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ABSTRACT: Degeneration of the human intervertebral disc (IVD) is assumed to underlie severe clinical symptoms, in particular
chronic back pain. Since adhesion/growth‐regulatory galectins are linked to arthritis/osteoarthritis pathogenesis by activating a
pro‐degradative/‐inflammatory gene expression signature, we hypothesized a similar functional involvement of galectins in IVD
degeneration. Immunohistochemical evidence for the presence of galectins‐1 and ‐3 in IVD is provided comparatively for specimens of
spondylochondrosis, spondylolisthesis, and spinal deformity. Immunopositivity was detected in sections of fixed IVD specimens in each
cellular compartment with age‐, disease‐, and galectin‐type‐related differences. Of note, presence of both galectins correlated with IVD
degeneration, whereas correlation with age was seen only for galectin‐3. In addition, staining profiles for these two galectins showed
different distribution patterns in serial sections, an indication for non‐redundant functionalities. In vitro, both galectins bound to IVD
cells in a glycan‐dependent manner. However, exclusively galectin‐1 binding triggered a significant induction of functional disease
markers (i.e., IL6, CXCL8, and MMP1/3/13) with involvement of the nuclear factor‐kB pathway. This study thus gives direction to further
network analyses and functional studies on galectins in IVD degeneration. © 2019 The Authors. Journal of Orthopaedic Research®

published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2204–2216, 2019
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INTRODUCTION
Low back pain ranks among the most common medical
complaints, placing an enormous burden on the
individual patient, with broad‐scale socioeconomic
implications for our society.1,2 Although the underlying
routes toward its manifestation appear complex and
are not yet precisely defined, the well‐documented link
to degeneration of the lumbar intervertebral disc (IVD)
warrants a hypothesis‐driven study to relate histo-
pathological changes to molecular characteristics.3

Obviously, identifying effectors of degeneration has
potential to provide therapeutic perspective, as novel
targets can initiate the development of innovative treat-
ment modalities. In this context, it is noteworthy that cells
of the nucleus pulposus (NP) have been likened to
articular chondrocytes.4 Being hereby guided to look at
tissue degeneration in osteoarthritis, we previously found
that an emerging group of elicitors of functional disease
markers in cartilage degeneration belongs to the class of

endogenous lectins. In particular, we recently revealed the
upregulation of distinct endogenous galectins in osteoar-
thritic cartilage5 and their involvement in triggering a
pro‐degradative/‐inflammatory microenvironment via ex-
pression of nuclear factor‐kB (NF‐kB)‐regulated gene
expression profiles.6–8 Mechanistically, tissue lectins
“read” cellular signals encoded by glycans and translate
their information into molecular activities.9,10 In osteoar-
thritis, members of the galectin family, that is, galectins‐1,
‐3, and ‐8 (Gal‐1, Gal‐3, and Gal‐8), serve as signaling‐
inducing mediators (for a recent systematic literature
review on galectins in (osteo)arthritis, see Salamanna
et al.11). The potential of clinical relevance in cartilage and
joint degradation has led to call Gal‐3 “a key player in
arthritis”.12 Consequently, these proteins are receiving
increasing attention, aiming to detect new connections to
disease mechanisms in auto‐immune regulation and
beyond.13,14 This current line of investigation has
prompted us to assume that galectins may also play a
functional role in IVD degeneration. Indeed, the occur-
rence of two galectins has already been documented for
IVD cells in development as well as in healthy and
degenerated tissue specimens.

During embryogenesis, Gal‐3 is found in the mamma-
lian notochord (with species‐specific timing) and later in
the future vertebrae, while Gal‐1 expression is observed
in IVDs.15–18 Thus, Gal‐3—alone or in combination with
CD24 and carbonic anhydrase 12—has acquired the
status of an NP cell marker.19–23 Gal‐1 presence was
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reported in human, porcine and rat IVDs in NP and
anulus fibrosus (AF) cells, in which its distribution
pattern was similar to that of the matrix glycoprotein
laminin (isoform LM‐511),24,25 a known counterreceptor
of Gal‐1 and ‐3.26,27 Functionally, Gal‐3 presence has been
assumed to affect NP cell survival28 or “the destructive
potential” of NP cells.21 Regulation of its expression in rat
NP cells by hypoxia‐inducible factor‐1α28 or by trans-
forming growth factor‐β through canonical Smad3
signaling underscores its potential pathophysiological
significance, as does its synergy with tumor necrosis
factor‐α on increasing levels of interleukin‐1β (IL‐1β),
IL‐6, and chemokine CCL2 gene expression29 factors
relevant for inflammation and disc degeneration.30,31

This study assessed three groups of clinical speci-
mens for expression status of Gal‐1 and ‐3, to test the
hypothesis of a role of galectins in IVD degeneration. In
vitro, IVD cells were additionally examined for (i)
secretion of galectins, (ii) carbohydrate‐inhibitable
galectin binding, (iii) ensuing stimulation of transcrip-
tion and secretion of selected functional disease
markers and, if positive, (iv) an influence of galectins
on NF‐κB‐dependent signaling.

MATERIALS AND METHODS
Galectins and Antibodies
Recombinant proteins, AlexaFluor‐labeled galectins, and non‐
crossreactive antibody preparations against Gal‐1 or −3 were
prepared and applied as previously described in detail.6,7,32

Clinical Specimens and Data
The study was approved by the ethics committee of the
Medical University of Vienna (EK‐No.: 1720/2015). Surgical
IVD specimens were obtained with written consent from
patients treated routinely with transforaminal lumbar inter-
body fusion. Only specimens that contained all three major
anatomical parts of the IVD (i.e., AF, NP, and endplate [EP]),
hereby allowing histological scoring (as described below), were
included in the study. The medical background of the patients
covering age, sex, and diagnosis was documented. In addition,
magnetic resonance imaging (MRI), computer tomography,
and X‐ray data of the patients were available, and the degree
of radiological degeneration was assessed using the Pfirr-
mann classification.33 Clinical data enabled assignment of
patients into three study groups, that is, spondylochondrosis,
true spondylolisthesis, and spinal deformity (idiopathic
scoliosis and/or kyphosis). Further details on clinical speci-
mens are given in Method section in Supplementary Material.

Histological Assessment
IVD specimens were fixed in formalin and decalcified using
Titriplex‐Tris‐solution, then dehydrated and embedded in par-
affin according to the standard procedures. Paraffin sections
(2.5 μm) were stained with hematoxylin and eosin (HE; for
morphological evaluation) or Safranin O (SO; for evaluation of
glycosaminoglycan content), counterstained using light green
Goldner III solution. The degree of degeneration was graded by
microscopic evaluation of the sections according to an established
histological scoring system with minor modifications.34 In brief,
presentation of the major anatomical structures of the IVD (i.e.,
EP, AF, AF/NP boundaries, NP cells, and matrix) as well as IVD
staining with SO were included in the analysis. In each

subcategory, the level of degeneration was scored as 0, 1, or 2,
based on defined histological characteristics.34 Summing up the
six individual scores, a total histological score of degeneration was
computed, ranging from 0 (intact IVD) to 12 (most strongly
degenerated IVD). The histological grading was performed
independently by two observers. Cases of deviating assessments
were discussed to reach agreement.

Immunohistochemistry
Immunohistochemical processing and semiquantitative ana-
lysis followed a standardized protocol using non‐cross‐reactive
antibody preparations.5,32

Percentage of immunopositivity (i.e., staining of cell
nucleus, cytoplasm and pericellular matrix as well as the
extracellular matrix in the case of the NP) was determined,
and staining profiles in each region were graded from 1 to 4
based on the labeling index (LI): LI = 0 (0% positive cells or
matrix), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%).
Summing up the LIs in the five regions resulted in a total LI,
ranging from 0 (absence of staining) to 20 (most extensive
presence of positivity).

Isolation and Culture of IVD Cells
Primary human IVD cells were isolated following published
protocols.35 In brief, IVD specimens were obtained from eight
patients (11 spinal levels, age 32–70 years, five female, three
male) undergoing spinal surgery due to spondylochondrosis (n=7
patients) or spondylolisthesis (n=1). Disc tissues were separated
from EPs, rinsed with phosphate‐buffered saline (PBS) and cut
into small pieces, which were treated enzymatically using a 0.2%
(w/v) solution of collagenase overnight at 37°C. IVD cells were
cultured thereafter in growth medium consisting of Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal calf
serum, penicillin (50 units/ml), streptomycin (50 μg/ml), and
amphotericin B (25 μg/ml). Cultures were kept at 37°C in a
humidified atmosphere with 5% CO2 and used for experiments at
passage 1. Following overnight starvation, cells were exposed—in
absence or presence of 40 µM CAPE (Merck, Darmstadt,
Germany)—for 24h to 10 µg/ml Gal‐1, 18 µg/ml Gal‐3 or with a
mixture thereof prior to analysis using quantitative reverse‐
transcription polymerase chain reaction (RT‐qPCR). For western
blot experiments, cells were incubated with 10 µg/ml Gal‐1 for
15min.

Detection of Galectin‐Binding Sites on the Surface of IVD Cells
Following previously established protocols,7 cultured IVD
cells (n = 4 patients) were harvested by trypsinization, and a
cell suspension of 3 × 105 cells in 50 μl PBS was incubated
with a mixture of AlexaFluor555‐labeled Gal‐1 (1 μg/50 μl) and
AlexaFluor488‐labeled Gal‐3 (2 μg/50 μl) for 10min at 4°C, in
the presence or absence of 0.1M lactose to control for
inhibition by cognate glycan. Images were immediately taken
without fixation using laser scanning microscopy (Carl Zeiss,
Oberkochen, Germany; LSM700; Zen software).

RT‐qPCR
Isolation of total RNA, complementary DNA synthesis, and
SYBR‐green‐based qPCR experiments were performed as
previously described.5,36 A detailed checklist containing all
relevant information37 is provided in Supplementary Table
S1. Messenger RNA (mRNA) levels were calculated as relative
quantities compared to the untreated controls considering
amplification efficiencies and normalization to succinate
dehydrogenase complex, subunit A (SDHA).
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Enzyme‐Linked Immunosorbent Assays (ELISAs)
The levels of pro‐MMP‐1, pro‐MMP‐13, and total‐MMP‐3 were
detected in cell culture supernatants of Gal‐1‐ or Gal‐3‐
treated IVD cells (all ELISAs; R&D Systems, Minneapolis,
MN). Supernatants of untreated IVD cells served as controls.
Also, supernatants of untreated IVD cells were processed for
galectin secretion (ELISAs from R&D Systems). Ranges of
standard curve were 0.313–20 ng/ml for Gal‐1, 0.157–10 ng/ml
for Gal‐3, 0.157–10 ng/ml for pro‐MMP‐1 and total‐MMP‐3,
and 78–5,000 pg/ml for pro‐MMP‐13.

Western Blot
Western blot analyses were performed as previously
described.8 Briefly, membranes (nitrocellulose blotting mem-
brane 0.2 µm; GE Healthcare Life Sciences, Freiburg, Ger-
many) were incubated for 2 h with primary antibodies specific
for phospho NF‐κB p65 (Ser536; 1:1,000; rabbit monoclonal;
Cell Signaling, Danvers, MA), NF‐kB p65 (1:1,000; mouse
monoclonal; Cell Signaling), and β‐actin (1:5,000; mouse
monoclonal; Cell Signaling). Thereafter, membranes were
incubated for 1 h with a solution containing IRDye 800CW
goat anti‐rabbit IgG (1:15,000; LI‐COR, Bad Homburg,
Germany) and IRDye 680LT goat anti‐mouse IgG (1:15,000;
LI‐COR, Bad Homburg, Germany). Signal intensities were
quantified using the Odyssey Imager CLx (LI-COR, Bad
Homburg, Germany). The ratios between levels of phospho‐
p65 and total p65 (both normalized to β‐actin) were calculated
and depicted as absolute signal intensities.

Statistics
Data were analyzed using IBM (Armonk, NY) SPSS v25 with
descriptive statistics, parametric, and non‐parametric inferential
statistics, as well as Spearman correlation analyses, where r
values were interpreted as follows: 0–0.2: weak correlation,
>0.2–0.4: mild correlation, >0.4–0.6: moderate correlation,
>0.6–0.8: moderately strong correlation, and >0.8–1: strong
correlation. Kruskal–Wallis test (with pairwise comparison) was
used for comparing the differences in median values of certain
parameters between the disease groups, while Friedman test
(with pairwise comparison) was used to compare the median
values of different parameters within the same group. The qPCR
data were analyzed using Wilcoxon or Friedman tests with

pairwise comparison. Significance values were adjusted by
Bonferroni correction for multiple comparisons.

RESULTS
Clinical and Histological Classification of IVD Specimens
After having rigorously tested the clinical material
regarding its suitability for histological scoring, speci-
mens from 23 patients with spondylochondrosis, eight
patients with spondylolisthesis, and seven patients
with spinal deformity could be included into this study.
Details on the patients’ age, sex, and the Pfirrmann
grades of IVDs are given in Table 1. To document the
morphological status, exemplary T2‐weighted MRI
data from representative patients of each group are
presented in Supplementary Figure S1a.

Supplementary Figure S1b shows histological
IVD sections from representative specimens of each
of the three cohorts stained with HE or SO.
Comparison of total histological scores revealed
that spondylochondrosis specimens had signifi-
cantly higher median scores than spondylolisthesis
or deformity specimens (p < 0.05; Supplementary
Figure S1c). As shown in Supplementary Table S2,
histological alterations in all six histological sub-
categories contributed to a significant difference
between spondylochondrosis and either spondylo-
listhesis or deformity specimens.

When all data were combined, a moderately strong
correlation (r= 0.783, p< 0.0001) between histological
score and Pfirrmann grade was found (Supplementary
Figure S1d). Taken together, the analyzed IVD specimens
provided a solid basis for immunohistochemical analyses.

Immunohistochemical Localization of Gal‐1 in
Degenerated IVD
The percentages of Gal‐1 positivity in EP, AF, cells, or
matrix of the NP as well as the AF/NP boundary were
determined microscopically. Figure 1A shows staining

JOURNAL OF ORTHOPAEDIC RESEARCH® OCTOBER 2019

Table 1. Demographics and Patients’ Characteristics

Spondylochondrosis Spondylolisthesis Deformity Kruskal–Wallis test

Number (female/male) n = 23 n = 8 n = 7
F = 16/M = 7 F = 6/M = 2 F = 3/M = 4

Levels L2–3 (n = 3) L5‐S1 (n = 8) Th10‐11 (n = 1)
L3–4 (n = 4) Th11‐12 (n = 1)
L4–5 (n = 8) L3–4 (n = 1)
L5‐S1 (n = 8) L4–5 (n = 1)

L5‐S1 (n = 3)
Age (years; mean± SD) 58.8± 11.4 37.4± 9.4 33.2± 19.7 0.005a

0.02b

>0.05c

Pfirrmann score (median± IQ range) 4± 1 3± 3 1.5± 1 >0.05a

0.001b

>0.05c

Shown are the p values of Kruskal–Wallis test for age and the Pfirrmann score between the three cohorts:
aSpondylochondrosis versus spondylolisthesis.
bSpondylochondrosis versus deformity.
cSpondylolisthesis versus deformity.
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for Gal‐1 in histological IVD sections from representa-
tive patients. Nuclei, cytoplasm (particularly in cells of
large chondrons) as well as pericellular and the
extracellular matrix were immunopositive (Fig. 2).

Themedian total Gal‐1 LI scores (±IQ range) were 8± 5
in the spondylochondrosis cohort, 4.5± 1.75 in the spon-
dylolisthesis cohort and 6± 7 in the deformity cohort.
Within the spondylochondrosis specimens, the extent of

JOURNAL OF ORTHOPAEDIC RESEARCH® OCTOBER 2019

Figure 1. Immunohistochemically detected presence of Gal‐1 in clinical intervertebral disc (IVD) specimens and its correlation with clinical
and histological signs of degeneration. (A) Shown are representative IVD specimens from patients of the spondylochondrosis (left column), the
spondylolisthesis (middle column), and the deformity cohorts (right column). The Gal‐1 positivity (brown color) among cells in the endplate
(EP), the anulus fibrosus (AF), the boundary region between AFand NP (AF/NP), as well as for cells or matrix of the nucleus pulposus (NP) is
documented. Scale bars = 50 or 200 µm (NP matrix). (B) Comparison of total Gal‐1 LI scores between patients of the spondylochondrosis,
spondylolisthesis, and deformity cohorts. Results are presented as dotplots showing Gal‐1 LI scores for patients of each cohort. The median
values are indicated as bars. *p< 0.05 (Kruskal–Wallis test). (C,D) Shown are scatterplots of total Gal‐1 LI scores versus (C) histological IVD
scores or (D) Pfirrmann grades for patients of all three cohorts with the regression line. The Spearman correlation coefficient r and the p value
(bivariate correlation test) were calculated given in this panel. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Immunohistochemically detected
presence of Gal‐1 and Gal‐3 in clinical inter-
vertebral disc (IVD) specimens at different
sites, that is, nuclear and cytoplasmic positivity
and staining of pericellular and extracellular
matrix. Negative controls in absence of pri-
mary antibodies are shown for all sites. Scale
bars = 50 µm. [Color figure can be viewed at
wileyonlinelibrary.com]
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Gal‐1 positivity was significantly higher in cells of the AF
and the NP than in cells of the EP (p=0.01 and p=0.001,
respectively; Table 2). Within the spondylolisthesis speci-
mens, level of Gal‐1 positivity was significantly higher in
cells of the AF/NP boundary region than in cells of the EP
(p=0.01; Table 2), whereas it was significantly higher in
NP cells than in EP cells in deformity specimens (p=0.01;
Table 2).

Comparison of total Gal‐1 LI scores revealed no
statistically significant difference between the three
cohorts (p> 0.05; Fig. 1B and Table 2). Table 2 further
shows that the three study groups did not significantly
differ in Gal‐1 LI scores in subcategories.

Correlation analyses of all specimens, irrespective of
the assigned study group, revealed a moderate correla-
tion between total Gal‐1 LI and histological scores
(r = 0.531, p< 0.001; Fig. 1C) and a mild correlation
between total Gal‐1 LI score and Pfirrmann grade
(r = 0.387, p = 0.022; Fig. 1D).

Immunohistochemical Localization of Gal‐3 in the
Degenerated IVD
Figure 3A illustrates immunopositivity for Gal‐3 in
histological IVD sections from representative patients
of the three cohorts. Similarly to Gal‐1, Gal‐3 was
present in the four main sites, with a tendency for
comparatively intense staining in the pericellular

matrix (Fig. 2). The medians of total Gal‐3 LI scores
(±IQ range) were 12± 10 in the spondylochondrosis
cohort, 5± 5.57 in the spondylolisthesis cohort and
5± 11 in the deformity cohort.

Within the spondylochondrosis specimens, the level
of Gal‐3 positivity was higher in NP cells than in EP
cells and NP matrix (p = 0.008 and p = 0.03, respec-
tively; Table 3). However, there were no significant
differences in Gal‐3 positivity across the different IVD
components within spondylolisthesis or deformity spe-
cimens (p> 0.05; Table 3).

Comparison of total Gal‐3 LI scores across the three
study groups revealed no statistically significant difference
(p> 0.05; Fig. 3B and Table 3). However, as presented in
Table 3, Gal‐3 positivity of NP cells in spondylochondrosis
specimens was significantly higher than that of NP cells in
spondylolisthesis specimens (p=0.02).

Further correlation analyses of all specimens, irrespec-
tive of the assigned study group, revealed a moderate
degree of correlation of total Gal‐3 LI scores with historical
scores (r=0.564, p< 0.0001; Fig. 3C) or the Pfirrmann
grades (r=0.465, p=0.006; Fig. 3D), respectively.

Correlation Analyses for Age and Total Gal‐1/Gal‐3 Scores
Analyses revealed a moderate degree of correlation of
age with the Pfirrmann grade (r = 0.577, p< 0.001; Fig.
4A), the historical score (r = 0.470, p = 0.003; Fig. 4B),
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Figure 3. Immunohistochemically detected presence of Gal‐3 in clinical intervertebral disc (IVD) specimens and its correlation with
clinical and histological signs of degeneration. (A) Shown are representative IVD specimens from patients of the spondylochondrosis (left
column), the spondylolisthesis (middle column), and the deformity cohorts (right column). Gal‐3 positivity (brown color) in the endplate
(EP), the anulus fibrosus (AF), the boundary region between AFand NP (AF/NP), as well as for cells or matrix of the nucleus pulposus (NP)
is presented. Scale bars = 50 or 200 µm (NP matrix). (B) Comparison of total Gal‐3 LI scores between the spondylochondrosis,
spondylolisthesis, and deformity cohorts. Results are presented as dotplots showing Gal‐3 LI scores for patients of each cohort. The median
values are indicated as bars. *p< 0.05 (Kruskal–Wallis test). (C,D) Shown are scatterplots of total Gal‐3 LI scores versus (C) histological
IVD scores or (D) Pfirrmann grades for patients of the three cohorts with the regression line averaged over all patients. The Spearman
correlation coefficient r and the p value (bivariate correlation test) are given. [Color figure can be viewed at wileyonlinelibrary.com]

GALECTINS AND IVD DEGENERATION 2209



JOURNAL OF ORTHOPAEDIC RESEARCH® OCTOBER 2019

T
a
b
le

3.
Im

m
u
n
oh

is
to
ch

em
ic
al

S
co
re
s
of

G
al
‐3

P
os
it
iv
it
y

S
po

n
dy

lo
ch

on
dr

os
is

(M
ed

ia
n

±
IQ

R
)

S
po

n
dy

lo
li
st
h
es
is

(M
ed

ia
n

±
IQ

R
)

D
ef
or
m
it
y

(M
ed

ia
n

±
IQ

R
)

K
ru

sk
al
–
W
al
li
s

T
es
t

O
ve

ra
ll

M
ed

ia
n
±
IQ

R

E
P

1
±
1

1
±
1

1
±
1

>
0.
05

a
1
±
1

>
0.
05

b

>
0.
05

c

A
F

3
±
3

1
±
1

1
±
3

>
0.
05

a
2
±
2

>
0.
05

b

>
0.
05

c

A
F
/N

P
2
±
3

1
±
0.
75

1
±
3

>
0.
05

a
1
±
2

>
0.
05

b

>
0.
05

c

N
P

ce
ll
s

3
±
3

1
±
1.
75

1
±
3

0.
02

a
3
±
2

>
0.
05

b

>
0.
05

c

N
P

m
at
ri
x

1
±
2

1
±
1

1
±
1

>
0.
05

a
1
±
1

>
0.
05

b

>
0.
05

c

T
ot
al

G
al
‐3

sc
or
e

12
±
10

5
±
5.
75

5
±
11

>
0.
05

a
9
±
8

>
0.
05

b

>
0.
05

c

F
ri
ed

m
an

te
st

(p
ai
rw

is
e

co
m
pa

ri
so
n
)

p
=
0.
00

8
(E

P
vs
.
N
P

ce
ll
s)

p
=
0.
01

8
(E

P
vs
.

A
F
/N

P
)

p
=
0.
03

(N
P
ce
ll
s
vs
.
N
P

m
at
ri
x)

p
<
0.
00

8
(E

P
vs
.
A
F
)

p
<
0.
00

01
(E

P
vs
.

N
P

ce
ll
s)

p
=
0.
02

9
(N

P
m
at
ri
x
vs
.
N
P

ce
ll
s)

A
F,

an
u
lu
s
fi
br
os
u
s;

E
P,

en
dp

la
te
;
IQ

R
,
in
te
rq
u
ar
ti
le

ra
n
ge

;
IV

D
,
in
te
rv
er
te
br
al

di
sc
;
N
P,

n
u
cl
eu

s
pu

lp
os
u
s.

S
h
ow

n
ar
e
th
e
m
ed

ia
n
va

lu
es

(±
IQ

R
)o

fG
al
‐3

po
si
ti
vi
ty

sc
or
es

in
E
P,
A
F,
A
F
/N

P,
an

d
N
P
ce
ll
s
an

d
in

N
P
m
at
ri
x
as

w
el
la

s
th
e
to
ta
lG

al
‐3

po
si
ti
vi
ty

sc
or
es

fo
r
al
lt
h
re
e
co
h
or
ts
.I
n
ad

di
ti
on

,
p
va

lu
es

of
K
ru

sk
al
–
W
al
li
s
te
st

be
tw

ee
n
th
e
th
re
e
co
h
or
ts

as
w
el
l
as

p
va

lu
es

of
th
e
F
ri
ed

m
an

te
st

(w
it
h
pa

ir
w
is
e
co
m
pa

ri
so
n
an

d
B
on

fe
rr
on

i
co
rr
ec
ti
on

)
be

tw
ee

n
th
e
di
ff
er
en

t
co
m
po

n
en

ts
of

th
e
IV

D
w
it
h
in

a
co
h
or
t
ar
e
pr

es
en

te
d.

a
S
po

n
dy

lo
ch

on
dr

os
is

ve
rs
u
s
sp

on
dy

lo
li
st
h
es
is
.

b
S
po

n
dy

lo
ch

on
dr

os
is

ve
rs
u
s
de

fo
rm

it
y.

c S
po

n
dy

lo
li
st
h
es
is

ve
rs
u
s
de

fo
rm

it
y.

2210 ELSHAMLY ET AL.



and the total Gal‐3 LI score (r = 0.448, p = 0.005; Fig.
4D). In contrast, however, there was no significant
correlation between age and the total Gal‐1 LI score
(r = 0.074, p> 0.05; Fig. 4C). Of note, there was also no
marked correlation between the total LI scores of Gal‐1
and Gal‐3 (Fig. 5A). Figure 5B shows representative
specimens of donors with different level of positivity for
Gal‐1 and for Gal‐3, as documented in Figure 5A.
Processing serial sections of the three selected IVD
specimens immunohistochemically with solutions con-
taining antibodies against Gal‐1 or Gal‐3, respectively,
and performing microscopic evaluation of NP cells,
variability of staining profiles was observed in pairwise
comparison. Shown are representative specimens with
different extents of immunohistochemical cell labeling,
that is, with 75–100% positivity for both Gal‐1 and
Gal‐3, with 75–100% positivity for Gal‐1 and <25%
positivity for Gal‐3 and with <25% positivity for Gal‐1
and 75–100% positivity for Gal‐3 (Fig. 5B). Together,
these panels suggest that the extent of positivity of NP
cells for these two galectins is not strictly coregulated
in the degenerated IVD.

Galectin‐Mediated Effects on Functional Disease Markers
in Isolated IVD Cells
First, qPCR analysis detected LGALS1‐ and LGALS3‐
specific mRNAs (encoding Gal‐1 and Gal‐3,

respectively) in isolated IVD cells at passage 1.
LGALS1 (19.4± 9.3 molecules/molecules SDHA) was
expressed at significantly higher levels than LGALS3
(7.3± 0.8 molecules/molecules SDHA, p< 0.05; Wil-
coxon test; n = 5 discs from four patients). In agree-
ment, Gal‐1 and −3 were found in supernatants of
IVD cells at concentrations of 10.5± 3.7 and
1.0± 0.4 ng/ml, respectively (n = 8 discs from six pa-
tients; p< 0.05, Wilcoxon test). Thus, IVD cells actively
secrete these two galectins into the medium, where
they can act as auto‐ and/or paracrine factors, if capable
to bind to the cell surface. To test for galectin binding,
fluorescent galectins were used, allowing two‐color
staining. When applying a mixture of labeled Gal‐1
and ‐3 on viable IVD cells at 4°C (n = 4 patients), strong
staining of cellular membranes was observed (Fig. 6).
Presence of cognate sugar (lactose) precluded binding
(not shown).

Aiming to probe into post‐binding signaling, qPCR
assays identified Gal‐1 as a potent inducer of functional
disease markers in IVD cells (Fig. 7). In detail, IL6
(median± IQR: 10.6± 26.6‐fold, p = 0.006; Fig. 7A),
CXCL8 (75.0± 46.8‐fold, p = 0.011; Fig. 7B), IL1B
(2.9± 36.8‐fold, p = 0.058; Fig. 7C) as well as MMP1
(82.3± 145.4‐fold, p = 0.011; Fig. 7D), MMP3
(33.7± 39.7‐fold, p = 0.004; Fig. 7E) and MMP13
(3.0± 2.7‐fold, p = 0.137; Fig. 7F) were upregulated
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after exposure to 10 µg/ml Gal‐1 in seven IVD cell
populations isolated from five patients. In contrast,
Gal‐3 (18 µg/ml; equimolar in monomeric units) did not
cause significant effects on any of the analyzed marker
genes in the same cell populations (Fig. 7A–F).
Increasing the concentration of Gal‐3 to 90 µg/ml did
not significantly upregulate these markers (Wilcoxon
test, n = 3 patients): IL6 (median: 4.5‐fold, p = 0.109),
CXCL8 (6.9‐fold, p = 0.109), IL1B (2.4‐fold, p = 0.285) as
well as MMP1 (6.8‐fold, p = 0.109), MMP3 (4.0‐fold,
p = 0.285), and MMP13 (1.7‐fold, p = 0.109). To investi-
gate the effects of a combined treatment, IVD cells were
treated with a mixture of Gal‐1 (10 µg/ml) and Gal‐3
(18 µg/ml). This resulted in upregulation of gene
expression comparable to that induced by Gal‐1 alone
(Fig. 7A–F). Another common marker for degradation,
ADAMTS5, in contrast, was not significantly modified
by Gal‐1 and Gal‐3, alone or in combination (data not
shown). Preliminary evidence on testing separated AF
and NP cell populations of a single patient indicates
possibility for differences in relative degree of respon-
siveness to galectin exposure with respect to type of
target gene and cell type (data not shown).

In agreement with qPCR data, ELISAs revealed an
induction by Gal‐1 of pro‐MMP‐1, total MMP‐3, and
pro‐MMP‐13 secretion in IVD cells, whereas Gal‐3 did
not affect the secretion of these markers (Fig. 7G–I). On
the basis of previous experience with Gal‐1 and
osteoarthritic chondrocytes,6 western blot assays were
performed to trace involvement of the NF‐kB‐depen-
dent signaling pathway. Figure 8A shows that incuba-
tion with 10 µg/ml Gal‐1 for 15min resulted in a mild
increase of p65 phosphorylation in all three tested IVD
cell populations isolated from different patients. In
quantitative terms, the extent of phospho‐p65 upregu-
lation ranged between 10% and 90% (mean± SD:
43± 42%, n = 3), when data were normalized to total
p65 and β‐actin as loading control (Fig. 8B). Fittingly,
CAPE (an inhibitor of NF‐κB translocation into the
nucleus) markedly reduced mRNA levels of the marker
genes IL6, IL1B, MMP1, and MMP3 in IVD cells to a
range of about 12–47% (Fig. 8C).

DISCUSSION
The multifunctionality of galectins argues in favor of
thorough localization studies in combination with
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Figure 5. Scores of immunopositivity and patterns of localization of Gal‐1 and Gal‐3 do not correlate in clinical intervertebral disc
(IVD) specimens. (A) Scatterplot of total Gal‐1 LI scores versus total Gal‐3 LI scores for patients of the three cohorts with the regression
line. Values for the Spearman coefficients (r) and p values are provided. #1, #2, and #3 are representative specimens with different
percentage of positivity for Gal‐1 and Gal‐3. (B) Consecutive histological sections of the three selected IVD specimens were processed
immunohistochemically using antibodies against Gal‐1 or Gal‐3, followed by microscopic evaluation of nucleus pulposus cells. #1 shows
75–100% positivity for both Gal‐1 and Gal‐3. #2 shows 75–100% positivity for Gal‐1 and <25% positivity for Gal‐3. #3 shows <25%
positivity for Gal‐1 and 75–100% positivity for Gal‐3. Scale bars = 50 µm. [Color figure can be viewed at wileyonlinelibrary.com]
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functional testing, to uncover their relevance for
disease manifestation. Also, the emerging concept of
teamwork among galectins, initially tested in mixtures
of Gal‐1 and ‐3 leading to detection of antagonism38 or
cooperation,7 suggests to map expression profiles
beyond a single family member. In this report, we
characterized the distribution profiles of Gal‐1 and ‐3 in
human IVD degeneration. Of note, common absence of
a signal peptide explains their intracellular positivity,
exemplarily documented in Figure 2. Of clinical
relevance, galectins occurred extracellularly in tissue
sections and in supernatants of primary cultures, and
galectins bound to IVD cells and had a different impact
on expression of functional disease markers.

Our study followed a stepwise design. First, we
collected clinical IVD specimens of three different
spinal diseases. In agreement with previous re-
ports,39,40 the histopathological degeneration scores of
the IVD specimens significantly correlated with MRI‐
based grading, thus supporting the eligibility of the
included clinical specimens and the histological scoring.
Our results further revealed that proteoglycan content
(SO staining) and NP cells were generally more affected
by disease progression than the EP, the NP matrix, the
AF, and—in terms of the proteoglycan content—than
the AF/NP boundary.

Having thus obtained an overview of the clinical
material, the immunohistochemical analyses revealed
positivity for Gal‐1 in NP (both cells and matrix), the

AF and the AF/NP boundary. Matrix positivity is
(patho)physiologically relevant, because presentation
of Gal‐1 by a mixture of extracellular matrix compo-
nents (Matrigel) decreased the required quantity for its
T cell death‐inducing capacity by one order of magni-
tude as compared to Gal‐1 in solution.41 Whereas
chondrocytes of the EP were rarely positive for Gal‐1,
comparable extent of Gal‐1 presence was found in cells
of the AF and NP. Our data thus extend a previous
report on Gal‐1 localization in IVDs of lumbar spine of a
human adult with no spinal pathology (age: 35 years),25

by considering degenerated tissues and a comprehen-
sive analysis of all IVD compartments.

By adding data on Gal‐3 localization, we further
initiated the monitoring of more than one galectin in
specimens of degenerated IVDs. Immunopositivity for
Gal‐3 was detected in the NP, and also in the other
compartments. Its presence within the cells and in the
matrix supports the concept of site‐specific activities,
for example via its anti‐apoptotic intracellular and
glycan‐dependent extracellular mechanisms involving
Gal‐3‐mediated counterreceptor aggregation.42 A re-
spective impact on chondrocyte survival was inferred
by localization studies considering hypertrophy and in
a knock‐out model, as also suggested for Gal‐3 in
osteoarthritis.7,43,44 In rat NP cells, Gal‐3 knock‐down
led to increased susceptibility to FasL‐induced cell
death,28 and a functional cooperation between tumor
necrosis factor‐α and Gal‐3 on IL‐1β, IL‐6, and CCL2
expression had been reported.29 Considering initial
evidence for functional networking among galectins, it
becomes reasonable that upcoming studies proceed
with the immunohistochemical analysis of further
members of this lectin family (such as Gal‐8), at best
reaching the level of comprehensive fingerprinting.45–48

When setting the distribution profiles of Gal‐1 and ‐3
in relation to tissue degradation, the total scores of
immunopositivity significantly correlated with histo-
pathological degeneration and MRI grading. At the level
of IVD components, immunopositivity for Gal‐1 and ‐3 at
all sites, except for EP and the NP matrix in the case of
Gal‐1, independently correlated with total histopatholo-
gical degeneration scores of the specimens. However,
although histopathological degeneration (and partly MRI
scores) differed between the three cohorts, immunohisto-
chemical staining scores for Gal‐1 and ‐3 were similar.

Age is a critical factor for the degeneration of the
IVD, both in terms of tissue structure and biochemical
composition, as also reflected by our collection of
specimens. Concerning the studied galectins, Gal‐3
presence significantly correlated with age. Age‐related
changes of Gal‐3 expression have already been docu-
mented in the developing human vertebral column17

and in a comparison of NP cells between young (29–39
years) and mature (40–59 years) adults.23 In contrast,
Gal‐1 expression—that significantly correlated with
histopathological and MRI‐based evidence for degen-
eration—did not correlate with patient age. This
observation points to the possibility that Gal‐1 may
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Figure 6. Localization of binding sites for labeled Gal‐1 and ‐3
in isolated intervertebral disc (IVD) cells in vitro. Resuspended
IVD cells in passage 1 were labeled with Gal‐1‐AlexaFluor555
(red; left) and Gal‐3‐AlexaFluor488 (green; middle) and analyzed
using laser scanning microscopy, with the focus plane set to the
center of cells (transmitted light (TML) image: right). Shown are
the staining profiles of IVD cells of one patient, representative for
experiments with cells obtained from a total of four donors, for
each galectin and after signal merging. Scale bars = 20 µm. [Color
figure can be viewed at wileyonlinelibrary.com]
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qualify as functional disease marker, warranting efforts
to design and test highly specific antagonists such as
the recently reported Gal‐3‐like Gal‐1 variant.49

As illustrated by work in vitro, Gal‐1 was secreted by
IVD cells, bound to their surface and proved active as
elicitor of functional disease markers. In contrast,
tested in parallel or as part of a mixture (at concentra-
tions previously defined to be active for osteoarthritic
chondrocytes7,8), Gal‐3 failed to induce expression of
relevant genes, thus revealing functional divergence
between these two galectins. In agreement, Gal‐1’s
immunopositivity profile in serial sections did not

consistently match Gal‐3 distribution, further arguing
against a functional similarity as observed in osteoar-
thritic chondrocytes.7

In summary, our study characterized the distribu-
tion profiles of Gal‐1 and ‐3 in the degenerated IVD,
thereby establishing the basis for further galectin
monitoring in IVD degeneration and supporting the
concept of sugar code‐driven mechanisms in common
diseases.10 Cell‐based experiments describe functional
divergence between these two galectins, highlighting
homodimeric Gal‐1 as stimulator of disease marker
expression, likely via NF‐kB signaling. Of note,
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modular architecture and glycan fine‐specificity differ
for these two galectins.50 The strategy to evaluate
galectin expression beyond a single protein gives
further work a clear direction, that is, to monitor the
presence and function of tandem‐repeat‐type galectins
such as Gal‐8 and to examine antagonist potency of
newly engineered galectin variants.
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