 4 shows the boxplots

of attachment fractions analyzed by each particulate type. The mean attachment fraction was

0.062 for 2-line ferrihydrite, 0.053 for Ca-montmorillonite, and 0.091 for corn stover. The

attachment fractions to corn stover were significantly higher than those to both 2-line ferrihy-

drite (p-value = 0.0036) and Ca-montmorillonite (p-value = 0.022). The attachment fractions

to 2-line ferrihydrite and Ca-montmorillonite were statistically similar (p-value = 0.90). These

results are consistent with the particulate properties and suggest that, under typical environ-

mental conditions, E. coli attachment can be affected by either surface area or the organic con-

tent of the particulate phase [43, 66].

E. coli surface characteristics correlated with E. coli—Particulate

attachment

We previously reported differences in E. coli characteristics in strains that were found in the

stream sediment versus those in overlying water habitats [44]. Stream sediment E. coli isolates

had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content,

less negative net charge, and higher point of zero charge when compared to E. coli isolates col-

lected from the overlying stream water.

Correlations and model selection. As indicated in Fig 5, for each particulate tested, the

Kendall-tau correlation method found no significant linear relationship (p-value> 0.05)

between the E. coli attachment fraction and any of the measured E. coli surface characteristics.

Therefore, smoothing functions were applied to include the range of analyzed cell characteris-

tics as variables in predicting the attachment fraction. A generalized additive model (GAM)

was selected to explore the impact from multiple E. coli properties on attachment to

particulates.

The histograms of cell characteristic results, including zeta potential, EPS protein, EPS poly-

saccharide, ratio of EPS protein to polysaccharide, absolute value of net charge, and acidity,

indicated right-skewed distributions, as described previously [44]. The values of these charac-

teristics were natural logarithm (ln) transformed for better normality prior to their use as

Fig 3. Particulate size distribution.

https://doi.org/10.1371/journal.pone.0184664.g003
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predictor variables in the GAM model. Tensor product smooths were used to explore potential

interactions between two predictor variables. The GAM models to fit E. coli attachment frac-

tions to the three model particulates are discussed in detail below.

GAM model to predict attachment to Ca-montmorillonite. Natural log values of E. coli
surface charge (ln |net charge|), of EPS sugar content (ln EPS sugar), and acidity (ln acidity)

were shown to be useful to model the E. coli attachment fraction to Ca-montmorillonite. The

interactions of ln acidity with ln net charge, and ln EPS sugar with ln acidity were also

included. The model can be written as Eq 4:

Attachment fractionCa� mont
¼ a0 þ a1 � ðlnjnet chargejÞ þ f1ðln EPS sugarÞ þ f2ðln acidityÞ þ f3ðln acidity; lnjnet chargejÞ
þ f4ðln acidity; ln EPS sugarÞ ð4Þ

The value of R2 for this model was 0.56, and model performance assessments are shown in Fig

6. The Q-Q plot of the residuals indicated a nearly normal distribution. Ln |net charge| showed a

significant positive linear impact on the attachment fractions to Ca-montmorillonite (Table 2, S1

Fig). Since all E. coli strains measured had a net negative surface charge, we conclude that E. coli
strains with a more negative net surface charge were more likely to attach to Ca-montmorillonite,

possibly via Ca bridging of the bacterial cells with the negatively charged mineral surfaces. For

smooth terms, estimated significance levels are listed in Table 3. While the impact of EPS sugar

was not significant (p-value = 0.17), the interaction of EPS sugar and acidity did significantly

Fig 4. Boxplot2 of attachment fractions for each particulate type. 1. Values with the same letter are not different at α = 0.05, as

determined by a Wilcoxon test. 2. Each plot shows five numerical values: the smallest observation (Q1 = Q2-1.5(Q4-Q1), the low end of the

whisker), 25% quartile (Q2, low boundary of box), median (Q3, the band near the middle of box), 75% quartile (Q4, high boundary of box), and

largest observation (Q5 = Q4+1.5(Q4-Q1), the high end of the whisker). Outliers, which are out of the range [Q1, Q5], are indicated by open

circles.

https://doi.org/10.1371/journal.pone.0184664.g004
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impact the attachment fraction (p-value = 0.035). The contour plot of f4(ln acidity,ln EPS sugar)

(Fig 7) indicated that the attachment would increase as ln acidity increases or as ln EPS sugar

decreases. Surface acidity was included in three terms of the successful model; thus, the impact of

surface acidity on attachment was complex. The plot of f2(ln acidity) shows that as ln acidity

increased, the attachment to Ca-montmorillonite decreased significantly (p-value = 0.027). The

contour plot of f3(ln acidity,ln |net charge|) presents the interaction between acidity and net

charge. When ln acidity was less than -10.0, and as ln |net charge| increased, the attachment to

Ca-montmorillonite decreased. When ln acidity was greater than -10.0, and as ln |net charge|

increased, the attachment increased. When ln |net charge| was smaller than -13.0, the attachment

to Ca-montmorillonite did not change as ln acidity changed. Finally, when ln |net charge| was

greater than -13.0, the attachment increased as ln acidity increased.

GAM model to predict attachment to corn stover. Values of ln |net charge|, ln EPS

sugar, and hydrophobicity were included in the model of E. coli attachment fractions to corn

stover. The model can be written as Eq 5:

Attachment fractioncorn stover ¼ a0þ a1� ðln jnet chargejÞ þ f 1ðln EPS proteinÞ þ f 2ðhydrophobicityÞ ð5Þ

Fig 5. Attached fraction of each particulate type and correlation with each of the measured E. coli surface characteristics. Three rows of

plots describe the results from three particulates: (A) Ca-montmorillonite, (B) corn stover, and (C) 2-line-ferrihydrite. The left panel shows the

histogram of attachment fraction; The right panels contain the scatterplots of the attachment fraction vs. E. coli surface characteristic with the

smoothing curve using the LOESS method. The correlation coefficient (r) with associated p-value (by the Kendall-tau) method is shown under

each plot.

https://doi.org/10.1371/journal.pone.0184664.g005
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The R2 for this model is 0.23, and the model performance assessment is shown in Fig 8.

Although the R2 is lower than the R2 for the Ca-montmorillonite GAM model, the overall

model p-value is 0.090 and the distribution of the residuals still suggests this model is

acceptable.

Ln |net charge| was included in the model as a linear term, but no significant impact on the

attachment fractions to corn stover was observed (Table 2, S1 Fig). The 90% confidence inter-

vals of ln |net charge| for Ca-montmorillonite and corn stover did not overlap, which indicated

that the impacts from cell net surface charge on these two particles were significantly different

from one another at α = 0.10. In addition, according to the model, the impacts from hydro-

phobicity and ln EPS sugar were neither linear nor significant (Table 3 and S2 Fig). Thus, the

GAM model recognized the impacts of co-varying and interacting parameters, reinforcing the

complexity and dynamic nature of attachment mechanisms.

GAM model to predict attachment to ferrihydrite. The attachment fraction to ferrihy-

drite ranged from 0 to 0.32, while the predicted values from the model ranged from 0.0086 to

0.12 (S3 Fig). For ferrihydrite, there was a non-normal distribution of residuals (S3 Fig). We

interpret the failure in prediction to indicate that cell properties were less important to attach-

ment to ferrihydrite than they were to the other particulates. Several aspects of the chemical

environment may have played a role. For example, the pH of zero charge (PZC) of ferrihydrite

from fresh preparations is typically reported to be ~8 [67], suggesting that at the pH of our sys-

tem (~8) the net surface charge on ferrihydrite particles was close to zero. In addition, there

was likely to be considerable competition from bicarbonate ions in the solution for any posi-

tively charged sites on the ferrihydrite surfaces. Thus, electrostatic or inner-sphere bonding

Fig 6. The performance of the model for predicting E. coli attachment to Ca-montmorillonite. (A) Plot of observed attachment

fractions vs. fitted attachment fractions with straight line denoting observed = fitted. (B) Q-Q plot of residuals with straight line denoting a

normal distribution.

https://doi.org/10.1371/journal.pone.0184664.g006

Table 2. Estimated regression coefficients of ln |net charge| derived from GAM models to estimate attachment fractions.

Particulate Estimate SE p-value 90% confidence interval 95% confidence interval

Ca-montmorillonite 0.025 0.010 0.013 (0.0091, 0.042) (0.0059,0.045)

corn stover -0.0064 0.0070 0.36 (-0.018, 0.0050) (-0.20, 0.0073)

https://doi.org/10.1371/journal.pone.0184664.t002
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reactions with bacterial EPS would not have promoted attachment. Since the ferrihydrite sur-

faces were quite polar and hydrophilic, it was not likely that hydrophobic interactions would

have contributed to attachment.

Discussion

To explore the impact of cell characteristics and particulate properties on attachment of E. coli
bacteria, we conducted an attachment assay using 77 distinct E. coli strains and model particu-

lates under laboratory conditions. The attachment fractions obtained from this study (0–32%)

Table 3. Estimated significance of smoothed terms from GAM models to estimated attachment

fractions.

Particulate Term p-value

Ca-montmorillonite ln (EPS sugar) 0.16

ln (acidity) 0.027

tensor product (ln (EPS sugar), ln (acidity)) 0.023

tensor product (ln |net charge|, ln (acidity)) 0.031

corn stover Hydrophobicity 0.30

ln (EPS protein) 0.40

https://doi.org/10.1371/journal.pone.0184664.t003

Fig 7. Plots of smoothed terms in predicting attachment to Ca-montmorillonite. Plot f1 shows the correlation between

ln EPS sugar and the f1 term in Eq 4 with the 95% confidence interval (dotted curve). Similarly, plot f2 shows ln acidity. Plot f3
shows the estimate of the interaction term of ln |net charge| and ln acidity as contour lines, and plot f4 shows the estimate of

the interaction term of ln EPS sugar and ln acidity.

https://doi.org/10.1371/journal.pone.0184664.g007
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were lower than those of previous studies that considered mixed-strain environmental samples

of E. coli. For example, Krometis et al. [7] found between 20 and 35% of E. coli were associated

with settleable particles during normal flow conditions and 40% during storm flow conditions.

Another study conducted by Schillinger and Gannon [3] determined that 10–20% of fecal coli-

form cells were adsorbed to suspended particles in untreated stormwater runoff. The differ-

ences indicate bacterial attachment of mixed environmental strains in surface waters might be

different than our single strain and pure particulate assays suggest. In this study, we used a sat-

urated CaCO3 solution to mimic surface water with pH 8 and ionic strength 10mM. While

environmental water samples would have more complex ionic composition than our simulated

systems [68], chemical interactions between particulate surfaces and colloidal bacterial cells

are still likely to be regulated by pH and ionic strength [69].

Linear models are most often used to identify the impact of cell properties on cell attach-

ment [13, 16, 21]. There are three potential problems with using a strict linear model with our

results. First, linear methods consider only the correlation between attachment and one mea-

sured surface property. When assessing the impact of a single property on the attachment frac-

tion, linear methods assume that all other properties are held constant. However, we have

previously reported that two cell properties can be highly correlated; thus interaction terms are

appropriate to explore [44]. Second, linear models assume that the values of the attachment

fraction and each of the measured properties should be normally distributed. However, the

distribution of attachment fractions and most cell properties are quite right skewed (Fig 5).

Last, the correlation could be non-linear or polynomial. Here, we used the Kendall-tau correla-

tion method (Fig 5) to explore the potential correlation between the attachment fraction and

cell properties. The large diversity in cell characteristics, particulate properties, and attachment

fractions among different E. coli strains and particulates clearly demonstrates the inadequacy

of using a static parameter or a linear coefficient to assess the general attachment behavior of

all E. coli strains. The modeling method employed in this study, GAM, can address many of

the shortcomings of linear approaches. The GAM considered all measured cell properties and

possible interactions simultaneously, and it can address not only linear but also non-linear

Fig 8. Plots for checking the performance of model for predicting E. coli attachment to corn stover. A. Plot of observed

attachment fractions vs. fitted attachment fractions with straight line denoting observed = fitted. B. Q-Q plot of residuals with straight

line denoting a normal distribution.

https://doi.org/10.1371/journal.pone.0184664.g008
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correlations. Further, the normal distribution of the residuals (Fig 6B, Fig 8B) indicates the

deviation model is reliable.

The uncertainty in estimating the cell count in the supernatant (Cs) and the remaining sus-

pension (Cr) led to some variability in measuring the attachment fractions; the uncertainty

was larger when the plate counts were less than 50 CFU. The uncertainty derived by cultivation

of microorganisms can contribute to both laboratory bias (subsampling, dilution, pouring-

plating) and measurement error [70, 71]. In this study, 11% of the observed attachment frac-

tions were zero, and the models failed to predict the zero attachment fraction values, which

contributed to decreased model performance. Therefore, minimum plate counts of 50 to 80

CFU per 45-mm petri dish are recommended to reduce the uncertainty when measuring E.

coli attachment fractions.

The statistical approach to assessing E. coli attachment fractions is much different from cur-

rent methods used in water quality models employed to predict bacteria fate and transport.

For example, the Soil and Water Assessment Tool (SWAT), assumes linear regression between

attached and planktonic bacteria, and the linear coefficient depends on the percentage of clay

in sediment [11]. Bai and Lung [55] and Russo et al. [72] proposed attachment as a linear and

reversible adsorption process, based on the work of previous researchers [73, 74]. Jamieson

et al. [75] suggests that irreversible adsorption better represents attachment observed in low-

ionic strength freshwaters. Regardless of the partitioning approach used, performance of mod-

els used to predict E. coli fate and transport at the watershed scale are lacking, and additional

research and guidance is needed to better inform bacteria partitioning in models [76].

This work highlights the insufficiencies in commonly used methods to predict partitioning

of environmental E. coli. More advanced statistical methods which consider variation in cell

properties should be explored for better understanding of environmental microbial partition-

ing. Moreover, the mixed populations of microorganisms and particulates in environmental

water samples might mean that the factors driving attachment could extend beyond the prop-

erties considered here. Such factors may include particle dispersion, temperature, discharge,

and precipitation [77, 78]. Thus, the results from this work could be expanded in the future to

explore more complex systems of diverse microorganisms and mixed particulates.

Supporting information

S1 Fig. Ln |net charge| showed a significant positive linear impact on the attachment fractions

to Ca-montmorillonite (A); but an insignificant negative linear impact on the attachment frac-

tions to corn stover (B). Dashed curves indicate 95% confidence interval bounds.

(TIF)

S2 Fig. Plot of smoothed terms in predicting attachment to corn stover. Plot f1 shows the

correlation between ln EPS protein and f1 term in Eq 5 with the 95% confidence interval in

dotted curve. Similarly, f2 shows hydrophobicity.

(TIF)

S3 Fig. The performance of the model for predicting E. coli attachment to 2-line ferrihy-

drite. (A) Plot of observed attachment fractions vs. fitted attachment fractions with straight

line denoting observed = fitted. (B) Q-Q plot of residuals with straight line denoting a normal

distribution.

(TIF)

S1 Dataset. Data.

(XLS)
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S2 File. Allelic variation in outer membrane protein A and its influence on attachment of

Escherichia coli to corn stover.
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