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Methylation has a close relationship with immune reactions, metastasis, and

cancer cell growth. Additionally, RNA methylation-related proteins have

emerged as potential cancer therapeutic targets. The connection between

the tumor microenvironment (TME) and methylation-related genes (MRGs)

remains unclear. We explored the expression patterns of the MRGs in the

genome and transcriptional fields of 796 prostate cancer (PCa) samples

using two separate data sets. We identified a relationship between patient

clinicopathological characteristics, prognosis, TME cell infiltrating qualities,

and different MRG changes, as well as the identification of two distinct

molecular groupings. Then, we formed an MRGs model to predict overall

survival (OS), and we tested the accuracy of the model in patients with PCa.

In addition, we developed a very accurate nomogram to improve the MRG

model’s clinical applicability. The low-risk group had fewer tumor mutational

burden (TMB), greater tumor immune dysfunction and exclusion (TIDE) ratings,

fewermutant genes, and better OS prospects. We discuss howMGRsmay affect

the prognosis, clinically important traits, TME, and immunotherapy

responsiveness in PCa. In order to get a better understanding of MRGs in

PCa, we could further explore the prognosis and create more effective

immunotherapy regimens to open new avenues.
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Introduction

Prostate cancer (PCa) is the most frequent cancer diagnosis

in men. Notably, PCa is the second most common neoplasm in

senior men and the fifth leading cause of cancer-related mortality

globally, accounting for 15% of all new tumor-related cases

(Vietri et al., 2021). Most instances progress slowly and pose

no danger to life. However, despite recent improvements, PCa

still poses a serious medical challenge for the men affected.

Therefore, finding novel prognostic indicators is essential for

creating efficient treatment plans and enhancing PCa patients’

prognoses (Zhao et al., 2020).

Numerous biological processes, including cell differentiation,

sex determination, stress response, and others, are known to be

impacted by RNA methylation and its connected downstream

signaling cascades (Menezo et al., 2020). RNA modification

disorders have been linked to a wide range of cancers,

including PCa (Haruehanroengra et al., 2020). As the third

layer of epigenetics, more than 170 RNA modifications have

been identified (Haruehanroengra et al., 2020). N6-

methyladenosine (m6A), 5-methylcytosine (m5C), N1-

methyladenosin (m1A), N7-methylguanosine (m7G) are post-

transcriptional modifications, which are abundant in most

eukaryotic mRNAs and involved in almost all stages of the

RNA life cycle, including RNA transcription, translation and

degradation. They are found in mRNA, lncRNA, and miRNA.

Additionally, it is essential for the growth and development of

numerous immune system illnesses, including cancers and a wide

range of other human pathogenic activities (Dai et al., 2021). The

evidence for RNA modification pathways being dysregulated in

human malignancies is growing, and these pathways may

provide excellent targets for cancer therapy (Barbieri and

Kouzarides, 2020).

Fluctuations in RNA methylation in cancer are known as

promising targets for developing useful diagnostic, prognostic

and predictive biomarkers (Koch et al., 2018). It is also exciting to

note that methylation has been connected to antitumor

immunity in cancer immunotherapy (B. Yang et al., 2021).

Besides necroptosis, methylation is also an important cellular

response that controls the initiation, progression, and metastasis

of cancer. Nevertheless, the role of some methylation regulators

in the prognosis and possible molecular mechanisms of PCa is

not well understood (B. Yang et al., 2021). Studying methylation

landscapes can help predict the prognosis of PCa, according to

Wen-Juan Li et al. (W. J. Li et al., 2021). A study identified

8 methylation-based biomarkers (cg04633600, cg05219445,

cg05796128, cg10834205, cg16736826, cg23523811,

cg23881697, cg24755931) which were useful for aggressively

detecting PCa (Pu et al., 2021). To increase PCa cell survival

and docetaxel resistance, SPOP mutations will upregulate the

formation of stress particles (Shi et al., 2019). An invasive tumor

is more likely to form in PCa with TP53 mutation (Maxwell et al.,

2022). all of which are strongly methylation-deregulated and

closely linked to prognosis. There are a few studies on the

relationship between methylation and PCa, so we need to

further study the fact that it plays a significant role in

carcinogenesis and anticancer mechanisms.

Immunological checkpoint blocking, or immunotherapy

(ICB, PD-1/L1 and CTLA-4), has shown astounding clinical

success in a small minority of patients with long-term

responses (Kalbasi et al., 2020). However, a large number of

patients received little to no therapeutic benefit, which falls far

short of satisfying a clinical need (M. Zhang et al., 2021a). It has

only ever been assumed that the multi-step process of tumor

formation alters the genetic and epigenetic makeup of tumor

cells. But a large number of studies have shown us that the tumor

microenvironment (TME) also has a significant role in the

growth of the tumor (Vitale et al., 2019). Direct and indirect

interactions between TME components can induce changes in

biological behaviors such as immune tolerance (M. Zhang et al.,

2021a). The MRG risk score for PCa was shown by Zhipeng Xu

et al. colleagues to strongly correlate with immune infiltration

(Xu et al., 2022). The decreased effectiveness of checkpoint

inhibitors (CPIs) in advanced prostate cancer compared to

other tumor types is likely largely due to an

immunosuppressive tumor microenvironment (TME) and

impaired cellular immunity (Bansal et al., 2021). The

complexity and variability of the TME landscape should

therefore be thoroughly parsed to identify various tumor

immune phenotypes, which would also enhance the ability to

predict and direct immunotherapeutic responsiveness (Hinshaw

et al., 2019; Song et al., 2021). The discovery of very accurate

biomarkers to gauge patients’ reactions to immunotherapy will

aid in the search for novel therapeutic targets (Ehrlich, 2019).

We are now able to fully examine the transcriptome,

metabolome, proteome, and genome in order to investigate

the biomarkers and carcinogenesis framework for the therapy

and prognosis of cancer when we explore the rapid advancement

of science and the development of the Gene Expression Omnibus

(GEO) and The Cancer Genome Atlas (TCGA) databases. We

sought to determine MRG expression in PCa, prognostic

importance, and putative regulatory axis. Our results may

provide more information on the molecular processes and

prognostic biomarkers of PCa.

Materials and methods

Data sources

From the TCGA (TCGA-PCa) and GEO (GSE65858 and

GSE116918) databases, RNA-seq and clinicopathological data for

PCa were retrieved (Supplementary Table S1). RNA-seq for PCa

was converted to Transcripts Per Kilobase Million (TPM) values

as previously mentioned and was taken into consideration to be

equivalent to those for microarrays. After integrating two
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datasets (TCGA-PCa and GSE65858), batch effects were

eliminated using the “Combat” method. The subsequent

analyses included 796 PCa patients because we excluded data

from people whose OS information was lacking or less than

30 days.

Consensus clustering analysis of MRGs

These 84 MRGs are shown in Supplementary Table S2’s

details. Using “ConsensusClusterPlus”, consensus unsupervised

clustering analysis was utilized to divide patients into distinct

molecular subgroups based on MRG expression. The following

criteria were used to group these items: First, there was a fluid and

progressive growth in the cumulative distribution function curve.

Second, there was no tiny sample size in any group. Thirdly,

although there was a drop in the inter-group correlation, the

intra-group correlation rose. Gene set variation analysis (GSVA)

was carried out to study MRG variation in biological processes.

Correlation between clinical features and
prognosis molecular subtypes

Age, gender, TNM stage, and clinical stage were some of the

patient’s features. And to assess the two clusters identified by

consensus clustering’s clinical value, we looked at the

connections between molecular subtypes, clinical features, and

prognosis. In addition, Kaplan-Meier curves, generated by the

“survival” and “survminer” R programs, were used to compare

OS among different subtypes.

Relationship of molecular subtypes
with TME

Additionally, the CIBERSORT algorithm was used to

calculate the scores of 22 different human immune cell types

for each PCa sample (Hao et al., 2019). We used single-sample

Gene Set Enrichment Analysis (ssGSEA) to explore the levels of

immune cell infiltration (Hwang et al., 2021). DEG identification

and functional annotation of DEGs with the “limma” package in

R, DEGs were discovered with a p-value of 0. 05 and |logFC| of 0.

585. We use the “clusterprofiler” package in R to perform

functional enrichment analyses on the DEGs, allowing us to

have a better analysis of the hidden functions of the methylation

clusters in DEGs and discriminate between the enriched

pathways and gene functions that go along with them.

Construction of the prognostic risk model

We used unsupervised clustering to classify patients into

different subtypes (gene cluster A and gene cluster B) for further

study. All patients with PCAwere randomly divided into training

and testing groups with a ratio of 0.7:0.3 to establish a prognostic

model. The DEGs were used in univariate Cox regression analysis

in order to identify the DEGs associated with PCa’s OS. We

employ the following procedures to calculate the risk score: Risk

score is equal to (expi * coefi), where expi and coefi are the

expression and risk coefficients of each gene, respectively. To

lessen the possibility of over-fitting using prognostic DRGs, the

LASSO Cox regression technique was temporarily used. In the

two groups, the expression levels of genes connected to MRGs

were examined. We divided patients into high-and low-risk score

groups by the median of risk scores, and Kaplan-Meier analysis

and receiver-operating characteristic (ROC) curves were used to

assess the accuracy of risk scores. GSE116918 was applied as an

external testing set to validate the model.

Construction of a nomogram scoring
system

We use the nomogram calibration plot to plot the forecast

value between 3-, 5-, and 8-year survival events and virtual

observations. A variable in a nomogram scoring system that

combines risk scores and clinical characteristics has a score, and

the total score is the sum of all the individual scores (Iasonos

et al., 2008).

Mutation, immunotherapy response and
drug susceptibility analysis

It is investigated how the genes in the model relate to the

22 immune cells. The ESTIMATE algorithm was applied to

assess the immune and stromal scores of each sample. The

TCGA database generates mutation annotation formats to

identify somatic mutations in various PCa sample groups. We

determine the tumor burden mutation (TBM) score for each PCa

patient across the two categories. We investigated the

associations between tumor immune dysfunction and

exclusion (TIDE) and different groups. We created the half-

maximal semi-inhibitory concentration (IC50) values of a

pRRophetic package of anti-tumor medications for PCa in

order to examine the difference in the treatment impact of

commonly used anti-tumor agents between the two groups.
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FIGURE 1
(A) The CNV of 84 MRGs. (B) Expression distributions of differentially expressed MRGs between normal and PCa tissues. (C) The positions of the
CNV alterations on their respective chromosomes for these MRGs. (D) The overall group of MRG interactions, regulatory factor connectivity and
value of prognosis in PCa patients was identified in the network.
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FIGURE 2
(A) Consensus matrix heatmap defining two MRG clusters (k = 2). (B) Kaplan-Meier curves indicated a shorter OS in patients with MRG cluster A
than in patients with MRG cluster (B) (C) Differences in clinical features and MRG expression levels between the two MRG subtypes.
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FIGURE 3
(A) Heatmap of GSVA enrichment analysis results. (B) Significant differences occurred among the two subtypes in the infiltration of some
immune cells.
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Results

Genetic and transcriptional alterations of
MRGs in PCa

According to the analysis, we could see significant differences

in the potential function of MRGs in PCa carcinogenesis with the

expression levels and genetic landscape of MRGs between PCa

and control samples. In this investigation, 84 MRGs were

examined (Supplementary Table S2). We then looked into

somatic copy number variation in the 84 MRGs and

discovered that there were a number of common copy

number alterations, including increases in general copy

number variation (CNV) in NUDT16, NUDT4, APAF1,

AGO2, LSM1, and ALKBH5, and decreases in CNV in

ZC3H13, ELF4A1, CCNB1, IFIT5, ELF4E3, and NUDT12

(Figure 1A). MRGs with CNV loss were expressed at lower

levels, such as ZC3H13, IFIT5, ELF4E3 and NUDT12 in PCa

samples, when compared to those in normal PCa samples

(Figure 1B), hinting that the mRNA expression of MRGs

might be regulated by CNV. Figure 1C shows the locations of

CNV alterations on their respective chromosomes in MRGs.

DNA methylation factors could modulate gene expression

(Nishiyama and Nakaanishi., 2021).

Identification of methylation-related
subtypes

We picked 796 patients (TCGA and GSE116918) to explore

the expression pattern of MRG involved in tumorigenesis for

further analysis. The 12 prognostic MRGs were recognized by

univariate Cox analysis. The prognostic MRG interactions,

regulatory factor connectivity and value of methylation in PCa

patients were identified in the methylation network (Figure 1D).

Based on the 84 MRGs’ expression profiles, we used a consensus

clustering approach to classify the PCa patients. We classified the

entire cohort as the best choice forMRG cluster A and B based on

k = 2 (Figure 2A and Supplementary Figure S1). Patients in MRG

Group B had a better OS, as hinted by the Kaplan-Meier curves

(p = 0. 012; Figure 2B). Furthermore, we demonstrate that MRG

expression and clinical pathology characteristics are significantly

different (Figure 2C).

Evaluation of TME

GSVA enrichment analysis showed that MRG cluster B and

MRG cluster A were significantly different. One was in fc gamma

r mediated phagocytosis, T cell receptor signaling pathway, small

cell lung cancer, and pathways in cancer, while another was in

huntingtons disease, alzheimers disease, parkinsons disease, and

oxidsative phosphorylation (Figure 3A). We examine the

relationships between the 22 human immune cell subsets and

the two subtypes of each PCa sample by using the CIBERSORT

method. There were important variations between the two

subtypes in terms of the invasion of certain immune cells.

(Figure 3B).

Classification of gene clusters

To investigate the underlying biological behaviour of each

focal flash pattern, the R package “limma” was used to recognize

74 DEGs linked to MRG subtypes. These were then subjected to

functional enrichment analysis (Figures 4A,B). These DEGs were

widely distributed in biological processes and were associated

with immunity (Figure 4A and Supplementary Table S3). KEGG

analysis revealed an enrichment of immunological and cancer-

related pathways, demonstrating the significance of methylation

in the immune control of the TME (Figure 4B and

Supplementary Table S4). By using univariate Cox regression

analysis, 32 prognostic DEGs related to OS time were chosen

from 74 DEGs (p < 0.05; Supplementary Table S5). In order to

validate these regulatory mechanisms, consensus clustering

techniques were utilized to share patients into two gene

categories based on prognostic genes (Figure 5A and

Supplementary Figure S2). According to Kaplan-Meier curves

(p < 0. 001; Figure 5B), patients with gene cluster B had the

highest OS, which is obviously better than that of cluster A. The

two gene subtypes’ MRG expression showed significant variety,

which was in line with our predictions (Figure 5C.) Additionally,

a comparison of the clinicopathological characteristics of several

gene subtypes revealed a substantial difference between clinical

aspects and gene expression (Figure 5D).

Construction and validation of the
prognostic risk model

We randomly grouped the patients into training and testing

groups in a ratio of 0. 7: 0. 3 (“caret package” in R). To further

narrow down the best prognostic signature, the prognostic DEGs

were run through LASSO and multivariate Cox analysis (Figures

6A–C). The risk model was built using the following steps: risk

score = (0.315* COL1A1) + (0.243* ASPN) + (-0.333* PHYHD1)

+ (-0.134* PCGEM1). A Sankey diagram was used to illustrate

the relationship between the MRG cluster, gene cluster, risk

groups, and survival status (Figure 6D). The risk score

distributions for the two categories are shown in Figures 6E,F.

We found that the expression of MRGs varied considerably

between groups (Figure 6G).

The Kaplan-Meier analysis, expression profiles, pattern of

survival status, and distribution of risk scores are shared in

Figures 7A–C, which hints that patients in the low-risk

category will live longer. The model’s high sensitivity and
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specificity for predicting survival were demonstrated by the ROC

curves, and the overall set’s 8-year AUC value was 0. 759

(Figure 7D). In Supplementary Figures S3–S5, which provide

the above analysis for the training, testing and external testing

sets, the model’s dependability is shown. Figure 7E was the

nomogram that included the model and clinical characteristics.

Evaluation of TME

We also looked at the relationship between the number of

immune cells and the four genes in the proposed model, and

found that the majority of immune cells are obviously related to

the four genes (Figure 8A). The low-risk score group was strongly

correlated with a low immunological score, while the high-risk

score group was linked to a high stromal score (Figure 8B).

Mutation, immunotherapy response and
drug susceptibility analysis

We examined how the TCGA-PCa cohort’s various risk score

groups differed in the somatic mutation distribution. The top

10 mutant genes in the high- and low-risk categories were SPOP,

TTN, TP53, KMT2D, FOXA1, MUC16, SYNE1, KMT2C,

LRP1B, and SPTA1 (Figures 8C,D). Patients in the low-risk

score group had considerably higher frequencies of SPOP

mutations compared to those in the high-risk score

group. Further, high TBM was connected with poor OS (p <
0.001; Figure 8E). The high-risk score group had lower TIDE

scores, indicating that they might have responded better to

immunotherapy (Figure 8F). Furthermore, by examining the

IC50 of regularly used anticancer medicines, we found a

significant difference between the two patient groups’

susceptibility to the treatments. (Supplementary Figure S6).

Discussion

In vitro and in vivo tumor growth, invasion, migration, and

the epithelial-mesenchymal transition of cancer cells are all

influenced by dynamic RNA methylation and modification

events, such as m6A, m1A, m5C and m7G (X. Y. Li et al.,

2022; Traube et al., 2017). In addition to playing essential

roles in various cancers and anticancer effects, modification

events can also be used as prognostic indicators (Mahmoud

and Ali, 2019). There are still several unanswered questions

regarding the overall effect and the features of TME

penetration adjusted by the effects of numerous MRGs (M. Li

et al., 2021).

We identified two distinct molecular subgroups using

84 MRGs. And patients with subtype B had a better OS.

The features of the TME varied obviously across the two

subtypes. Variations in mRNA transcriptomes between

different methylation subtypes were strongly linked with

biological pathways involved in MRG and the immune

system (Gu et al., 2021; X. Y. Li et al., 2022). We

determined two gene subtypes relied on the DEGs between

the two methylation subtypes. According to the data, MRGs

may be utilized to predict PCa’s clinical prognosis and

responsiveness to treatment (Zhang et al., 2020). As a

result, we discovered and validated the accurate prognostic

FIGURE 4
(A–B) GO and KEGG enrichment analyses.
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FIGURE 5
(A)Consensusmatrix heatmap defining twoMRG clusters (k = 2). (B) Kaplan-Meier curves indicated that patients with gene cluster B had higher
OS. (C) The expression levels of MRGs in the two gene subtypes. (D) Differences in clinical features and MRG expression levels between the gene
subtypes.
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MRG-score. Higher and lower MRG-scores were seen in

immune activation- and inhibition-driven PCa patterns,

respectively. Finally, we combined the risk score and tumor

stage to produce a quantitative nomogram, which

dramatically improved performance and made it simpler to

utilize the risk score (Jeong et al., 2020).

FIGURE 6
(A–C) The model was constructed by LASSO and multivariate Cox regression analysis. (D) The relationship between MRG cluster, gene cluster,
risk groups, and survival status was visualized in a Sankey diagram. (E–F) The distribution of risk scores for the two subgroups. (G) The expression of
ICIs-related genes was significantly different between groups.
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FIGURE 7
(A–C) The Kaplan-Meier analysis, expression profiles, pattern of survival status, and the distribution of risk scores in the entire cohort. (D) The
ROC curves for the 3, 5, and 8-year AUC values in the entire cohort. (E) The nomogram containing the model and clinical features was reliable and
sensitive for predicting survival in patients with PCa.
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FIGURE 8
(A) The connection between the number of immune cells and the 4 genes in the model. (B) The high-risk scores were linked to a low stromal
score, and the low-risk scores was highly correlated with a high immune score. (C–D) In the high- and low-risk groups, the top 10 mutant genes
were SPOP, TTN, TP53, KMT2D, FOXA1, MUC16, SYNE1, KMT2C, LRP1B and SPTA1. (E) TBM score between different groups. (F) TIDE scores were
lower in the high-risk score group, suggesting that the high-risk score group was more responsive to immunotherapy.
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A growing body of research has established that MRG

alteration played a significant role in the post-transcriptional

modification of gene expression, which was strongly

associated with tumor formation, maintenance, progression,

and prognosis, thanks to advancements in detecting

technology. As reported, high TET3 expression

(m5C-related gene) was related to poor prognosis of PCa

(Yu et al., 2022). According to certain research, m6A

alteration significantly influences the stability of mRNA,

which in turn contributes to PCa development (Du C et al.,

2020). PCa bone metastases were related to high m6A levels of

NEAT1-1, and m6A levels of NEAT1-1 were a reliable

indicator of ultimate death (Wen et al., 2020). In recent

years, m7G has been thought to be actively implicated in

cancer-related translation problems. The m7G-score has

been shown to be an independent measure of BCR-free

survival in patients with PCa (Xin et al., 2022).

Additionally, recent research has shown that RNA

modification regulators may serve as biomarkers for cancer

diagnosis and prognosis surveillance (Haruehanroengra et al.,

2020). Nevertheless, a thorough examination of the prognostic

significance and functional annotation of MRGs regulators in

PCa is still lacking.

PCa patients’ prognoses are poor. There were significant

differences between patient subgroups in terms of TME,

immunological checkpoints, CSC index, prognosis,

mutation, and therapy susceptibility after standard therapy

because of high levels of checkpoints, lymphocytes that

infiltrate tumors, and tumor neoantigens (D. Li et al.,

2022). Despite recent developments in immunotherapy,

patients with PCa still experience heterogeneity in their

results, underlining the important role of TME in the

growth and development of PCa tumors (Yu et al., 2022).

Immune cells, including granulocytes, lymphocytes, and

macrophages, are important biological components of

TME. These cells participate in a variety of immunological

responses and behaviors, such as the inflammatory response

that tumors trigger to help them survive (Schmitt and Greten.,

2021). Additional data points to the TME having a significant

impact on cancer development, progression, and therapeutic

resistance (Cao et al., 2021; Martínez-Reyes and Chandel.,

2021). Immune inhibition-driven methylation (subtype A)

was associated with a higher risk score, whereas immune

activation-driven methylation (subtype B) was related to a

lower risk score. We discovered that the relative richness of

22 immune cells as well as the two molecular subtypes’

differences in risk scores and TME traits were significantly

different.

Various kinds of T cells are crucial components of the

immune defense against PCa (K. Yang and Kaliies., 2021).

Higher densities indicated a positive prognosis as tumor-

infiltrating T cell densities in PCa samples were higher

than those in normal tissues (Yu et al., 2022). The

enhanced infiltration of activated memory CD4+ and CD8+

T cells as well as gamma delta T cells was seen in the subtype B

and low risk score groups, indicating that they favourably

contribute to the progression of PCa. A worse prognosis was

associated with Treg infiltration, which blocks the immune

system’s anti-cancer response (Oh and Fong., 2021). This is in

line with our observation that patients in the high-risk group

and those with subtype B had more Tregs in the TME than

those in the low-risk group. Recently, it was shown that B cells

aid in the immune response (Fridman et al., 2022; Zhang et al.,

2022).

Petitprez et al. believed that in soft-tissue sarcomas, the

response to PD-1 inhibition was positively linked with B cell

enrichment (Petitprez et al., 2020). Patients who responded

to immune checkpoint blockade showed considerably higher

levels of the B cell-related genes than those who did not,

according to Helmink et al. (Fridman et al., 2022).

Additionally, in PCa, tumor-infiltrating B lymphocytes

were linked to a good prognosis (Horii et al., 2021).

Patients with significant B cell infiltration in their

metastatic PCa had prolonged overall survival and a

significantly lower risk of the disease coming back

(Engelhard et al., 2021). The results of this study

demonstrated that B cells are not only incidental

contributors to anti-cancer immunotherapy; rather, they

present a novel immunotherapy target and may be a

potent cancer-fighting tool. In our study, we found

subtype B had considerably fewer naive B cells and higher

MRG-score, which were associated with poorer overall

survival (Franchina et al., 2018).

In this study, the expression levels of a part of immune

cells were found to be obviously different in the risk model of

MRGs. The stromal score, CD4 memory resting T cells,

CD4 memory activated T cells, follicular helper T cells,

M0 macrophages, M1 macrophages, and resting mast cells

were linked with the risk score. This implies that PCa immune

cell infiltration is related to the risk model created using MRGs

(He et al., 2022). Our study shows that differentially expressed

ASPN,COL1A1, PCGEM1 and PHYHD1 was associated with

immune infiltration. The high-risk score group was related to

a high stromal score, and the low-risk score group was closely

associated with a high immune score. Pu Zhang et al. showed

that while ASPN is overexpressed in PCa, a bad prognosis is

predicted by excessively high ASPN expression and low

expression of other genes, ASPN is independently

associated with overall survival (OS) of patients (P. Zhang

et al., 2021b). High expression of COL1A1 can predict the

prognosis of cancer and is a reliable biomarker and

therapeutic target (Ma et al., 2019; Geng et al., 2021). And

many studies have shown that the high expression of

PCGEM1 and PHYHD1 can promote the value-added

migration and invasion of cancer, affecting prognosis (Jiang

et al., 2019; Zhang et al., 2019; Liu et al., 2022). Our study

Frontiers in Pharmacology frontiersin.org13

Ye et al. 10.3389/fphar.2022.1030766

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030766


identified the involvement of MRGs and constructed a risk

model for PCa. However, this must be confirmed using

additional clinical PCa tissue samples and cell experiments.

MRGs are generally involved in the occurrence and

development of PCa. An independent risk factor for a bad

prognosis in PCa patients and a high-risk score is related to

patient outcome (Chong et al., 2021). The risk score is

associated with PCa stromal score and levels of

CD4 memory resting T cells, M0 macrophages,

M1 macrophages, resting mast cells, CD4 memory activated

T cells, and follicular helper T cells (Xu et al., 2021).

The investigation suffered from a variety of flaws. First and

foremost, the samples applied in our investigation were

collected retrospectively, all the outcomes were obtained

using only data from public databases, and validation in a

separate clinical patient cohort is still lacking despite the use

of external datasets for validation. Next, surgery, neoadjuvant

chemotherapy, and chemoradiotherapy, which may have

affected how well the immune response and methylation

condition performed.

Conclusion

Here, we disclosure the roles of MRGs modification

patterns in the PCa and TME diversity, clinicopathological

characteristics and a wide range of prognostic regulatory

mechanisms. Next, the therapeutic obligations of MRGs in

immunotherapy and commonly used antineoplastic drugs are

explained by us. These discoveries emphasize the key clinical

significance of MRGs, which offer a new view into the field of

PCa research and promote the understanding of TME and

immunotherapy in the future.
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