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Abstract: This study was a multicenter retrospective cohort study of term nulliparous women who
underwent labor, and was conducted to develop an automated machine learning model for prediction
of emergent cesarean section (CS) before onset of labor. Nine machine learning methods of logistic
regression, random forest, Support Vector Machine (SVM), gradient boosting, extreme gradient
boosting (XGBoost), light gradient boosting machine (LGBM), k-nearest neighbors (KNN), Voting,
and Stacking were applied and compared for prediction of emergent CS during active labor. External
validation was performed using a nationwide multicenter dataset for Korean fetal growth. A total of
6549 term nulliparous women was included in the analysis, and the emergent CS rate was 16.1%. The
C-statistics values for KNN, Voting, XGBoost, Stacking, gradient boosting, random forest, LGBM,
logistic regression, and SVM were 0.6, 0.69, 0.64, 0.59, 0.66, 0.68, 0.68, 0.7, and 0.69, respectively.
The logistic regression model showed the best predictive performance with an accuracy of 0.78.
The machine learning model identified nine significant variables of maternal age, height, weight at
pre-pregnancy, pregnancy-associated hypertension, gestational age, and fetal sonographic findings.
The C-statistic value for the logistic regression machine learning model in the external validation
set (1391 term nulliparous women) was 0.69, with an overall accuracy of 0.68, a specificity of 0.83,
and a sensitivity of 0.41. Machine learning algorithms with clinical and sonographic parameters
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at near term could be useful tools to predict individual risk of emergent CS during active labor in
nulliparous women.

Keywords: emergency; cesarean; nulliparous; prediction; labor; machine learning

1. Introduction

The global cesarean rate was as high as 21.1% in 2018 and has been continuously
increasing from 6.7% in 1990 [1]. In Republic of Korea, as the proportion of elderly gravida
and nulliparous women increased, the cesarean section (CS) rate increased from 36.7%
in 2012 to 47.3% in 2018 (Korea National Statistical Office Korean Vital Statistics Birth
Certificate Data and Vital Statistics Fetal Death File, the Korean Statistical Information
Service data (January 2012–December 2018) [2]). However, the increased rate of CS is not
associated with a reduction in serious neonatal morbidity, such as cerebral palsy [3,4].

Moreover, emergent CS during labor has shown increased risk of severe maternal
and neonatal adverse outcomes compared with elective CS [5,6]. Category 1 CS is de-
fined as urgent CS that takes no longer than 30 min from decision to delivery, in which
there is immediate life threat to fetus and mother and an increased likelihood of adverse
perinatal complication such as low Apgar score, seizure, neonatal resuscitation, and neona-
tal intensive care unit admission [7,8]. Moreover, emergent CS in the second stage not
only increases maternal and neonatal morbidity, but also increases the risk of preterm
birth in subsequent pregnancies [9,10]. Predicting women at high risk for emergent CS is
meritorious in obstetric management to reduce maternal and neonatal morbidity.

Many factors have been suggested as risk factors for labor failure in nulliparous
women, and several models have been developed to predict the mode of delivery in nul-
liparous women [11–13]. However, these models were developed primarily using data
from Western women, and few Asian women were included [11–14]. Recent machine
learning models comprising several algorithms have been shown to provide better pre-
diction of obstetric outcomes including shoulder dystocia and vaginal birth after cesarean
delivery [15–17].

Some women desire an elective CS during the third trimester due to reasons including
fear of childbirth, depression or anxiety about labor and vaginal delivery, and perceptions of
having a narrow pelvis or other hereditary factors, rather than objective parameters [18,19].
Several interventions with moderate- or high-certainty evidence mainly targeting healthcare
professionals have been useful in reducing CS rates [20]. However, evidence for predicting
individual risk of emergent CS due to failure to progress or non-reassuring fetal heart rate
(FHR) is very limited, especially during the third trimester and in Asian women [20].

In the current study, our objective was to assess prospectively the use of maternal and
fetal, clinical, and ultrasound features to develop an automated machine learning model
for unplanned CS in Asian nulliparous women during the third trimester, before the onset
of labor.

2. Materials and Methods
2.1. Study Design

This study was a retrospective cohort study conducted in singleton nulliparous women
who delivered between January 2009 and December 2019 at seven hospitals under the
College of Medicine, at The Catholic University of Korea. As part of routine obstetric care,
obstetricians collect clinical data in electronic medical records (EMR). Data on maternal
demographic characteristics and delivery outcomes were collected from the institution’s
database via EMR. Data were confirmed, and missing data were abstracted from the chart
review by two obstetricians (J.H.W. and H.S.K.).

The study included consecutive nulliparous singleton pregnancies at term
(≥37 0/7 weeks of gestation) with cephalic presentation who underwent trial of labor.
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Exclusion criteria were CS due to non-cephalic presentation, abnormal placentation, dispro-
portionate cephalopelvic size, maternal or fetal problems, elective CS on maternal request,
and CS prior to labor onset or active phase (less than 4 cm dilatation of the cervical os with
uterine contraction). Patients with maternal complications of overt diabetes, moderate-
to-severe pregnancy-associated hypertension (PAH), or fetal congenital anomalies were
excluded. Patients with hyper- or hypothyroidism, gestational diabetes (GDM), mild hy-
pertensive disease, mild PAH, or idiopathic thrombocytopenic purpura were not excluded.

2.2. Study Population

Clinical and sonographic data of 31,929 women were collected in a retrospective
study cohort from the seven hospitals under the College of Medicine. Among them,
25,335 women were excluded due to history of previous delivery, multiple pregnancy,
preterm delivery, elective or indicated cesarean delivery, cesarean delivery without definite
indication, cesarean delivery before active labor, or missing data. Finally, a total of 6549 term
nulliparous women was analyzed (Figure 1).

Figure 1. Participant selection process.

2.3. Variables

Gestational age was calculated from the first day of the last menstrual period and cor-
rected with ultrasonographic information on crown rump length during the first trimester.
Ultrasonographic findings were based on biometric findings from 34 weeks 0 days to
39 weeks 6 days’ gestation. Fetal biometry data were biparietal diameter (BPD), abdominal
circumference (AC), femur length (FL) [21], and estimated body weight (EBW) calculated
using the Hadlock-3 formula.

Emergency CS during labor was noted when emergent CS was performed due to
failure to progress or non-reassuring FHR during the active phase of labor. To develop a
predictive model of emergent CS during labor, we preselected risk factors based on data
obtained from published predictive models [11,13,14]. The preselected risk factors were
maternal age, newborn height and weight at delivery, and fetal AC at ultrasonography.
We added other variables of maternal weight before pregnancy; fetal BPD, EBW, and FL;
gestational age at ultrasonographic examination and at delivery; and presence of GDM
or PAH.
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2.4. Machine Learning
2.4.1. Dataset

All anonymized data were prepared as a learning dataset for the machine learning
models and were randomly divided into two sub-cohorts at a 70:30 ratio: (1) a model
development cohort (training set) with 4584 observations and (2) an internal validation
cohort (validation set) with 1965 observations.

2.4.2. Data Sampling Algorithms

In order to treat significant class imbalance in the data, several sampling strategies
were applied to the dataset [22].

Random Under-Sampling/Oversampling

This resampling technique for dealing with highly unbalanced datasets consists of
removing samples from the majority class (under-sampling) and/or adding more examples
from the minority class (oversampling) [23,24].

Tomek Link

Tomek links are pairs of nearest neighbors but of opposite classes. Removing the
in-stances of the majority class of each pair increases the space between the two classes,
facilitating the classification process.

Condensed Nearest Neighbor (CNN)

CNN uses sub-data consisting of whole minor class samples and one random sample
from the major class. For each of the other samples, the algorithm reclassifies a sample as
minor if it is closer to the minor samples than to the random major sample.

One-Sided Selection (OSS)

OSS removes noise samples in the data with Tomek-link-based under-sampling, ap-
plying CNN to the major group at the same time.

Edited Nearest Neighbors (ENN)

OSS removes noise ENN pushes the threshold that classifies the label of the sample to
the overrepresented side, supporting the asymptotic performance of a nearest neighbor
rule [25].

Neighbor Cleaning Rule (NCR)

The NCR algorithm modifies the risk of ENN by combining it with CNN. The algo-
rithm conducts two-sided cleaning, as it decreases the over-presented side samples and
increases the samples of minor group.

Synthetic Minority Oversampling Technique (SMOTE)

The NCR algorithm SMOTE selects two minority class examples from the feature
space and creates a synthetic sample that connects the two selected example sets [26].

Adaptive Synthetic Sampling (ADASYN)

ADASYN shares the same algorithm for generating new samples as SMOTE; however,
it also focuses on generating samples next to the originals, which are wrongly classified
using a K-Nearest Neighbors (KNN) [27].

Borderline SMOTE

Borderline SMOTE is a variation of the SMOTE algorithm that supports the model
that learns the dataset to train with difficult predictions by focusing on the samples that are
near the borderline of the classes and generating those ‘hard samples’ [28].
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2.4.3. Learning Algorithms

Seven machine learning methods and two types of their ensembles were applied for
predicting emergent CS during labor [22]. All of the algorithms were implemented based
on the scikit-learn model application programming interface (API) (Logistic regression,
Random Forest, Gradient boosting, Support vector machine (SVM), KNN, Voting, and
Stacking), or compatible APIs supported by other libraries (light gradient boosting machine
(LGBM) and extreme gradient boosting (XGBoost)) [29].

Logistic Regression

Logistic regression is a statistical technique that is often used to create a prediction
model for categorical data. It predicts the probability value from 0 to 1 that a sample
belongs to a specific category and classifies it when the probability value is greater than 0.5.

Random Forest

The random forests algorithm reduces overfitting by combining many weak learners
that are under-fit using the subset of the dataset.

Gradient Boosting, LGBM, XGBoost

Gradient boosting, a boosting algorithm that starts with one node or a single leaf,
has high performance, especially with tabular type data. The algorithm consists of many
under-fitted models that sequentially decrease loss of the prediction. Three versions of
Gradient boosting packages of scikit-learn, LGBM, and XGBoost were adopted in this
study [30,31].

SVM

SVM creates and utilizes the boundary surface that separates samples in the dataset
by class. By iteratively calculating and maximizing the margins between the surface and
classes, SVM optimizes the position of the boundary surface for the data.

KNN

The KNN algorithm calculates the Euclidean distance between two random samples
in the multi-dimension space and uses the nearest sample from the target data as reference
for the prediction.

Ensembles: Voting, Stacking

Ensemble methods are techniques that create and combine multiple models to pro-
duce improved results. Two ensemble algorithms of voting and stacking were used. With
majority voting, the predicted class label for a particular sample is that representing the
majority (mode) of the class labels predicted by each individual classifier. It would classify
the sample as “class 1” based on the majority class label. The other algorithm, which
was implemented based on stacking generalization, consists of stacking the output of the
individual estimator and uses a classifier to compute the final prediction.

2.4.4. Model Evaluation and Validation

Internal validation has been carried out using validation sets, and the most popular
metrics were used to compare model performance. The accuracy score was adopted in
order to evaluate the agreement between the prediction and true values. Precision and
recall were also considered to measure how many of the predicted positives are truly
positive and how many of the actual positives were correctly classified. In addition, the
F1-score was calculated as the harmonic mean between precision and recall, as there is a
tradeoff between those two measures.

Since it is necessary that the model outcome to be used be versatile, area under the
receiver-operating characteristic curve (AUROC), which indicates the ability to separate
positive classes from the negative class, was the first factor to consider; hence, it could
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represent overall model performance regardless of threshold. Moreover, there should be
parameters defined as standards to discern the superior model among those that yield sim-
ilar AUROC values. Simultaneously considering the other values allows for a comparison
between the strengths and weaknesses, from which the most appropriate model could be
discerned among multiple models. The recall score of the model had priority over accuracy
in model evaluation depending on the algorithm used, as false negative classification leads
to greater medical risk in the clinical environment.

2.4.5. Software and Statistical Tools

We used the scikit-learn package for actual implementation of the machine learning
algorithms and calculation of the metrics, including the scikit-learn-compatible APIs pro-
vided by LightGBM and XGBoost. In preprocessing imbalanced data, the imbalanced-learn
package was used for the sampling algorithms. Pandas and Matplotlib were also used to
appropriately process the tabular data as the training set for the model and to visualize the
analysis plots [32,33]

2.5. External Validation

External validation was performed with the dataset of a multicenter retrospective
cohort study of the Korean Society of Ultrasonography in Obstetrics and Gynecology
(KSUOG), which was designed to analyze fetal growth percentile for the Korean population
at 48 general hospitals in Republic of Korea and was approved by the institutional review
board of each [34]. Ultrasonographic findings based on biometric findings from 34 weeks
0 days to 39 weeks 6 days’ gestation were collected. Women were aged 20–44 years,
and gestational age at delivery varied from 24 weeks 0 days to 41 weeks 6 days in the
original data. For external validation of our study, women who delivered a baby before
37 weeks 0 days or multiparous women were excluded. Women with elective CS (medically
or surgically indicated CS or patient choice), unknown indication of CS, and CS before
active labor (less than 4 cm dilatation of the cervical os with uterine contraction) were
also excluded. The model performance of the external validation cohort was assessed for
accuracy and C-statistics.

The Institutional Review Board of The Catholic University of Korea approved the
present study (XC20WIDI0103/2020-2158-0020). Since this study was a retrospective cohort
study and all data were anonymized, and the need for informed consent was waived.

3. Results
3.1. Patient Characteristics

The baseline characteristics of the study population (n = 6549) of 5507 (84.1%) women
with vaginal delivery and 1042 (15.9%) women with emergent CS during labor are listed in
Table 1. Maternal age, weight at pre-pregnancy and at the time of delivery, gestational age
at delivery, neonatal weight at delivery, percentage of male babies, and PAH were higher
in women with emergent CS during labor than in those who underwent vaginal delivery,
while maternal height was significantly higher in women with vaginal delivery than in
those with emergent CS. The BPD, AC, and EBW measured at 34 to 39 weeks of gestation
were significantly higher in women with emergent CS than in those with vaginal delivery.
There were no significant differences in gestational age at sonogram or gestational diabetes.
Distributions of raw data are presented in Figures 2 and 3.
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Table 1. Baseline characteristics of the study population.

Characteristics Successful Vaginal Delivery
(n = 5507)

Emergent Cesarean Section
(n = 1042) p-Value

Maternal age, yr 31.29 ± 3.8 32.49 ± 3.95 <0.001
Gestational age, w 39.49 ± 0.99 39.67 ± 0.99 <0.001
Birth weight, gm 3.17 ± 0.36 3.31 ± 0.44 <0.001

Maternal height, cm 162.24 ± 5.02 160.93 ± 5.14 <0.001
Maternal weight at pre-pregnancy, kg 53.96 ± 7.93 56.05 ± 9.97 <0.001

Maternal weight at delivery, kg 67.13 ± 9.11 69.92 ± 10.72 <0.001
Gestational age at sonogram, w 36.9 ± 0.95 36.96 ± 0.95 0.075

Sonographic parameters, cm
Biparietal diameter 9.05 ± 0.37 9.09 ± 0.37 <0.001

Abdominal circumference 31.88 ± 1.62 32.23 ± 1.88 <0.001
Femur length 6.9 ± 0.31 6.92 ± 0.33 0.125

Estimated fetal weight 2831.84 ± 320.48 2908.89 ± 365.84 <0.001
Neonate male sex 2779 (50.46%) 580 (55.66%) 0.002

Pregnancy-associated hypertension 167 (3.03%) 61 (5.85%) <0.001
Gestational diabetes 253 (4.59%) 62 (5.95%) 0.072

Figure 2. All-against-all scatter plot analysis of variables.
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Figure 3. Correlations between delivery type and patient variables.

3.2. Model Performance

The predictive performance of each algorithm is listed in Table 2. The calibration plot
with the respective C-statistics of the machine learning models for predicting emergent
CS are shown in Figure 4. The C-statistics for KNN, Voting, XGBoost, Stacking, gradient
boosting, random forest, LGBM, logistic regression, and SVM were 0.6, 0.69, 0.64, 0.59, 0.66,
0.68, 0.68, 0.7, and 0.69, respectively. Based on the AUROC values, the logistic regression
model had the best performance for predicting emergent CS. The overall accuracy of the
logistic regression model was 0.78, specificity was 0.85, and sensitivity was 0.43.

Table 2. Comparison of predictive performance for emergent cesarean section.

Algorithm Accuracy Precision Sensitivity F1_Score Specificity

Logistic Regression 0.78 0.35 0.43 0.39 0.85
Voting 0.83 0.38 0.17 0.23 0.95
SVM 0.77 0.31 0.37 0.34 0.85

Random Forest 0.83 0.42 0.19 0.26 0.95
LGBM 0.85 0.55 0.15 0.23 0.98

Gradient Boosting 0.83 0.36 0.12 0.19 0.96
XGBoost 0.82 0.34 0.12 0.17 0.96

KNN 0.69 0.24 0.42 0.3 0.74
Stacking 0.83 0.35 0.09 0.14 0.97

SVM, Support Vector Machine; LGBM, Light Gradient Boosting Machine; KNN, k-nearest neighbors.
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Figure 4. Receiver operating characteristic curves of emergency cesarean section prediction models.

3.3. Variable Influence on the Prediction Model

As the model based on logistic regression showed the best performance based on
AUROC values, the nine significant variables associated with emergent CS during labor
were identified by logistic regression analysis, as follows: (1) EBW (kg, adjusted odds ratio
[aOR] (95% confidence interval [CI]), 1.13 (1.05–1.21)), (2) birth weight (kg, aOR (95% CI),
1.12 (1.09–1.16)), (3) PAH (aOR (95% CI), 1.09 (1.04–1.15)), (4) maternal age (year, aOR (95% CI),
1.01 (1.01–1.01)), (5) gestational age at delivery (kg, aOR (95% CI), 1.01 (1.001–1.021)),
(6) maternal weight before pregnancy (kg, aOR (95% CI), 1.01 (1.004–1.006)), (7) ma-
ternal height (cm, aOR (95%CI), 0.99 (0.98–0.99)), (8) fetal sonographic AC (mm, aOR
(95%CI), 0.98 (0.97–0.99)), and (9) fetal sonographic FL (mm, aOR (95% CI), 0.95 (0.91–0.99))
(Figure 5).
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Figure 5. Odd ratios by logistic regression analysis.

3.4. External Validation

Clinical and sonographic data of 1391 term nulliparous women were extracted in a
fetal growth study cohort of the KSUOG and used for external validation of the logistic
regression model trained from the original dataset. The results indicated that the C-
statistics value for the model was 0.69, with an overall accuracy of 0.68, a specificity of
0.83, and a sensitivity of 0.41 (Figure 6). The confusion matrix of the prediction for an
external validation set and available performance according to the threshold of the logistic
regression model are presented in Figures 7 and 8.

Figure 6. Receiver operating characteristic curve of emergency cesarean section prediction model
based on logistic regression in an external validation set.
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Figure 7. The confusion matrix of the prediction for an external validation set.

Figure 8. Model performance according to the threshold of the logistic regression model.

4. Discussion

In nine machine learning models, the logistic regression model had the best perfor-
mance for predicting emergent CS. The significant variables were EBW, AC, and FL on
ultrasonogram; neonatal birth weight; PAH; maternal age; gestational age at delivery;
maternal weight at delivery; and maternal height. The overall accuracy of the logistic
regression model was 0.78, with an area under the curve (AUC) of 0.70. In an external
validation set, the overall accuracy of the logistic regression model was 0.68, with an AUC
of 0.69.

Associations of parameters such as advanced maternal age, shorter status, and higher
body mass index (BMI) with fetal sonographic parameters including large AC and emer-
gent CS have been reported [11,12,35–37]. The findings of our study are consistent with
those of previous studies [12,35–37]. We obtained additional information by integrating
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12 variables into our prediction model. We observed that pregestational maternal weight
was significantly associated with risk of emergent CS, while maternal weight at delivery
did not increase the risk. Moreover, our prediction algorithm incorporated neonatal birth
weight, gestational age at delivery, and major obstetric complications of GDM and PAH as
variables. The risk of CS increases with increased neonatal birth weight [38]. Although the
accuracy of US-based fetal weight estimation has improved in recent decades, estimated
fetal weight remains inconsistent with actual birth weight [39,40]. Although data on neona-
tal birth weight are available after delivery, maternal motivation for controlling maternal
and neonatal birth weights might affect maternal diet and exercise. Furthermore, consider-
ing the 39-week labor induction in nulliparous women, this result can be a reference for
maternal counseling [41].

Some studies have reported that the size of the fetal head or abdomen alone is more
strongly correlated with actual birth weight than is estimated fetal weight [21,37]. Others
have suggested that fetal growth should be assessed using a separate biometric measure
in addition to the estimated fetal weight to avoid a minimalist approach involving only
a single value [39]. In our machine learning model, fetal EFW, BPD, FL, and AC were
incorporated. Sonographic fetal head circumference (HC) ≥ 35 cm or 95th percentile,
measured within 1 week of delivery, has shown significant association with emergency
CS or instrumental delivery [33]. Therefore, it would be valuable to test whether adding a
value of sonographic fetal HC into the machine learning model can improve performance
when using a prospective design.

Our study has some limitations. This study was a retrospective cohort study. However,
we tried to include all consecutive mothers who delivered during the study period to
reduce selection bias. The obstetrician and patients were not blinded to the sonographic
information obtained via fetal biometry. The estimation itself or knowledge of fetal weight
might influence the rate of CS, regardless of actual birth weight [42]. This information
might have influenced the obstetrician’s decision regarding mode of delivery and timing of
labor induction. In addition, there are other factors such as cervical length, effacement, and
fetal station that influence the success of vaginal delivery. Recent studies have started to
use real-time data acquired throughout labor or preinduction parameters such as Bishop
score, angle of progression, or cervical length by transvaginal ultrasonography to increase
prediction accuracy for emergent CS [43,44]. Although this study did not include those
intrapartum or preinduction data, our objective was prediction of emergent CS during
labor in near term or term nulliparous women, because the maternal decision regarding the
delivery mode is sometimes made before term or labor onset during the term. In addition,
since this study was conducted only for Koreans, validation for other races is required for
more widespread application [12,44]. However, considering that other prediction models
mainly target western populations, and the predictive performance for Asians is low, this
study is expected to be useful for East Asians.

One previous systematic review study revealed that the risk of developing depressive
and posttraumatic stress disorder symptoms in women who requested elective CS but
delivered vaginally was significantly higher than in women with normal vaginal deliv-
ery [19]. American College of Obstetricians and Gynecologist recommends vaginal delivery
if there is no maternal or fetal indication for CS [45]. However, if a patient decides to
pursue cesarean delivery on maternal request, cesarean delivery can be planned from
39 weeks’ gestation, after providing information about the increasing risks of placenta
previa, placenta accrete spectrum, and gravid hysterectomy with each subsequent cesarean
delivery [45]. In women requesting elective CS, fear of childbirth or emergency cesarean
section in labor after a day of pain is one of the reasons for elective CS [46,47]. Although it
is unclear whether knowledge of individual probability of emergent CS during labor or
before the onset of labor can decrease the fear of childbirth, machine learning algorithms
might provide more objective probability than an obstetrician’s subjective opinion.

One of the main strengths of this study is its multicenter design, which includes a
heterogenous population from various hospital settings. The second strength of this study
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is the external validation using nationwide data from the KSUOG fetal growth cohort. Most
prediction models in the area of obstetrics lack external validation [14–16,48,49]. Because
the performance and impact of prediction models need to be assessed in clinical practice, the
results should be validated externally in other medical settings and different populations.
Because the performance of the logistic regression model was similar to that of the external
validation, the model should be applicable in East Asian women. The third strength of this
study is the use of machine learning methods, which demonstrated favorable prediction of
emergency CS due to failure to progress or non-reassuring FHR. In addition, the probability
of emergent CS can change according to maternal weight, gestational age at delivery, and
neonatal birth weight. Last, this study incorporated parameters of common obstetric
complications (e.g., GDM and PAH) for predicting emergency CS during labor.

5. Conclusions

Machine learning algorithms using maternal and ultrasonographic parameters ob-
tained during pregnancy could effectively predict emergent CS during active labor. Al-
though this prediction model does not include intrapartum parameters, most women want
to know their individual probability of emergent CS during labor prior to the onset of labor.
The findings obtained from our study are thought to be useful in providing contemporary
antenatal care in nulliparous mothers with a greater fear of labor. This can provide individ-
ualized antenatal counseling of the risk of emergent CS, which can better inform women
preparing for childbirth. In addition, this study can provide a quantified motivation for
pregestational maternal weight management, which is a controllable factor in antenatal
management, and can serve as a basis for discussing induced labor at an appropriate time.

If validated in other populations, the prediction algorithm could be useful for individu-
alized counseling of nulliparous women. Further prospective studies including intrapartum
clinical and ultrasonographic parameters are needed to improve prediction performance.

Author Contributions: Conceptualization, H.S.K., J.H.W. and S.N.; methodology, H.S.K., B.S.C.
and H.H.; software, B.S.C. and H.H.; formal analysis, H.S.K., J.H.W., B.S.C. and H.H.; data cura-
tion, S.J.L., S.K.C., Y.S.J., H.S.H., M.H.P., Y.H.K., J.E.S., K.C.K., S.M.K., H.-J.S., H.-S.W. and H.S.K.;
writing—original draft preparation, J.H.W. and H.S.K.; writing—review and editing, H.S.K., S.N.
and all authors; supervision, S.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by a grant of the Korean Health Technology R&D Project
through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health
& Welfare, Republic of Korea (grant number: HI21C1300).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Institutional Review Board of The Catholic University of Korea
(XC20WIDI0103/2020-2158-0020).

Informed Consent Statement: Patent consent was waived, because this study was a retrospective
cohort study and all data were anonymized.

Data Availability Statement: Datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Acknowledgments: We appreciate the following researchers and hospitals that participated in this
study: The Catholic University of Korea, Eunpyeong St. Mary’s Hospital (KJY, WJH); Kangwon
National University Hospital (NSH, LSJ, and KSO); The Catholic University of Korea, Incheon St.
Mary’s Hospital (CSK, KWJ); The Catholic University of Korea, St. Vincent’s Hospital (JYS); Korea
University Anam Hospital (AKH); Konkuk University Hospital (HHS); Ewha Womans University
Hospital (PMH) The Catholic University of Korea, Uijeongbu St. Mary’s Hospital (KYH); Yeouido St.
Mary’s Hospital, College of Medicine (KKC); The Catholic University of Korea, CHA Gangnam Medi-
cal Center (KMY); Kyung Hee University Hospital at Gangdong (SHJ); Hallym University Kangdong
Sacred Heart Hospital (MJS); Gangneung Asan Hospital (JDH); Kangbuk Samsung Hospital (SJH);
Konyang University Hospital (KTY); Kyungpook National University Hospital (SWJ); Gyeongsang
National University Hospital (PJK); Keimyung University Dongsan Medical Center (BJG); Korea Uni-



Life 2022, 12, 604 14 of 16

versity Guro Hospital (CGJ); Hanyang University Guri Hospital (BHY); National Health Insurance
Service Ilsan Hospital (KEH); Gachon University Gil Hospital (KSY); Dankook University Hospital
(KYD); Daegu Catholic University Medical Center (HSY); Hallym University Dongtan Sacred Heart
Hospital (KKS); Pusan National University Hospital (KSC); Inje University Busan Paik Hospital
(KYN); The Catholic University of Korea Bucheon St. Mary’s Hospital (SKJ and SJE); CHA Bundang
Medical Center (LJY); Sungkyunkwan University Samsung Medical Center (OSY); Inje University
Sanggye Paik Hospital (SYS); Seoul National University Hospital (LSM); Seoul National University
Boramae Medical Center (KBJ); Soon Chun Hyang University Hospital (CGY); Ulsan University
Asan Medical Center (WHS and LMY); Yonsei Univeristy Sinchon Severance Hospital (KYH); Pusan
National University Yangsan Hospital; Ulsan University Hospital (LSJ); Inha University Hospital
(CSR); Dongguk University Ilsan Hospital (PHS); Inje University Ilsan Paik Hospital (KHS); Chonnam
National University Hospital (KYH and KJW); Jeonbuk National University Hospital (JYJ and LDH);
Jeonju Presbyterian Medical Center (KKJ); Jeju National University Hospital (KHS); Chosun Univer-
sity Hospital (CSJ and CJH), Chung-Ang University Hospital (KGJ); Soon Chun Hyang University
Cheonan Hospital (KYS); Chungnam National University Hospital; Hallym University Kangnam
Sacred Heart Hospital (SJE); Hanyang University Hospital (HJK); The Catholic University of Korea,
Seoul St. Mary’s Hospital (KHS, PIY). We appreciate the Korean Society of Ultrasound in Obstetrics
and Gynecology Research Group and the hospitals that participated in this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; collection, analyses, or interpretation of data; writing of the manuscript; or the decision
to publish the results.

References
1. Betran, A.P.; Ye, J.; Moller, A.-B.; Souza, J.P.; Zhang, J. Trends and projections of caesarean section rates: Global and regional

estimates. BMJ Glob. Health 2021, 6, e005671. [CrossRef] [PubMed]
2. Kim, H.Y.; Lee, D.; Kim, J.; Noh, E.; Ahn, K.-H.; Hong, S.-C.; Kim, H.-J.; Oh, M.-J.; Cho, G.J. Secular trends in cesarean sections

and risk factors in South Korea (2006–2015). Obstet. Gynecol. Sci. 2020, 63, 440–447. [CrossRef] [PubMed]
3. Betran, A.P.; Ye, J.; Moller, A.-B.; Zhang, J.; Gulmezoglu, A.M.; Torloni, M.R. The Increasing Trend in Caesarean Section Rates:

Global, Regional and National Estimates: 1990–2014. PLoS ONE 2016, 11, e0148343. [CrossRef] [PubMed]
4. O’Callaghan, M.; MacLennan, A. Cesarean Delivery and Cerebral Palsy: A systematic review and meta-analysis. Obstet. Gynecol.

2013, 122, 1169–1175. [CrossRef] [PubMed]
5. Pires-Menard, A.; Flatley, C.; Kumar, S. Severe neonatal outcomes associated with emergency cesarean section at term. J. Matern.

Fetal Neonatal Med. 2021, 34, 629–633. [CrossRef] [PubMed]
6. Briand, V.; Dumont, A.; Abrahamowicz, M.; Sow, A.; Traore, M.; Rozenberg, P.; Watier, L.; Fournier, P. Maternal and Perinatal

Outcomes by Mode of Delivery in Senegal and Mali: A Cross-Sectional Epidemiological Survey. PLoS ONE 2012, 7, e47352.
[CrossRef]

7. Grace, L.; Greer, R.M.; Kumar, S. Perinatal consequences of a category 1 caesarean section at term. BMJ Open 2015, 5, e007248.
[CrossRef]

8. Lucas, D.N.; Yentis, S.M.; Kinsella, S.M.; Holdcroft, A.; May, A.E.; Wee, M.; Robinson, P.N. Urgency of caesarean section: A new
classification. J. R. Soc. Med. 2000, 93, 346–350. [CrossRef]

9. Wood, S.L.; Tang, S.; Crawford, S. Cesarean delivery in the second stage of labor and the risk of subsequent premature birth. Am.
J. Obstet. Gynecol. 2017, 217, 63.e1–63.e10. [CrossRef]

10. Pergialiotis, V.; Vlachos, D.G.; Rodolakis, A.; Haidopoulos, D.; Thomakos, N.; Vlachos, G.D. First versus second stage C/S
maternal and neonatal morbidity: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 175, 15–24.
[CrossRef]

11. Burke, N.; Burke, G.; Breathnach, F.; McAuliffe, F.; Morrison, J.J.; Turner, M.; Dornan, S.; Higgins, J.R.; Cotter, A.; Geary, M.; et al.
Prediction of cesarean delivery in the term nulliparous woman: Results from the prospective, multicenter Genesis study. Am.
J. Obstet. Gynecol. 2017, 216, 598.e1–598.e11. [CrossRef] [PubMed]

12. Levine, L.D.; Downes, K.L.; Parry, S.; Elovitz, M.; Sammel, M.D.; Srinivas, S.K. A validated calculator to estimate risk of cesarean
after an induction of labor with an unfavorable cervix. Am. J. Obstet. Gynecol. 2018, 218, 254.e1–254.e7. [CrossRef] [PubMed]

13. Tolcher, M.C.; Holbert, M.R.; Weaver, A.L.; McGree, M.E.; Olson, J.E.; El-Nashar, S.A.; Famuyide, A.; Brost, B. Predicting Cesarean
Delivery After Induction of Labor Among Nulliparous Women at Term. Obstet. Gynecol. 2015, 126, 1059–1068. [CrossRef]
[PubMed]

14. Mardy, A.H.; Ananth, C.V.; Grobman, W.A.; Gyamfi-Bannerman, C. A prediction model of vaginal birth after cesarean in the
preterm period. Am. J. Obstet. Gynecol. 2016, 215, 513.e1–513.e7. [CrossRef]

15. Meyer, R.; Hendin, N.; Zamir, M.; Mor, N.; Levin, G.; Sivan, E.; Aran, D.; Tsur, A. Implementation of machine learning models for
the prediction of vaginal birth after cesarean delivery. J. Matern. Fetal Neonatal Med. 2020, 25, 1–7. [CrossRef]

http://doi.org/10.1136/bmjgh-2021-005671
http://www.ncbi.nlm.nih.gov/pubmed/34130991
http://doi.org/10.5468/ogs.19212
http://www.ncbi.nlm.nih.gov/pubmed/32689771
http://doi.org/10.1371/journal.pone.0148343
http://www.ncbi.nlm.nih.gov/pubmed/26849801
http://doi.org/10.1097/AOG.0000000000000020
http://www.ncbi.nlm.nih.gov/pubmed/24201683
http://doi.org/10.1080/14767058.2019.1611770
http://www.ncbi.nlm.nih.gov/pubmed/31018806
http://doi.org/10.1371/journal.pone.0047352
http://doi.org/10.1136/bmjopen-2014-007248
http://doi.org/10.1177/014107680009300703
http://doi.org/10.1016/j.ajog.2017.03.006
http://doi.org/10.1016/j.ejogrb.2013.12.033
http://doi.org/10.1016/j.ajog.2017.02.017
http://www.ncbi.nlm.nih.gov/pubmed/28213060
http://doi.org/10.1016/j.ajog.2017.11.603
http://www.ncbi.nlm.nih.gov/pubmed/29224730
http://doi.org/10.1097/AOG.0000000000001083
http://www.ncbi.nlm.nih.gov/pubmed/26444107
http://doi.org/10.1016/j.ajog.2016.05.039
http://doi.org/10.1080/14767058.2020.1837769


Life 2022, 12, 604 15 of 16

16. Lipschuetz, M.; Guedalia, J.; Rottenstreich, A.; Persky, M.N.; Cohen, S.M.; Kabiri, D.; Levin, G.; Yagel, S.; Unger, R.; Sompolinsky,
Y. Prediction of vaginal birth after cesarean deliveries using machine learning. Am. J. Obstet. Gynecol. 2020, 222, 613.e1–613.e12.
[CrossRef]

17. Tsur, A.; Batsry, L.; Toussia-Cohen, S.; Rosenstein, M.G.; Barak, O.; Brezinov, Y.; Yoeli-Ullman, R.; Sivan, E.; Sirota, M.;
Druzin, M.L.; et al. Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound
Obstet. Gynecol. 2020, 56, 588–596. [CrossRef]

18. Eide, K.T.; Morken, N.-H.; Bærøe, K. Maternal reasons for requesting planned cesarean section in Norway: A qualitative study.
BMC Pregnancy Childbirth 2019, 19, 102. [CrossRef]

19. Olieman, R.M.; Siemonsma, F.; Bartens, M.A.; Garthus-Niegel, S.; Scheele, F.; Honig, A. The effect of an elective cesarean section
on maternal request on peripartum anxiety and depression in women with childbirth fear: A systematic review. BMC Pregnancy
Childbirth 2017, 17, 195. [CrossRef]

20. Chen, I.; Opiyo, N.; Tavender, E.; Mortazhejri, S.; Rader, T.; Petkovic, J.; Yogasingam, S.; Taljaard, M.; Agarwal, S.;
Laopaiboon, M.; et al. Non-clinical interventions for reducing unnecessary caesarean section. Cochrane Database Syst. Rev. 2018,
2018, CD005528. [CrossRef]

21. Smith, G.C.S.; Smith, M.F.S.; McNay, M.B.; Fleming, J.E.E. The relation between fetal abdominal circumference and birthweight:
Findings in 3512 pregnancies. BJOG Int. J. Obstet. Gynaecol. 1997, 104, 186–190. [CrossRef] [PubMed]

22. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine
learning. J. Mach. Learn. Res. 2017, 18, 559–563.

23. Dubey, R.; Zhou, J.; Wang, Y.; Thompson, P.M.; Ye, J.; The Alzheimer’s Disease Neuroimaging Initiative. Analysis of sampling
techniques for imbalanced data: An n = 648 ADNI study. NeuroImage 2014, 87, 220–241. [CrossRef] [PubMed]

24. Estabrooks, A.; Jo, T.; Japkowicz, N. A Multiple Resampling Method for Learning from Imbalanced Data Sets. Comput. Intell.
2004, 20, 18–36. [CrossRef]

25. Wilson, D.L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. Syst. Man Cybern. 1972, 2, 408–421.
[CrossRef]

26. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

27. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong,
China, 1–8 June 2008; pp. 1322–1328. [CrossRef]

28. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887.

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

30. LightGBM. Available online: https://lightgbm.readthedocs.io/ (accessed on 29 March 2022).
31. XGBoost. Available online: https://xgboost.readthedocs.io/ (accessed on 29 March 2022).
32. Pandas. Available online: https://pandas.pydata.org/ (accessed on 28 March 2022).
33. MatPlotLib. Available online: https://matplotlib.org/ (accessed on 28 March 2022).
34. Lee, K.-S.; Kim, H.Y.; Lee, S.J.; Kwon, S.O.; Na, S.; Hwang, H.S.; Park, M.H.; Ahn, K.H.; Korean Society of Ultrasound in Obstetrics

and Gynecology Research Group. Prediction of newborn’s body mass index using nationwide multicenter ultrasound data:
A machine-learning study. BMC Pregnancy Childbirth 2021, 21, 172. [CrossRef]

35. Treacy, A.; Robson, M.; O’Herlihy, C. Dystocia increases with advancing maternal age. Am. J. Obstet. Gynecol. 2006, 195, 760–763.
[CrossRef]

36. Kwawukume, E.; Ghosh, T.; Wilson, J. Maternal height as a predictor of vaginal delivery. Int. J. Gynecol. Obstet. 1993, 41, 27–30.
[CrossRef]

37. Lipschuetz, M.; Cohen, S.M.; Israel, A.; Baron, J.; Porat, S.; Valsky, D.V.; Yagel, O.; Amsalem, H.; Kabiri, D.; Gilboa, Y.; et al.
Sonographic large fetal head circumference and risk of cesarean delivery. Am. J. Obstet. Gynecol. 2018, 218, 339.e1–339.e7.
[CrossRef] [PubMed]

38. Witter, F.R.; Caulfield, L.E.; Stoltzfus, R.J. Influence of maternal anthropometric status and birth weight on the risk of cesarean
delivery. Obstet. Gynecol. 1995, 85, 947–951. [CrossRef]

39. Stirnemann, J.; Villar, J.; Salomon, L.J.; Ohuma, E.; Ruyan, P.; Altman, D.G.; Nosten, F.; Craik, R.; Munim, S.; Ismail, L.C.; et al.
International estimated fetal weight standards of the INTERGROWTH-21(st) Project. Ultrasound Obstet. Gynecol. 2017, 49, 478–486.
[CrossRef] [PubMed]

40. Coomarasamy, A.; Connock, M.; Thornton, J.; Khan, K.S. Accuracy of ultrasound biometry in the prediction of macrosomia:
A systematic quantitative review. BJOG 2005, 112, 1461–1466. [CrossRef]

41. Grobman, W.A.; Rice, M.M.; Reddy, U.M.; Tita, A.T.; Silver, R.M.; Mallett, G.; Hill, K.; Thom, E.A.; El-Sayed, Y.Y.;
Perez-Delboy, A.; et al. Labor Induction versus Expectant Management in Low-Risk Nulliparous Women. New Engl. J. Med. 2018,
379, 513–523. [CrossRef]

http://doi.org/10.1016/j.ajog.2019.12.267
http://doi.org/10.1002/uog.21878
http://doi.org/10.1186/s12884-019-2250-6
http://doi.org/10.1186/s12884-017-1371-z
http://doi.org/10.1002/14651858.CD005528.pub3
http://doi.org/10.1111/j.1471-0528.1997.tb11042.x
http://www.ncbi.nlm.nih.gov/pubmed/9070136
http://doi.org/10.1016/j.neuroimage.2013.10.005
http://www.ncbi.nlm.nih.gov/pubmed/24176869
http://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
http://doi.org/10.1109/TSMC.1972.4309137
http://doi.org/10.1613/jair.953
http://doi.org/10.1109/IJCNN.2008.4633969
https://lightgbm.readthedocs.io/
https://xgboost.readthedocs.io/
https://pandas.pydata.org/
https://matplotlib.org/
http://doi.org/10.1186/s12884-021-03660-5
http://doi.org/10.1016/j.ajog.2006.05.052
http://doi.org/10.1016/0020-7292(93)90150-U
http://doi.org/10.1016/j.ajog.2017.12.230
http://www.ncbi.nlm.nih.gov/pubmed/29305249
http://doi.org/10.1016/0029-7844(95)00082-3
http://doi.org/10.1002/uog.17347
http://www.ncbi.nlm.nih.gov/pubmed/27804212
http://doi.org/10.1111/j.1471-0528.2005.00702.x
http://doi.org/10.1056/NEJMoa1800566


Life 2022, 12, 604 16 of 16

42. Froehlich, R.J.; Sandoval, G.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.; Varner, M.W.; Thorp, J.M.; Prasad, M.;
Tita, A.; et al. Association of Recorded Estimated Fetal Weight and Cesarean Delivery in Attempted Vaginal Delivery at Term.
Obstet. Gynecol. 2016, 128, 487–494. [CrossRef]

43. Guedalia, J.; Lipschuetz, M.; Novoselsky-Persky, M.; Cohen, S.M.; Rottenstreich, A.; Levin, G.; Yagel, S.; Unger, R.; Sompolinsky, Y.
Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries. Am.
J. Obstet. Gynecol. 2020, 223, 437.e1–437.e15. [CrossRef]

44. Kamel, R.A.; Negm, S.M.; Youssef, A.; Bianchini, L.; Brunelli, E.; Pilu, G.; Soliman, M.; Nicolaides, K.H. Predicting cesarean
delivery for failure to progress as an outcome of labor induction in term singleton pregnancy. Am. J. Obstet. Gynecol. 2021, 224,
609.e601–609.e611. [CrossRef]

45. ACOG. ACOG Committee Opinion No. 761: Cesarean Delivery on Maternal Request. Obstet. Gynecol. 2019, 133, e73–e77.
[CrossRef]

46. Nieminen, K.; Stephansson, O.; Ryding, E.L. Women’s fear of childbirth and preference for cesarean section – a cross-sectional
study at various stages of pregnancy in Sweden. Acta Obstet. Gynecol. Scand. 2009, 88, 807–813. [CrossRef]

47. Stützer, P.P.; Berlit, S.; Lis, S.; Schmahl, C.; Sütterlin, M.; Tuschy, B. Elective Caesarean section on maternal request in Germany:
Factors affecting decision making concerning mode of delivery. Arch. Gynecol. Obstet. 2017, 295, 1151–1156. [CrossRef] [PubMed]

48. Ruppel, H.; Liu, V.X.; Kipnis, P.; Hedderson, M.M.; Greenberg, M.; Forquer, H.; Lawson, B.; Escobar, G.J. Development and
Validation of an Obstetric Comorbidity Risk Score for Clinical Use. Women’s Health Rep. 2021, 2, 507–515. [CrossRef] [PubMed]

49. Kleinrouweler, C.E.; Cheong-See, F.M.; Collins, G.; Kwee, A.; Thangaratinam, S.; Khan, K.S.; Mol, B.W.J.; Pajkrt, E.; Moons, K.G.;
Schuit, E. Prognostic models in obstetrics: Available, but far from applicable. Am. J. Obstet. Gynecol. 2016, 214, 79–90.e36.
[CrossRef] [PubMed]

http://doi.org/10.1097/AOG.0000000000001571
http://doi.org/10.1016/j.ajog.2020.05.025
http://doi.org/10.1016/j.ajog.2020.12.1212
http://doi.org/10.1097/AOG.0000000000003006
http://doi.org/10.1080/00016340902998436
http://doi.org/10.1007/s00404-017-4349-1
http://www.ncbi.nlm.nih.gov/pubmed/28324224
http://doi.org/10.1089/whr.2021.0046
http://www.ncbi.nlm.nih.gov/pubmed/34841397
http://doi.org/10.1016/j.ajog.2015.06.013
http://www.ncbi.nlm.nih.gov/pubmed/26070707

	Introduction 
	Materials and Methods 
	Study Design 
	Study Population 
	Variables 
	Machine Learning 
	Dataset 
	Data Sampling Algorithms 
	Learning Algorithms 
	Model Evaluation and Validation 
	Software and Statistical Tools 

	External Validation 

	Results 
	Patient Characteristics 
	Model Performance 
	Variable Influence on the Prediction Model 
	External Validation 

	Discussion 
	Conclusions 
	References

