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Integrative molecular profiling identifies two molecularly and
clinically distinct subtypes of blastic plasmacytoid dendritic cell
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Dear Editor,
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare

and aggressive blood cancer. In the era of conventional
chemotherapy prognosis was poor with high rates of relapse
and refractory disease despite consolidating allogenic or auto-
logous stem cell transplantation [1]. Therapy with curative intent
was therefore reserved for young and otherwise healthy patients,
until the introduction of tagraxofusp, a CD123-directed cytotoxin
conjugate, which recently demonstrated high clinical efficacy
across all age groups [2]. Median age at diagnosis lies within the
seventh decennium and a male predominance is observed [3].
Cutaneous involvement often precedes bone marrow infiltration
and dissemination into lymph nodes or other organs while
primary leukemic disease is rare. The discovery of its predominant
cellular descent from CD56+ plasmacytoid dendritic cells (pDC)
led to the recognition of BPDCN as an independent entity within
the WHO classification of myeloid neoplasms [4]. Although the
characteristic immunophenotype facilitates specific diagnosis,
differentiation from acute myeloid leukemia (AML) can be
challenging. Recent observations proposed a subset of BPDCN
to originate from AXL1+ SIGLEC6+ DCs (AS-DCs), suggesting a
heterogeneous cellular ontogeny [5]. Panel and whole-exome
sequencing (WES) on small cohorts and transcriptome sequencing
(RNA-seq) of selected patients have reported a limited number of
potential genetic drivers and transcriptional mechanisms under-
lying BPDCN [6, 7]. Syn- and metachronous myeloid neoplasms
(CMML, AML and MDS) have been reported in up to 20% of cases
[8]. This is reflected in myeloid mutational features of BPDCN,
comprising mutations in epigenetic regulation (TET2, ASXL1, EZH2),
RAS signaling (NRAS, KRAS), splicing (ZRSR2, SF3B1) and tumor
suppressors (TSGs; TP53, ATM). Recently, mutations in epigenetic
regulators were shown to be a recurrent feature of clonal
hematopoiesis, underlying BPDCN [9].
We collected 47 diagnostic cases of BPDCN with sufficient FFPE

tissue samples for molecular studies (mean/median age 69.0/74.0
years; range 15–91 years; located in skin (n= 25), lymph node
(n= 11), bone marrow (n= 9) and others (n= 2)). For details on
case selection, extraction of nucleic acids, WES, RNA-seq, somatic
copy number aberration (SCNA) analysis and data processing
please see supplementary materials and methods. Baseline
clinicopathological characteristics are summarized in Supplemen-
tary Tables 1 and 2. In this hitherto most comprehensive, paired
genomic and transcriptomic study of BPDCN, supplemented by
SCNA analysis, we made three essential observations. First,

employing MUTSIGCV we identified 41 significant candidate driver
genes (p < 0.001; 20 genes with q < 0.1; Supplementary Table 5)
and thereby established a precision oncology roadmap of
targetable vulnerabilities. Across the cohort, TET2 was the gene
most frequently mutated, as expected, followed by KMT2D and
EP300 (Fig. 1A). The list of significant candidate driver genes
included several genes previously implicated in BPDCN and
further expanded on these [7, 10]. Subsequent gene set
enrichment analysis delineated a significant impact of oncogenic
mutations on the epigenetic regulation of gene expression (95.7%
of cases; TET2, DNMT3A, KMT2D, SETD2, IDH2), RTK-RAS (93.6%;
NRAS, MET, EGFR), NOTCH (76.6%; NOTCH2, CREBBP, EP300) and
WNT signaling pathways (59.6%; CTNNB1, MED12) (Supplementary
Fig. 1). Several therapeutically actionable vulnerabilities were
observed, including activating receptors (e.g., EGFR) and activating
GTPases (e.g., NRAS) (Supplementary Fig. 2). Tyrosine kinases such
as MET, PDGFRA, ALK and methyltransferase enzymes, including
EZH2 or TSGs like CDKN2A, pose viable targets for molecularly
tailored therapy approaches. We further describe a subgroup of
five patients with MSIhigh, suggesting an immune checkpoint
inhibitor treatment [11]. This is emphasized by recurrent deletions
and reduced expression of MLH1 and deleterious mutations of
MSH6 [12, 13]. Annotations and functional implications of all
reported mutations are summarized in Supplementary Table 6. A
pair-wise Fisher’s exact test for mutual exclusivity or co-occurrence
of mutations, found evidence for mutual exclusivity in CIC and MET
correlated with NRAS mutations (Supplementary Fig. 3A). More-
over, several, significant combinations of co-occurrences were
observed, including MPL and NOTCH2, SETD2, and TSC1 as well as
EGFR and EP300 alongside SETD2 (Supplementary Fig. 3B).
Secondly, we extend the understanding of the BPDCN

molecular landscape in relation to its neighboring entities and
expose it to be significantly shaped by micro-satellite-instability
(MSI) status, gender and age. A significant enrichment of
mutations affecting ARID1A, ATRX, and CTNNB1 in MSIhigh cases
was observed while elderly patients were enriched for DNMT3A
and TET2 mutations. (Fig. 1B and Supplementary Fig. 4). Beyond
the recently described sex-biased implications of ZRSR2 mutations
in male BPDCN patients, we detected an additional, enrichment of
mutations affecting ATRX and CTNNB1 alongside other oncogenic
drivers of BPDCN pathogenesis including BRCA1, PDGFRA, MSH6,
MET, GNAS, and CREBBP in male patients (Fig. 1C). We further
compared our results with TCGA AML (n= 672) and CMML
(n= 76) samples. Apparently, CMML is most closely related to
BPDCN, with shared mutational drivers including BRAF, CSFR1,
EP300, MET and ZRSR2. In addition, several mutations co-occur
between all three entities including TET2, SRSF2, SF3B1, NRAS,
KRAS, and IDH1/2. Only TP53 mutations were found to be an
exclusive commonality between BPDCN and AML but not CMML,
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Fig. 1 Molecular landscape in BPDCN. A Oncoplot showing potential driver genes inferred by MUTSIGCV with tumor mutational burden (TMB;
upper bar plot), −log10-transformed p values (left bar; orange gene names q < 0.1, black gene names p < 0.001) and number of affected
samples (right bar). In total 13,908 presumably deleterious mutations, affecting 4507 genes were observed. SNVs and indels comprised 39.8%
of these mutations (5532), of which 4524 were missense (81.8%), 289 nonsense (5.2%) and 468 indel mutations (8.5%). Mutation types are
color-coded, and covariates are shown below for each sample (covariate “Other” refers to samples with tissue affected other than skin or bone
marrow). Genes significantly enriched in MSI-H samples (B) and with a male mutation bias (C); the number of affected samples and the total
number of samples are given and the scale on the y-axis denotes the proportion of mutated samples. D UpSet plot showing the overlap
between BPDCN samples (n= 47, this study, MUTSIGCV genes selected), CMML (n= 76, Tyner et al.) and AML (n= 672, Tyner et al.) for genes
mutated in at least two samples per data set (only overlapping genes are shown); E overlapping genes between the three data sets for genes
mutated in at least two entities; F known cancer and MYB fusion identified in BPDCN samples with respect to their genomic location; red links
indicate intra-chromosomal fusions, blue links indicate inter-chromosomal fusions, respectively. Link width correlates with the number of
reads supporting the fusion event; G location of SCNAs along the genome and GISTIC G-scores (G= Frequency × Amplitude; red bars denote
gains and blue bars losses; gene names refer to affected oncogenes and tumor-suppressor genes within identified regions).
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Fig. 2 Identification of pDC and cDC-derived subtypes. A Proportion of dendritic cells (DC1–DC6) and monocytes (Mono1–Mono4)
according to the deconvolution analysis for BPDCN samples (left heatmap with annotations; TMB refers to tumor mutational burden and ITH
score describes the inferred intra-tumor heterogeneity) and normal controls (peripheral blood pDCs; shown in the right heatmap without
additional annotations). The optimal number of clusters was inferred using hierarchical clustering and average silhouette method. B Co-
oncoplot of genes identified as significantly enriched between the two cluster (see Supplementary Fig. 10 for details). C Tumor mutational
burden estimates for each cluster. D shows the number of samples (“N”) and features per feature group (“D”) used in the multi-Omics factor
analysis (MOFA+). E Variance explained per feature after training MOFA+ (Mutations= SNVs and indels; mRNA= normalized expression
values; SCNA region= genomic location of somatic copy number alterations). F Correlation of identified factors with selected covariates (only
correlations where padj < 0.05 are shown). G Beeswarm plots of latent Factor3 and Factor7 for each dendritic cell cluster. H Scatter plot of
estimated factor values for each sample; light blue refers to C1 and dark blue to C2. I Scaled gene expression values of top genes (n= 30) that
correlated with Factor3; cluster annotation for each sample is shown above each sample.

Correspondence

3

Blood Cancer Journal          (2022) 12:101 



potentially reflecting the aggressive nature of the former two (Fig.
1D, E). Further, we detected five recurrent SCNAs classified as
pathogenic (e.g., del3p21.31 resulting in a loss of SETD2 in 11
patients and del10q23.2 resulting in a loss of PTEN in five patients)
and 12 SCNAs as likely pathogenic according to X-CNV. The genes
within these SCNAs recurrently led to the loss of tumor-suppressor
genes (TSGs; CDKN2A, NOTCH1, RB1, and BRCA2) and copy number
gains in oncogenes (IDH2, U2AF1, MET, and EZH2) (Fig. 1G and
Supplementary Fig. 5 and Supplementary Tables 7 and 8). From
RNA-seq we extracted gene expression data and compared these
with peripheral blood pDCs (CD45+ CD123+ BDCA2+ CD3−) from
healthy donors [14]. Differential gene expression analysis unveiled
results similar to those obtained by Togami et al., including
upregulation of BCL2, MYB, and others [7]. Given the more
comprehensive cohort analyzed in the current project, we
additionally observed an upregulation of oncogenes such as
PDGFRA/B, EGFR, FGFR1, and others as well as a down-regulation of
inflammatory mediators such as IL2, IL22, and CXCL8. Despite the
results from our MUTSIGCV analysis in which PDGFRA mutations were
shown to be events of only borderline significance (p= 0.05), we
found a pathobiological relevance of these mutations reflected in
its simultaneous significant upregulation, contributing to the
phenotype of BPDCN. PDGF signaling, NCAM1 interactions and
cell cycle accelerators were over-expressed. In addition, several
processes associated with interactions with the extracellular
matrix as a recurrent feature in BPDCN were significantly
upregulated (Supplementary Fig. 6). Combining the SCNA and
RNA-seq data validated the copy number loss of several TSGs
including CDKN2A, KMT2D, and TP53 on the level of gene
expression (Supplementary Fig. 7). A subsequent assessment
regarding the impact of significant gene mutations on RNA-seq
derived profiles identified high-confidence “trans-effects” for TP53,
RUNX1 and CBL which seem to shape the malignant phenotype in
BPDCN. (Supplementary Fig. 8). We identified expected fusion
events in BPDCN and successfully validated all detected MYB
fusions via FISH (Fig. 1F and Supplementary Fig. 9 and
Supplementary Table 9).
Thirdly, deconvolution of our bulk gene expression profiles

using single-cell transcriptome data predicted abundances of cell
types within the mixed cell population of our BPDCN biopsies,
independent of localization or tumor cell content/purity. We
focused on the distribution of dendritic cell and monocyte
subtypes for each case using signatures from scRNA-seq data
[15]. Subsequently, hierarchical clustering identified two distinct
subpopulations within our cohort, in which pDCs, common DCs
(DC1 and DC2) and different monocyte subtypes were prevalent at
variable frequencies. A typical pDC-derived subtype composed of
a relatively pure pDC population (C1) and an atypical (common)
cDC-enriched subtype (C2). The latter is driven by the over-
expression of DC1/2 markers CLEC9A and CD1C beyond typical
pDC markers such as CLEC4C, GZMB which shape the C1
phenotype. As expected from the report by Renosi et al., we
observed an additional enrichment in DC5 signatures (AS-DCs) in
more than half the samples. These were, however, equally
distributed across both subtypes as a putative epiphenomenon
[5] (Fig. 2A). Intriguingly, genomic analysis of these newly defined
subtypes revealed that C1 patients displayed a significant
enrichment in EP300, ARID2, NF1, NOTCH2, and SF3B1 mutations,
whereas atypical C2 cases were enriched for DNMT3A and SRSF2
mutations (Fig. 2B and Supplementary Fig. 10A). Additionally,
C1 showed a significantly higher TMB (Wilcoxon test p= 0.002;
Fig. 2C). In order to validate these observations, we performed a
confirmatory multi-omics factor analysis (Fig. 2D–I; subsequent
gene set enrichment see Supplementary Fig. 10B, C). A distinct
clinical presentation of these subgroups, with C1 patients being
significantly younger (Fisher exact test p= 0.0490) and C2 patients
showing a trend toward lower survival, albeit in a limited subset of
patients, was observed (Supplementary Fig. 11). A summary of

molecular features of BPDCN derived from this study is provided
in Supplementary Fig. 12. In conclusion, our multi-Omics analysis
set BPDCN apart from AML whilst underscoring its close
relatedness with CMML. Our findings revealed a unique molecular
landscape with several novel targets and two distinct molecular
signatures that advance the understanding of this entity and pave
the way for precision oncology approaches toward this rare cancer
entity.
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