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Abstract. The aim of the present study was to investigate 
the effects of betulinic acid (BetA) on the expression and 
distribution pattern of nicotinamide adenine dinucleotide 
phosphate diaphorase (NADPH-d), an indirect indicator of 
nitric oxide (NO) synthase in the thymus and spleen of mice. 
Mice were randomly assigned to four main groups (n=48 per 
group): Experimental group (BetA), positive control group 
(goniothalamin), vehicle control group (dimethyl sulfoxide) 
and control group (without vehicle). Each group was further 
divided into three equal subgroups according to the treat-
ment length (4, 8 and 12 days). BetA treatment induced the 
expression of NADPH-d activity in the thymus and spleen 
without any significant changes in the morphology of the 
organs. Furthermore, the expression pattern of NADPH-d in 
BetA‑treated animals was significantly increased compared 
with that in the control animals. NADPH-d expression in 
the thymus and spleen suggests that NO signaling may be a 
potential mechanism underlying the BetA-induced immu-
nomodulation in these organs. These findings are of direct 
clinical relevance and may contribute to the further develop-
ment of BetA as a therapeutic drug.

Introduction

Numerous diseases, including cancer require modulation 
in the immune system for disease management and care (1). 
Under the circumstance of weakened immune responsiveness, 

the host protection machinery has to be activated to provide 
an alternative to conventional chemotherapy (2). Potential 
immunomodulatory agents (3,4) have been identified based 
on the observed therapeutic effects of phytochemicals isolated 
from various plants (5-7), and segregates of microorganisms 
and mammalian proteins, including immune mediators and 
certain synthetic chemicals (8).

The triterpene alcohol, betulin and its equivalent carbox-
ylic acid, betulinic acid (BetA; Fig. 1) are isolated from betula 
birch bark (9), which has been used for various medicinal 
purposes in many countries (10). BetA is a pentacyclic 
lupane-type triterpenoid of which a wide range of biological 
properties have been shown against cancer, inflammation, 
malaria, and helmintic and viral activities (11-14). Among 
these, the anticancer and cytotoxic activities of BetA have 
received significant attention (15,16). Selective cytotoxicity 
has been demonstrated in multiple tumor cell lines (15-19) 
without effect in normal cells, including dermal fibroblasts 
and peripheral blood lymphocytes (20-22). Furthermore, no 
systemic toxic effects have been observed in rodents (23). 
However, BetA is considered to be a weak antineoplastic 
agent, as it is required at micromolar concentrations to inhibit 
cell proliferation in vitro, and even higher doses are required 
(250 mg/kg body weight) to control melanoma growth in 
athymic mice (24).

Despite a lack of toxicity, the poor potency of BetA hinders 
its clinical development. Mullauer et al (23) cautioned that 
existing in vivo data are insufficient to support that BetA does 
not cause an effect on healthy cells. Furthermore, in contrast 
to previous findings, a recent study by Heiss et al (24) reported 
that 10 µM BetA induces changes in normal cellular metabo-
lism. The study by Heiss et al (24) raised concerns regarding 
the clinical application of BetA and prompted us to investigate 
whether BetA may cause any major effects on healthy cells in 
the immune organs of mice.

Nitric oxide (NO) is a free radical and ubiquitous signaling 
molecule (25,26) present in immune and endocrine tissues, 
among others (27-29) and a well-known mediator in numerous 
therapeutic and immuomodulatory functions, indicating a 
regulatory function of NO in primary and secondary immune 
organs. There are three isoforms of NO synthases (NOSs), 
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which are neuronal (nNOS), inducible (iNOS) and endothelial 
(eNOS), and they are responsible for the synthesis of NO from 
the amino acid, l-arginine (30). Previous studies have demon-
strated that all three isoforms express enzymatic activity of 
NADPH-d (31,32), and indicated the expression pattern of 
NADPH-d is an indirect indication of the presence of NOS 
and NO (30,33). Therefore NADPH-d activity has been used 
as a marker for NOS.

Therefore, the current study was performed to determine 
whether 10 µM BetA modulates NO production or induces 
changes in healthy spleen and thymus cells in mice, and to 
investigate the possible functions of BetA in these organs. A 
histochemical analysis of NADPH-d, a marker for NOS, was 
also performed (34).

Materials and methods

Animals and reagents. Animal experiments were conducted in 
accordance with the National University of Malaysia (UKM; 
Kuala Lumpur, Malaysia) animal ethics guidelines and regula-
tions laid out by the Institutional Animal Ethics Committee 
(UKMAEC; FF/2016/ALI/20‑MAY/685‑JUNE‑2016). 
Six-week-old, female BALB/c mice procured from the 
institutional animal holding facility (n=196), were maintained 
(2-3 animals/cage) under pathogen-free conditions and a 12-h 
light/dark cycle, with access to commercial pellets and distilled 
water. BetA (Sigma-Aldrich; Merck KGaA, Darmstadt, 
Germany) served as a test drug, goniothalamin (GTN; provided 
by Dr Ibrahim Jantan, Faculty of Pharmacy, UKM) served as a 
positive control drug, and dimethyl sulfoxide (DMSO; Merck 
KGaA) served as a vehicle.

Animal treatment and sample collection. Animals were 
randomly divided into four main groups as follows: 
Experimental group (10 µM BetA; n=48), a positive control 
group (50 µM GTN; n=48), a negative control group (0.05% 
DMSO; n=48) and a normal standard control group (n=48). 
Each main group of animals was further divided into three 
equal subgroups (n=6 per group) corresponding to the treat-
ment period (4, 8 and 12 days). Chloral hydrate (10%; i.p.) was 
administered to anesthetize the animals, subsequently animals 
were fixed using 4% paraformaldehyde and a transcardiac 
perfusion method described by Syed et al (27). The fixed 
tissue blocks were maintained in the same fixative solution 
for a further 6 h as post fixation, followed by rinsing in 0.1 M 
phosphate buffer (PB) and cryoprotection in 30% sucrose. 
Finally, 10 µm frozen sections were sliced (Leica SM2010 
Sliding microtome; Leica Microsystems GmbH, Wetzlar, 
Germany). Three series of sliced sections were collected on a 
glass slide and stained for NADPH-d.

Histochemistry of NADPH‑d and analysis of tissue 
morphology. Frozen tissue sections were maintained at 
room temperature for 30 min, washed twice in PB, followed 
by staining for NADPH-d with the addition of substrate 
β-NADPH [Malaysia Sigma-Aldrich (M) Sdn. Bhd, Kuala 
Lumpur, Malaysia] and nitroblue tetrazolium, a salt that yields 
an insoluble blue formazan precipitate visible under a light 
microscope (27). In the case of NADPH-d histochemistry 
controls, sections were incubated at room temperature for 

45 min in a β-NADPH-free medium. The intensity of the reac-
tion in the thymus and spleen was determined by measurement 
of optical density (OD; 0‑260 nm), using Olympus cellSens 
(Olympus Soft Imaging Solutions GmbH, Münster, Germany) 
software version 1.6, and was graphically represented. From 
each sample, three to four slides were subjected to the staining 
procedure and multiple areas were evaluated randomly using 
a light microscope. The cross-sectional morphology of the 
tissues was observed using an Olympus BX41TF microscope 
(Olympus Corp., Tokyo, Japan). Images of the sections were 
captured using an Olympus UC30, with Olympus cellSens 
software version 1.6. All measurements were performed in 
duplicate or triplicate and repeated at least three times.

Statistical analysis. Statistical assessment of the intensity 
data was performed using one-way ANOVA followed by 
Bonferroni multiple comparison's tests (GraphPad Prism 
version 4.0; GraphPad Software, In., La Jolla, CA, USA). All 
numerical data are expressed as the mean ± standard error of 
the mean and P<0.05 was considered to indicate a statistically 
significant difference.

Results

NADPH‑d expression in the thymus. Although the control 
group (DMSO-treated vehicle) received no drug treatment, 
weak or faint NADPH-d staining was observed in the cortex 
and medulla region of the thymus (Fig. 2A-C), whereas in 
the positive-control group (GTN), the capsule and cortex 
region demonstrated moderate NADPH-d expression 4 days 
after the GTN injection, which continuously increased at the 
eighth and twelfth day of treatment (Fig. 2D-F). This indicates 
that GTN induces time-dependent expression of NADPH-d 
in the thymus. However, the NADPH-d distribution was 
initially similar to that in the control group after day 4, and 
subsequently the distribution spread to the whole lobule on the 
eighth and twelfth day of treatment.

Similarly, a gradual increase of NADPH-d distribu-
tion (P<0.001) was observed in the BetA treatment group 
and its activity increased along with longer BetA exposure 
(Fig. 2G-I). However, the thymus displayed only slight to 
moderate NADPH-d staining after 4 days (Fig. 2G), 8 days 
(Fig. 2H) and 12 days of BetA treatment (Fig. 2I), in the cortex 
and the medullary region. The interlobular septum extends 
from the capsule into the thymus, subdividing the thymus into 
interconnecting lobules, which are of varying size and orienta-
tion. The expression pattern of NADPH-d spread to a wider 
area at the medullary region across the septum 8 days after 
BetA treatment, demonstrating higher NADPH-d activity. As 
the septum is the site where blood vasculatures in the thymus 
are oriented, staining in this region (Fig. 2C and G) supports 
that NO has a role in vascular physiology. The graph (Fig. 2J) 
demonstrates the intensity (OD) per staining area (cm2) of the 
thymus tissue sections after 4, 8 and 12 days of treatment. 
Increased NADPH-d expression indicates that the effect of 
BetA on the thymus depends on exposure time.

NADPH‑d expression in the spleen. Compared with that in the 
control group (Fig. 3A-C), the spleen of the GTN (Fig. 3D-F) 
and BetA groups (Fig. 3G-I) demonstrated a particularly 
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strong NADPH-d reaction, with increased expression levels in 
the cortex and medullary regions (Fig. 3D-I), as well as in the 
vasculature (Fig. 3C, F and I), which increased with longer 
exposure times. The spleen is enclosed by a fibro elastic outer 
connective tissue, the capsule, and composed of white and red 
pulp, forming two functionally and morphologically different 
units. The NADPH-d staining (brown precipitate) was more 
widely present in the red pulp than in the white pulp area. 
The red pulp region is comprised of various cells, including 
sinusoids (35). The graph (Fig. 3J) demonstrates the intensity 
(OD) per staining area (cm2) of the spleen tissue sections after 
4, 8 and 12 days of treatment

Morphological changes. No phenotypical appearance or 
significant morphological changes were observed in either the 
GTN- or the BetA-treated thymus and spleen.

Discussion

The present study demonstrated positive NADPH-d staining 
in the thymus and in the spleen of non-immunized GTN and 
BetA-treated mice. However, its expression and distribution 
pattern varied with these agents throughout the treatment 
period. Although no morphological or phenotypical changes 
were evident in these organs, the NADPH-d activity was more 
prominent in the spleen than in the thymus. The red pulp 
region of the spleen strongly expressed NADPH-d, whereas 
only a moderate reactivity was observed in the white pulp 
region. Although NADPH-d expression was detected after 
4 days, a significant increase in expression was observed 
after 8 days of BetA treatment, indicating the contribution of 
NADPH-d in spleen NO generation during the entire treatment 

period. Similarly, a steady increase in NADPH-d activity in 
the thymus beginning from day 4 may specify an interactive 
outcome of NO on the thymus vascular and medulla regions, 
which may be involved in immune modulation (33,36‑37). 
Although the function of NO in the thymus and spleen has 
not been demonstrated, the findings of the current study indi-
cate that there is an association between the immunological 
effects induced by BetA. The major effect of BetA-induced 
NO appears to be involved in maintenance of the immune 
system (38-40) and the current results support other reports 
in which the presence of NO was demonstrated in the immune 
system (33,41).

It has been demonstrated that the expression of NOS and 
production of NO are characteristic of cells involved in immune 
responses (33,36,42). Although NO is less active in cells from 
normal mice (43), a spleen cell subpopulation produces enough 
NO during an in vitro immune response to completely prevent 
multiplication of T cells (44,45). Similarly, previous studies 
have demonstrated that a wide range of potential immuno-
modulatory functions may be expected for NO in the thymus, 
including the following: Induction of tolerance, restriction 
of major histocompatibility complex, lymphocyte trafficking 
and regulation of thymic endocrine output (33,36,37,42). 
Furthermore, if there are effects or changes in the cells due 
to BetA treatment, it is assumed that NO may be produced 
to perform its regulatory roles in the cells of these immune 
organs.

Betulin and BetA trigger and modify cytokine production 
in human whole blood cell cultures (46). To support this 
hypothesis, previous studies have reported that BetA augments 
mouse immune function, including cellular and humoral 
immunity, and activity of phagocytic macrophages (39,47). 

BetA was identified as a modulatory agent of cytokine produc-
tion by T helper cells (Th1/Th2) and other immune cells in 
animals. Consistently, the results of numerous studies indi-
cated that BetA may be useful for modulation of the immune 
system (40,48-51). Furthermore, various bioactive materials 
derived from other plants exhibit immunomodulatory 
abilities (52-55).

In addition, NO is recognized to act as a vasodilator 
following its release from endothelial cells (56‑58), including 
BetA‑treated endothelial cells (59‑62). This function is medi-
ated by NO inhibitory action on vascular smooth muscles. 
However, Moncada et al (25) and other studies (63,64) 
have demonstrated that NO-mediated vasodilation occurs 
without endothelial cells present, where the NO-positive 
nitrergic nerves may act directly on smooth muscle cells, 
leading to vasodilation. Such control by neuronal NO 
has also been demonstrated in the peripheral nervous 
system (65,66).

The innervation of NO-positive perivascular nerves has also 
been demonstrated in many types of vascular tissue (67‑69). 
The distribution of supply of nerves in the thymus are not 
entirely known; however, previous studies focused on the 
neural structures contained within the thymus (70,71). The 
activity of NADPH-d was demonstrated in many parts of 
the nervous system in mammals (72-74). The present results 
are consistent with previous findings that NADPH‑d‑labelled 
cells are present in the rat thymus (28,30,75). Although the 
current study observed NADPH-d-stained nerve fibers in 

Figure 1. Structure of triterpenoid alcohol betulin and the corresponding 
carboxylic acid betulinic acid.
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the perivascular area, no NADPH-d neuronal cell body-like 
structures were observed in either the thymus or the spleen. 
The moderate distribution of NO-containing nerves travel-
ling along blood vessels may reflect a particularly significant 

role that neuronal NO may perform in controlling blood flow 
through the thymus and spleen. The fact that NO-positive 
nerves and the vascular endothelium may produce NO to 
influence blood flow has been described in the nervous 

Figure 2. Representative photomicrographs demonstrating thymus sections of the (A-C) VC (dimethyl sulfoxide), (D-F) positive (GTN) and (G-I) BetA-treated 
groups on days 4, 8 and 12 after treatment. Inset (IS) is representative of the area in the figure outlined in black. Black arrows identify the NADPH‑d‑stained 
blood vessels (BV), the red arrow points the perivascular nerve fibres and blue arrow demonstrates the NADPH‑d positive cells in the cortex (denoted by the 
letter C) and medulla (denoted by the letter M). The letter ‘S’ indicates the interlobular septum. Scale bar, 100 µm. (J) The intensity (OD) of the NADPH-d 
staining was quantified using Olympus Soft Imaging cellSens software version 1.6. Data are expressed as means ± standard deviation of mice (n=6 per group) 
**P<0.001 vs. the VC group, #P<0.001 vs. the GTN group. †P<0.01 vs. the VC group. GTN, goniothalamin; BetA, betulinic acid; NADPH-d, nicotinamide 
adenine dinucleotide phosphate diaphorase; VC, vehicle control; OD, optical density.
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system (74), pancreas (76), thyroid (27,29) and various other 
tissues. This observation indicates that NO participates in 
neurotransmission in the thymus and spleen. It is important 
to note that in addition to blood vessels, NO may regulate the 
secretory activity of immune cells by its generation in these 
cells (77). Thus, BetA may present a promising biological 
response modifier and may reinforce the immune response 
of a host.

In conclusion, the current study demonstrates that BetA 
treatment induces the expression of NADPH-d activity 
in the thymus and spleen without causing any significant 
changes to the morphology of the organs. These findings 

are of direct clinical relevance and may contribute to the 
progression of drug discovery. To the best of our knowledge, 
this is the most significant study describing BetA‑induced, 
NADPH-d-mediated NO signaling, which may be the 
mechanism underlying BetA-elicited immunomodulation in 
these organs.
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Figure 3. Representative photomicrographs demonstrating spleen sections the (A-C) VC (dimethyl sulfoxide), (D-F) positive (GTN) and (G-I) BetA-treated 
groups on days 4, 8 and 12 after treatment. Inset (IS) is representative of the area in the figure outlined in black. Black arrows identify the NADPH‑d‑stained 
blood vessels (BV), the red arrow points the perivascular nerve fibres and blue arrow demonstrates the NADPH‑d positive cells in the red pulp (RP) region. 
‘WP’ indicates the white pulp region. Scale bar, 100 µm. (J) The intensity (OD) of the NADPH‑d staining was quantified using Olympus Soft Imaging cellSens 
software version 1.6. Data are expressed as means ± standard deviation of mice (n=6 per group) **P<0.001 vs. the VC group, #P<0.001 vs. the GTN group, 
†P<0.01 vs. the VC group. GTN, goniothalamin; BetA, betulinic acid; NADPH-d, nicotinamide adenine dinucleotide phosphate diaphorase; VC, vehicle 
control; OD, optical density.
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