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Abstract: Depression is a debilitating psychiatric disorder impacting an individual’s quality of life.
It is the most prevalent mental illness across all age categories, incurring huge socio-economic
impacts. Most depression treatments currently focus on the elevation of neurotransmitters according
to the monoamine hypothesis. Conventional treatments include tricyclic antidepressants (TCAs),
norepinephrine–dopamine reuptake inhibitors (NDRIs), monoamine oxidase inhibitors (MAOIs),
and serotonin reuptake inhibitors (SSRIs). Despite numerous pharmacological strategies utilising
conventional drugs, the discovery of alternative medicines from natural products is a must for safer
and beneficial brain supplement. About 30% of patients have been reported to show resistance to drug
treatments coupled with functional impairment, poor quality of life, and suicidal ideation with a high
relapse rate. Hence, there is an urgency for novel discoveries of safer and highly effective depression
treatments. Stingless bee honey (SBH) has been proven to contain a high level of antioxidants
compared to other types of honey. This is a comprehensive review of the potential use of SBH as
a new candidate for antidepressants from the perspective of the monoamine, inflammatory and
neurotrophin hypotheses.
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1. Revisiting Depression

Depression is a psychiatric disorder characterized by psychological, behavioral and
physiological symptoms that include a persistent low mood, marked loss of pleasure in
most activities, poor concentration, disruptions in appetite and sleeping patterns, cognitive
impairments, feelings of worthlessness, excessive guilt, and suicidal thoughts [1]. It is the
leading cause of disability worldwide that poses a high emotional and financial burden [2,3].
The World Health Organization (WHO) estimated that depression will be declared a global
burden by the year 2030 [4] affecting an estimation of 300 million people from all age
categories [5].

Depression covers various subtypes and etiologies [6] from monoamines to inflam-
matory and neurotrophic propositions. In the 1960s, the “catecholamine hypothesis”
appeared as a popular monoamine hypothesis for explaining depression development. It
suggested that serotonin (5HT) deficiency and noradrenaline (NA) creates depression [7–9].
The inflammatory hypothesis proposes that depression is caused by the interaction of
inflammatory cytokine with the hypothalamic–pituitary–adrenal (HPA) axis, consequently
affecting the synthesis and reuptake of neurotransmitters [10,11], which subsequently trig-
gers glucocorticoid resistance, glutamate excitotoxicity, and the reduction of brain-derived
neurotrophic factor (BDNF) expression [12].
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Since BDNF is reduced in the onset of depression, the neurotrophic hypothesis has
become one of the critical etiologies of antidepressant progression. This hypothesis states
that neurotrophic factors are essential to the development of neurons by promoting synaptic
growth and maintaining neuronal survival. They play a crucial role in neuronal network
formation and plasticity. On the contrary, the reduction of neurotrophic factors is implicated
in the atrophy of stress-vulnerable hippocampal neurons, such as depression and cognitive
disorder [13]. This deficiency is believed to be reversed by antidepressant treatments that
contribute to the resolution of depressive symptoms [14].

Since the number of depression cases is increasing day by day, the discovery of new
treatments is imperative. At present, there is a vibrant demand for new treatment strategies
since the flaws of conventional treatments are striking. For instance, many sources purport
that antidepressants have a therapeutic delay onset, taking weeks rather than days to
become effective [15,16]. Prolonged exposure to antidepressant drugs imposes suscepti-
bility to adverse side effects, such as interferences in sexual functioning, gastrointestinal
disturbances, altered sleep pattern, and weight gain [17–22]. Moreover, 30% of patients
have been reported to be non-compliant with currently available treatments [23–25]. Thus,
there is a dire need for the development of new antidepressant treatments with better
efficacy and that are safer for patients [26].

This has caused an urgent call for complementary and alternative medicines in treating
depression [27]. Honey, which contains a variety of active compounds beneficial to brain
regulation and treats emotional and psychological disorders including depression [28–30]
is one of the natural products serving as an alternative medicine [31]. Among the various
types of honey, here we focus on stingless bee honey (SBH). In Malaysia, SBH is well
known as “madu kelulut” [32]. In addition to SBH, there are other honeys capable of
treating several health problems named Tualang and Manuka [33,34]. However, in terms of
nutritional composition, SBH contains a higher level of polyphenol [35–37], an important
active compound that participates in modulating signaling pathways, thus influencing
neuronal survival and cell regeneration and development, which suffer detrimental effects
after injury [38,39]. To date, there are limited studies highlighting the potential of SBH as
an alternative supplement to treat depression. Therefore, this review discusses the different
hypotheses associated with depression and how SBH’s mechanism of action could act as a
potential antidepressant as a brain supplement. We highlight the different types of etiology
hypotheses in the pathophysiology of depression followed by its mechanism of action.

2. Pathophysiology of Depression
2.1. Monoamine Hypothesis

Depression is a well-known psychiatric disorder that involves the dysregulation of the
monoamine system that leads to an imbalance of neurotransmitters, such as 5HT, dopamine,
and NA [40,41]. Monoamines are molecules involved in information transmission processes
by connecting presynaptic to postsynaptic neurons [42]. They are classified according to
their chemical structure and mechanism of action [43]. Since they have different chemical
structures, every monoamine is specific to its respective receptors [42] and has a different
function in the brain [40,44,45]. For example, 5HT is a central nervous system monoamine
that has a crucial role in regulating appetite, circadian cycle, anxiety, memory, and learning.
In addition to 5HT, dopamine is another important monoamine that fuels motivation and
modulates pleasure, reward, and emotion. In addition, NA is another essential monoamine
responsible for attentiveness, emotions, cognition, and social interactions.

The monoamine hypothesis was formulated in the mid-1960s due to the underactivity
of brain monoamines such as serotonin, dopamine, and NA in patients’ brains [46]. This
hypothesis is based on antidepressant drug efficacy, such as selective serotonin reuptake
inhibitors (SSRIs), norepinephrine–dopamine reuptake inhibitors (NDRIs), tricyclic antide-
pressants (TCAs), and monoamine oxidase inhibitors (MAOIs) [47,48]. The mechanisms of
action for this hypothesis with antidepressants are: (1) inhibition of the reuptake of 5HT
and/or NA; (2) antagonistic presynaptic inhibition of 5HT and/or NA; and (3) inhibition
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of monoamine oxidase (MAO) [45]. Findings on these mechanisms of action showed that
chronic treatment with antidepressants ultimately causes increased levels of monoamines.

Apart from 5HT, dopamine, and NA, γ-aminobutyric acid (GABA) is also reported
to affect depression [49–52]. GABA plays a role in depression and anxiety through its
interaction with inflammatory cytokines, NF-kB, and p38 MAPK signaling pathways [53].

2.2. Inflammation Hypothesis in Depression

The inflammation theory has also been linked to depression, which surprises many
people. It acts as a key point regarding treatment direction for depression cases. Believed
to be fueled by lifestyle, the inflammatory process is related to the nuclear factor-κB
(NF-κB) pathway [54], a transcriptional factor that regulates various gene expressions.
It is activated by extracellular stimuli, such as lipopolysaccharide (LPS), administration,
or chronic stress [55–58], giving it a propensity to go haywire. Once it is activated, an
inflammatory response takes place [59,60].

An inflammatory response includes the secretion of cytokines, which have a specific
effect on the interactions and communications between cells [61]. Cytokines are signal-
ing proteins secreted in response to the immune system’s activation by stressors, such
as injury, infection, or psychosocial factors [62]. Moreover, the cytokines induce anti- or
pro-inflammatory responses, whereby the anti-inflammatory cytokines are secreted to coun-
teract the pro-inflammatory cytokines [63,64]. Cytokines comprise lymphokine (cytokine
made by lymphocytes), monokine (cytokine made by monocytes), chemokine (cytokines
with chemotactic activities), and interleukin (cytokines made by one leukocyte and acting
on other leukocytes). Part of them is recognized as IL-2, IFN-γ, IL-1β, TNF-α, IL-6, IL-12,
IL-15 for pro-inflammatory functions [65–67] and as IL-4, IL-5, IL-13, IL-1Ra, IL-10 for
anti-inflammatory action [68].

Inflammatory responses play a primary role in eliminating or inactivating harmful
entities or damaged tissues in the body. However, the over-activation of this system can
cause detrimental effects, such as depressive-like behavior [69,70]. Previous studies have
shown that depressed people have increased levels of inflammatory mediators, such as C-
reactive protein (CRP) and pro-inflammatory cytokines [71,72]. In response to inflammation,
the translocation of inflammatory mediators interferes with neuronal and glial well-being,
resulting in cognitive and behavioral manifestations, and synaptic plasticity that leads to
neurodegeneration [73].

There are two major pathways for inflammatory cytokines that disrupt the synthesis
of monoamine neurotransmitters, particularly 5HT, glutamate, and dopamine, as shown
in Figure 1.

They are important for neurotransmitter regulation and ultimately affect mood regula-
tion in depression, namely kynurenine and tetrahydrobiopterin (BH4) [66,74,75]. Activation
of the kynurenine pathway (KP) within areas of the brain, such as the hippocampus, has
been shown to cause alterations in emotional behaviors [76–78]. This is because KP affects
the most important neurotransmitter for the regulation of emotion, which is 5HT [79].
When inflammation occurs, levels of indoleamine 2, 3-dioxygenase (IDO) and tryptophan
2, 3-dioxygenase (TDO) are elevated and the tryptophan is used by the IDO and TDO in
kynurenine production [80]. This eventually causes the depletion of the tryptophan level
for 5HT production. This has been proven in animal models and drug therapy patients
with interferon-α [81,82]. IDO and TDO are induced by pro-inflammatory cytokines, such
as IL-1, IL-2, IL-6 and IFN-γ [80]. KP causes the increased production of several harm-
ful metabolites, such as 3-hydroxykynurenine (3HK) and quinolinic acid (QA), causing
the over-activation of the N-methyl-D-aspartate (NMDA) receptor and inducing oxida-
tive stress and kynurenic acid [83]. The link between inflammation and KP is evident
through the increased number of astrocytes that are synthesized by kynurenic acid and
the increased production of quinolinic acid by microglia [79]. Alongside kynurenine, the
tetrahydrobiopterin (BH4) pathway is also significant due to the monoamine neurotrans-
mitter synthesis that is disrupted in depression [67]. Analyzed SBH sample identified



Molecules 2022, 27, 5091 4 of 17

compounds such as phenylalanine, alanine, tyrosine, valine, acetate, lactate, trigonelline,
ethanol metabolites, glucose, fructose, sucrose, and maltose [84]. Phenylalanine, which is
consistently found in SBH, converted to tyrosine, which simultaneously converts BH4 to
4a-Hydroxytetrahydrobiopterin and is catalyzed by phenylalanine hydroxylase [85]. BH4
is a cofactor for precursors of neurotransmitters, namely 5HT, dopamine, and NA [75]. For
example, the serotonergic pathway biosynthesis of 5HT comes from tryptophan, whereas
dopaminergic, noradrenergic, and adrenergic pathways are intermediated by the precur-
sor L-3,4-dihydroxyphenylalanine (L-DOPA) for the synthesis of dopamine, adrenaline,
and NA [86,87]. Inflammatory cytokines can disrupt BH4 production, which is crucial
for neurotransmitter synthesis [67]. There are two mechanisms that are involved in the
disruption of BH4. Firstly, inflammatory cytokines stimulate NOS to produce NO. The
elevated activity of NOS causes the increased utilization of BH4 that will be converted to 7,
8-dihydrobiopterin (BH2).
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The conversion of arginine to nitric oxide (NO) by nitric oxide synthase (NOS) is
enhanced by BH4, which acts as an enzyme co-factor [88]. Furthermore, BH4 is very
sensitive to oxidative stress. Inflammatory cytokines are known to increase oxidative
stress through the production of both nitrogen and oxygen-free radicals. This causes the
irreversible degradation of BH4 to dihydroxyanthopterin [89].

2.3. Neurotrophin Hypothesis

In addition to the monoamine and inflammatory hypothesis, the neurotrophin hypoth-
esis also has a vital role in the pathophysiology of depression [90]. Neurotrophin is a type of
protein that is essential for the growth, survival, and differentiation of neurons [91,92]. Four
types of neurotrophins are important in mammals, namely brain-derived neurotrophin
factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4
(NT-4) [93]. BDNF is critical in the central nervous system (CNS) for neurogenesis, synaptic
plasticity, development, survival, and neuron maintenance [94–97]. BDNF is an example
of a neurotrophin that has an impact on the pathophysiology of depression [13,97,98].
BDNF and its receptor tropomyosin receptor kinase B (TrKB) are involved in different
intracellular signaling pathways, such as mitogen-activated protein kinase/extracellular
signal-regulated protein kinase (MAPK/ERK), phospholipase Cγ (PLCγ), and phospho-
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inositide 3-kinase (PI3K) [99]. These pathways have a biological impact on the central
nervous system, such as on memory and mood regulation [95,100,101]. ERK is one of the
downstream BDNF pathways that is implicated in the regulation of mood and behavior
in the depression model that mediates the effects of antidepressants [102–105]. Mean-
while, PI3K signaling is an important component of long-term potentiation (LTP) [106].
This signaling pathway acts as a biochemical cascade for α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) for synaptic plasticity, thus causing behavioral
alteration [107]. Moreover, all the intracellular signaling pathways that were mentioned
earlier have been discussed in previous studies that are related to depression. Changes in
BDNF levels in the central nervous system disrupt the entire signaling pathway, which can
lead to various psychological disorders, including depression [108–112].

BDNF promotes neurogenesis, which is part of neuroplasticity. Neuroplasticity in-
volves changes or alterations in the structure, functions, and connections of the central
nervous system (CNS) in response to intrinsic or extrinsic stimuli [113]. These changes
include the morphology of mature neurons, such as axonal and dendritic arborization and
pruning, increased spine density, and synaptogenesis [114]. Neurogenesis is defined as the
formation of newborn neurons in proliferative areas that include the subventricular zone
(SVZ) and the subgranular zone (SGZ) of the dentate gyrus region in the hippocampus
area [114,115]. This region is crucial for memory, learning, and other cognitive func-
tions [116]. The alteration of BDNF levels is known to be detrimental to neurogenesis in
the hippocampus, specifically in the dentate gyrus region [117]. The dentate gyrus is a
region in the hippocampus that is widely discussed in depression [118–120]. Based on
previous studies, BDNF levels in the hippocampus and prefrontal cortex are reduced in
cases of depression [13,121,122]. This consequently resulted in the decreased size of the hip-
pocampal area in the brain in both clinical and preclinical studies of depression [118–120].
Similarly, the condition is observed in the prefrontal cortex [118,123,124] causing neuronal
loss and synaptic dysfunction in cortical limbic regions that ultimately disrupt mood and
emotions [73].

In addition to neurogenesis as a part of neuroplasticity related to BDNF in the brain,
synaptic plasticity is also associated with depression [41,125,126]. Synaptic plasticity is
essential for the physiological morphology of neurons, and BDNF is one of the crucial
regulators in this process making it a therapeutic target in depression [127]. Therefore, the
BDNF level is vulnerable to synaptic plasticity in the brain. Long-term potentiation (LTP) is
the main mechanism that mediates neuroplasticity at a functional level; synaptic strength is
crucial for the connection between neurons in the brain [113]. BDNF facilitated LTP in the
Schaffer collaterals of the hippocampus in a young animal model by inducing the release
of presynaptic neurotransmitters [128]. Furthermore, the postsynaptic release of BDNF
induces LTP in the dentate gyrus [129]. Increased hippocampal dendritic spine by LTP
is contributed by BDNF signaling together with local protein translation [130]. Based on
previous studies, patients showed decreased hippocampal volume and BDNF expression
during depressive episodes compared to patients in remission, which altered synaptic
plasticity by elevating hippocampal dendritic atrophy and cell death contributing to the
decline of LTP [122,131,132]. These features have also been observed in rodents [133–135].
Moreover, the reduction of LTP caused by depression has been observed especially in the
hippocampus and the prefrontal brain area [73,136,137]. The same effect has been observed
in long-term depression (LTD) [138].

3. Stingless Bee Honey (SBH) as an Antidepressant

Earlier in this review, the etiology of pathological depression was discussed briefly. In
this section, the role of SBH as a prophylactic against depression is reviewed. The focus
will be on certain properties of SBH that are related to depression, which include amino
acid (phenylalanine), antioxidant properties, and anti-inflammatory effects.
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3.1. Neurotrophic Factors

The complex biological properties of SBH consist of amino acids (phenylalanine,
alanine, tyrosine, and valine), phenolic compounds, carbohydrates, organic acids, vitamins,
minerals, lipids, and enzymes [139–143]. They have potential roles in the regulation of
signaling pathways in depression development. The amino acid that is highlighted in this
review is phenylalanine. Phenylalanine is an essential amino acid that needs to be ingested
through diet since it is not naturally synthesized by the body [144]. It is an important amino
acid for the synthesis of neurotransmitters and a precursor for dopamine and NA [87].
This can be related to the role of SBH as a prophylactic against depression, which is in line
with the monoamine hypothesis. The monoamine hypothesis, which was explained earlier,
stated low levels of neurotransmitters in depressed patients as well as in animal studies.
Furthermore, the role of NA has been emphasized in attenuating microglial activation
in the brain, thus inhibiting pro-inflammatory cytokines (inflammatory hypothesis) as
well as enhancing the production of neurotrophic factors (neurotrophin hypothesis) for
neurogenesis in the brain [145]. Moreover, neurotransmitters have been reported to enhance
BDNF release in the brain [146]. Therefore, neurotransmitters and BDNF have a bilateral
effect that can ameliorate depressive behavior. This indicates that the administration of
SBH during depressive episodes could regulate the deficiency of neurotransmitters as well
as BDNF, which is important to the neurological process. The regulation of the neurological
process during depressive episodes would impede depressive behavior symptoms, such as
sickness behavior, loss of motivation, and anhedonia [147–149].

3.2. Antioxidant

Stingless bee honey (SBH) has high levels of phenolic compounds compared to other
honey [36,37,150]. Examples of phenolic acids in SBH are p-coumaric acid, gallic acid,
caffeic acid, chrysin, and apigenin [28,150–152]. Antioxidant properties in honey have been
reported to strongly correlate with phenolic compounds [153–155]. The color intensity of
honey is also an indicator of antioxidant activity due to the presence of pigments such
as carotenoids and flavonoids [156]. According to Kek and colleagues (2014), SBH has
higher color intensity compared to Tualang, Gelam, Pineapple, Borneo, and commercial
honey [36]. Antioxidants are important as scavengers in preventing oxidative stress that
leads to DNA damage [157,158]. The brain is a highly susceptible organ to the elevation
of oxidative stress due to its high oxygen demand [48,159,160]. Several researchers have
reported the neuroprotective effect that resulted from the polyphenol content in honey [29].
These studies support SBH as a potential antidepressant since depression is also related
to oxidative stress within the brain [41,161,162]. According to a study by Czarny and
colleagues (2018), depressed patients had elevated reactive oxygen species (ROS) and
nitrogen species (RNS) from oxidative DNA damage after depressive episodes [163].

Moreover, the relationship between oxidative stress and depression has been reviewed
and discussed relating to its usage as a natural compound with antioxidant properties
as a constituent of their polyphenols that can alleviate depression [41,164]. For exam-
ple, antioxidant activity by p-coumaric acid has been identified in animal models of
depression [48]. It has also been reported to show a neuroprotective response through in-
creased levels of glutathione and superoxide dismutase that subsequently reduce oxidative
stress capacity and neurotoxicity [165–167]. In addition to p-coumaric acid, chrysin also
exhibited oxidative stress in the preclinical model of depression [168,169]. The properties
of phenolic compounds proven to show efficacy based on both animal and human studies
are displayed in Table 1.
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Table 1. Phenolic compounds that showed therapeutic effects on psychiatric and neurological disorders.

Type Compounds Therapeutic Effects

Phenolic acids

p-Coumaric acid
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are also reports about the use of flavonoids in neurodegenerative disorders to regulate
BDNF [189–192]. This evidence strongly suggests that SBH, which contains a high number
of flavonoids, has the ability to enhance BDNF and regulate its levels as a determinant for
antidepressant efficacy [91,93,193,194].

3.3. Anti-Inflammatory

Stingless bee honey (SBH) has been reported to possess anti-inflammatory
properties [150,195]. According to a study by Ranneh and colleagues (2019), SBH has
an anti-inflammatory effect in the LPS animal model. The etiology of depression has
been discussed in depth through the inflammatory hypothesis perspective, especially with
regard to how inflammation affects depression. Inflammation is known to activate the
kynurenine pathway in depression [196]. This pathway causes cascade effects through the
elevation of ROS and glutamate toxicity as well as a reduction of 5HT and BDNF [197–199].
Due to its anti-inflammatory properties, SBH can also regulate BDNF, hence alleviating
depression symptoms. This is also essential due to its bilateral effect on the regulation of
monoamine systems, which is important in ameliorating symptoms of depression [14,200].

The immune system is very sensitive to oxidative stress and with moderate exercise,
immune functionality can be enhanced [48]. Exercise also has been recognized as a useful
non-pharmacological strategy to improve the treatment of depression [201,202]. Relaxation
responses significantly reduced the neuropsychological scores tested, decreased cortisol,
decreased the trend of NGF, and increased BDNF levels [201]. BDNF binds to the tyrosine
kinase β receptor (TrKβ) and activates the phosphoinositide 3-kinase and Akt pathway,
which inhibits the activity of glycogen synthase kinase-3 beta (GSK-3β) [202,203]. GSK-
3β activity cleaves cadherin–β-catenin binding; therefore, GSK-3β inhibition stabilizes
β-catenin, which regulates gene expression, synaptic plasticity, and neurogenesis, which in
turn has antidepressant effects. A study using flavonoids found they seem to exert addi-
tional positive effects with exercise, where a combination of quercetin and exercise training
exerted potent anti-tumor and anti-depressive effects through the suppression of inflam-
mation and the upregulation of the BDNF/TrKβ/β-catenin axis in the prefrontal cortex
of 1,2-dimethylhydrazine (DMH)-induced colorectal cancer-induced rats [202]. Thus, it is
speculated that flavonoids in SBH express anti-inflammatory properties and are involved in
the BDNF/ TrKβ pathway; however, the specification of active possible chemotherapeutic
modality needs further investigation. This statement supports the potential of SBH as an
antidepressant due to its anti-inflammatory properties.

Recent studies on treatment resistance in depressed patients have related the condition
to inflammation. Patients with treatment-resistant depression (TRD) have been reported to
show dysregulated inflammatory activity compared to non-TRD patients [204,205]. They
also exhibited increased levels of inflammatory cytokines (IL-6, IL8, TNF-α, CRP, and
macrophage inflammatory protein-1 (MIP)-1 alpha) that resulted in poorer treatment out-
comes [206]. Inflammatory cytokines are known as critical mediators in the inflammatory
response that disrupt the signaling pathways or mechanisms of action of conventional
antidepressants [204]. Therefore, anti-inflammatory treatments might be effective in pre-
venting TRD in patients [207].

4. Conclusions

In conclusion, stingless bee honey could regulate the detrimental effects during or after
depressive episodes that can lead to prophylactic effects. This review summarized how the
amino acid (phenylalanine), antioxidant, and anti-inflammatory properties of SBH have
the potential to control depression symptoms according to the etiology of depression—the
monoamine, neurotrophin, and inflammatory hypotheses—through neurotrophic factors
and its antioxidant and anti-inflammatory properties as shown in Figure 2.
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Our review reports the possible mechanisms of stingless bee honey pertaining to
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