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Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode
montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent
inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the
instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject
channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI).
The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar
cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five
healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown
increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the
available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature,
describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG
channel selection that could boost further the efficiency and real-time performance of BCI systems.
1. Introduction: As an unconventional communication pathway,
brain computer interface (BCI) enables us to communicate with a
computer or with other external devices without any muscular
stimulation. Although the primitive goal of developing BCI was
to assist physically disabled people experiencing motor function
abnormalities, recent technological advancements augment BCI in
many other applications, including lie detection [1], brain
fingerprinting [2], mood assessment [3] and gaming [4]. Most of
the proposed BCIs are subject-specific and require
time-consuming, sometimes frustrating calibration sessions. Thus,
inter-subject BCIs are desired; yet development of such BCIs
come across challenges including the inherent variabilities in
brain dynamics across subjects due to the diversity in individual
brain growth [5]. Moreover, multichannel electroencephalogram
(EEG) that captures the electrical activity of the brain, suffers
from the effect of outliers due to excessive channels, causing, at
the same time, high computational burden to the BCI system.
However, developing an inter-subject BCI with subjects who
share associative neural oscillations for particular cognitive task,
seems more feasible. Previous studies addressed inter-subject
association of neural dynamics during natural vision [6] and
natural music listening [7]. During motor imagery (MI)-based
inter-subject BCI, it is important to measure sensorimotor
synchronisation across subjects. MI is the kinesthetic imagination
of a motor task, which shares equivalent sensorimotor oscillations
corresponding to actual motor execution [8]. Movement-related
cortical potential-based BCI without subject-specific training has
been proposed in [9]. In [10], an inter-subject BCI has been
developed for modifying mental states that can be used for
treating major depressive disorder. Rana et al. [11] have
developed a real-time toolbox for implementing inter- and
intra-subject BCI using functional magnetic resonance imaging.
An online inter-subject BCI with P300 speller paradigm has
shown the deviation of inter-subject evoked potentials [12].
Learning from subspaces that have been estimated via common
spatial pattern (CSP) applied on inter-subject/session data of
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similar characteristics, i.e. non-stationarities, can enhance the
performance of BCI [13, 14]. In these experiments, selecting
suitable subjects is critical due to the fact that the brain dynamics
significantly vary across subjects. However, these methods
perform well, specifically in the context of small training trials
available from the target subject [15, 16]. Another study has
proposed ensemble of classifiers, which can be used for
single-trial classification without explicitly being trained [17]. In
[18], sparse common spatial pattern is proposed as a novel
method for optimal channel selection technique within a
constraint of optimal classification accuracy. In this Letter, a
coherence analysis in time–frequency (T–F) space is proposed to
select the set of EEG channels, who have relatively high
normalised coherence power. The underlying hypothesis is that
highly coherent and common inter-subject EEG channels can
improve BCI performances, by reducing the effect of outliers
from undesired channels. To achieve this, the wavelet coherence
(WC) has been adopted as a means to measure coherence
between two time series in T–F domain, since it has successfully
being used as a tool of measuring couplings between brain
regions using sensory-evoked potentials [19] and to the
associativity assessment of inter-personal brain activity [20].

2. Methods: At first, the available multichannel EEG data (Section
2.1) were preprocessed using CSP [21]. Then, wavelet
decomposition (up to the third level) was applied, using the
Daubechies three-sample filter (db3). At each decomposition level,
subband energy and subband entropy were used as features for the
classification of the MI types, which was realised via a two-layer
feed-forward neural network [22] and used to classify MIs.

WC was estimated to discern if the coherent power reveals
common inter-subject regions, where the sensorimotor oscillations
from two subjects co-vary. Based on the WC power (WCP),
some channels were selected assuming that those channels will
enhance the T–F synchronisation of two subjects. Then, a novel
inter-subject BCI framework was proposed with a view to validate
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Fig. 1 Electrode montages (extended 10/20 system) and selected inter-subject
associative channels for subject air al-aw
whether selected channels can improve the classification perfor-
mances. The motivation behind was to eliminate undesired chan-
nels which introduce outliers. On the contrary, selected channels
enhance sensorimotor coherence; thus, the pairwise inter-subject
BCI performances.

2.1. Dataset and experimental settings: The multichannel EEG raw
signals used for the validation of the proposed hypothesis are those
included in the dataset IVa from BCI Competition III (http://www.
bbci.de/competition/iii/desc_IVa.html). One hundred and eighteen
channels in total (extended 10/20 system) were employed to
capture the multichannel EEG signals (Fig. 1). During the
recording session, the sampling rate was set at 1kHz, which was
later downsampled to 100 Hz. While sitting on a comfortable
chair with arms resting on armrests, subjects were asked to
perform each one of the three MIs, i.e. left hand, right hand (RH)
and right foot (RF); the publicly provided data, however, refer to
two MI classes only, i.e. RH and RF. Single-trial EEG data were
captured from five healthy individuals, by providing them
class-specific visual cues before the kinesthetic imagination of the
motor tasks. The data consist of 280 trials (140 trials for each MI
class) for each subject and each trial has 3.5 s of EEG recordings
for any of the two MIs. It should be noted that 2.5 s of data for
each trial after 1 s of the corresponding visual cues were chosen
for analysis.

The proposed BCI framework is studied in pairwise manner, i.e.
signals from one subject are used to train and validate the algorithm
whereas signals from another subject are used to test the algorithm.
Thus, there are total of 560 trials for experimenting inter-subject
BCI. The first 180 trials are used to train the classifier, whereas
the consecutive 100 trials are used to validate it, so to avoid over-
fitting. Finally, the rest 280 trials from another subject are used to
test the classifier.

2.2. Common spatial pattern: In 2000, Ramoser et al. proposed
CSP, as a spatial filtering method, for classifying two classes of
single-trial MIs for the first instance [21]. Usually, CSP estimates
projection of multichannel EEG signal, so that the difference
between two classes is maximised. Suppose CH and CF represent
the two MIs, i.e. RH and RF, respectively, which have been
considered in this experiment. Then, CSP approximates a weight
40
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matrix W that can be used to filter simultaneously recorded
multichannel data. Estimating W requires simultaneous
diagonalisation of two covariance matrices for two classes as
follows

W T ∑
CH

W = LCH

WT ∑
CF

W = LCF

⎧⎪⎨
⎪⎩ (1)

where
∑

CH
and

∑
CF

represent average covariance matrices over the
training trials, whereas LCH

and LCF
are the diagonal matrices that

must satisfy LCH
+LCF

= I , where I is the identity matrix.
Finally, the original EEG signals can be projected as

Ecsp = WE (2)

where E and Ecsp represent the EEG signal and spatially filtered
EEG signal, respectively, both having N number of channel compo-
nents and each component constitutes of P number of samples per
trial. While the first components of Ecsp attribute to maximal dis-
criminative features for CH and minimal for CF, the last components
of Ecsp attribute to minimal discriminative features for CH and
maximal for CF. More details on CSP can be found in [21].
2.3. Wavelet coherence and channel selection: Suppose x(t)
represents a time-domain signal, where (x(t) [ L2(R)). Then, the
continuous wavelet transform is defined as [23]

Wx(a, b) = 1��
a

√
∫1
−1

x(t)c∗ t − b

a

( )
dt (3)

where * represents the complex conjugate and c(t) is the wavelet
basis function (mother wavelet). Usually, c(t) is dilated by a
factor a, a > 0, whereas translated by a factor b, and these time
and scale parameters (a, b) are continuous. In this study, the
complex Morlet wavelet was adopted as the mother wavelet given
by [23]

c(t) = 1����
pfb

√ e−t2/fb ej2pfct , (4)

where fb is a bandwidth parameter and fc is the wavelet centre
frequency. As a Gaussian-windowed complex sinusoid, the
adopted complex Morlet wavelet with its second-order
exponential decay results in very good time localisation during
the wavelet transform [23]. Additionally, this wavelet basis
function gives information about both amplitude and phase, thus
it is better used for capturing coherence between oscillatory
harmonics in T–F space [23]. The values of fb and fc were set to
1 and 0.9549 Hz, respectively.

Wxy
n is the cross wavelet transform (XWT) which finds the T–F

regions where two signals co-vary, but have high power in contrast
to WC. Suppose xn and yn are two time signals (where n = 1, 2, …,
N ), then the XWT is defined as

Wxy
n (s) = Wx

n (s) ·Wy∗
n (s) (5)

where s represents scale that is used to stretch the mother
wavelet along time.

WC reveals associativity of two time-domain signals in T–F
spaces. This similarity measure finds the T–F locations where the
signals significantly co-vary, but does not necessarily have high
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Fig. 2 Calculation of WC between inter-subject sensorimotor oscillations (i.e. regarding RH MI task) for two different channels corresponding to subject pair
al-aw
a The channel FC5 has the highest WCPN value
b The channel Fpz has the lowest WCPN value. The arrows in T–F WC plot indicate the phase relationship of two time series having WCP > 0.9. The range of
0.6 ≤ WCP ≤ 0.9 has only been considered significant while measuring inter-subject sensorimotor coherence
power. The WC is defined as follows [24]

R2
n(s) =

|S(s−1Wxy
n (s))|2

S(s−1|Wx
n |2)S(s−1|Wy

n |2)
(6)

where S is a smoothing operator and defined as

S(W ) = Sscale(Stime(Wn(s))) (7)

Sscale and Stime represent smoothing along scale/frequency and time
axes, respectively. Fig. 2 shows the calculation of WC between two
electrophysiological time series.
The single-trial EEG signals from two subjects have been consid-

ered as two sets. From each set, the trials are further categorised
according to classes, i.e. RH or RF. Consider S1 and S2 as two indi-
viduals, each having totalM trials andM/2 trials for each class. The
WC has been applied to measure similarities of M/2 trials from S1
with M/2 trials from S2 one by one. The WCP is normalised to 1
and thus the average WCP ranges from 0 to 1. The accumulated
WCP over trials are averaged and denoted as WCPN , given by

WCPNc =
2

M

∑M/2

i=1

((R2
n(s))c)i (8)

where c [ (RH, RF). The R2
n(s) in the range from 0.6 to 0.9 has

been considered significant and used to measure associativity of
inter-subject channels, i.e. R2

n(s) � [0.6, 0.9]. The implicit assump-
tion is that very high coherence power (>0.9) might represent
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resting EEG dynamics, irrespective of any information regarding
cortical events.

Finally, the estimated WCPN is used to rank the channels in des-
cending order. Eight channels were selected for each class, accumu-
lating to 16 channels for two classes. If any channel falls within the
selection criteria for both classes, we have selected another channel
with higher WCPN either for RH or RF, thus limiting the number of
selected channels to 16. The selected channels are specified in
Table 1.
3. Results and discussions: Table 1 summarises the sets of mostly
coherent channels for all subject pairs. The channels are reported
according to WCPN values in descending order. Each set consists
of sixteen different channels from different areas of the brain,
where the inter-subject sensorimotor oscillations are mostly
associative in T–F space. The common channels which fall
within selection criteria for both RH and RF are indicated as
bold. Fig. 1 shows the selected channels (electrode montages) for
subject pair al-aw, most of which lie around sensorimotor regions
of the brain. Sensorimotor regions are highly responsive during
MIs [25] and share associative inter-subject information.

Table 2 describes the classification accuracies achieved from
inter-subject experiments. In Case I, available 118 channels are
used to classify the MIs while only 16 channels, reported in
Table 1, are used in Case II. Let’s consider, Acc(S1 � S2)Case I
and Acc(S1 � S2)Case II represent classification accuracies
achieved from Case I and Case II, respectively. The trials from
subject S1 are used to train and validate the classifier while the
trials from S2 are used to test the classifier.
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Table 1 Selected associative inter-subject channels for different subject
pairs along with corresponding WCPN

S1–S2 Selected channels

aa-al RH�C1(0.207) CCP3(0.203) P1(0.201) FFC8(0.201) FFC7
(0.201) F7(0.200) FT10(0.200) Pz(0.200) PCP1(0.199)

RF�CCP8(0.210) C6(0.207) O1(0.204) T8(0.201) Oz(0.199)
C1(0.199) FT10(0.199) PCP8(0.199) PO4(0.199)

aa-av RH�P7(0.203) PPO7(0.202) P6(0.201) CP6(0.201) F6(0.201)
Fz(0.201) PCP7(0.200) P9(0.200)

RF�CP3(0.203) FT8(0.201) FC2(0.201) CFC1(0.200) C6
(0.200) OI2(0.200) FC4(0.200) CCP6(0.199)

aa-aw RH�CFC3(0.195) FT10(0.194) CFC6(0.194) CCP5(0.193)
CCP8(0.193) CCP1(0.192) C6(0.192) PCP1(0.191)

RF�CP4(0.210) C1(0.207) PCP1(0.207) PCP2(0.207) PCP4
(0.207) CP6(0.207) FFC2(0.207) Fz(0.205) PCP3(0.205)

aa-ay RH�I2(0.202) PO7(0.202) I1(0.201) P1(0.201) P9(0.201) PO2
(0.200) P10(0.199) P2(0.199) PCP2(0.199)

RF�CP1(0.206) CPz(0.206) CCP2(0.204) Cz(0.203) T7
(0.203) CCP1(0.202) P9(0.202) P1(0.202) PCP1(0.202)

al-av RH�Cz(0.196) CFC8(0.195) FC6(0.195) TP9(0.194) TP10
(0.192) P10(0.192) PPO8(0.192) C4(0.192)

RF�PCP3(0.212) CP1(0.212) P3(0.211) O1(0.210) OI1(0.209)
P1(0.208) P5(0.207) P3P4(0.207)

al-aw RH�FC5(0.206) FFC5(0.205) PCP4(0.204) C5(0.203) CP2
(0.203) PCP5(0.202) CP3(0.202) FC3(0.202) P4(0.201)

RF�P1(0.218) PCP3(0.215) CP3(0.213) CP2(0.212) PO3
(0.212) P3(0.212) CP1(0.211) P5(0.209) PCP2(0.209)

al-ay RH�Oz(0.219) PO1(0.217) OPO1(0.215) PO2(0.214) PPO1
(0.213) PO3(0.213) PPO2(0.212) OI2(0.212)

RF�O1(0.209) PPO6(0.206) PCP3(0.205) CP3(0.205) I1
(0.205) PCP5(0.204) OI1(0.204) CP5(0.203)

av-aw RH�P5(0.197) PCP7(0.197) CCP5(0.196) P9(0.195) CP1
(0.195) FT7(0.195) PPO5(0.195) PCP5(0.194) P3(0.194)

RF�CCP5(0.209) C3(0.204) CFC6(0.204) C1(0.204) FC6
(0.202) CP1(0.202) CCP3(0.201) FC3(0.201) CP3(0.200)

av-ay RH�I2(0.198) OPO1(0.196) I1(0.196) FAF5(0.194) PPO8
(0.194) FT8(0.193) FFC7(0.193) OI1(0.193)

RF�CCP8(0.205) T8(0.204) CP5(0.204) C6(0.202) FAF6
(0.202) CFC6(0.202) CCP6(0.201) PCP8(0.201)

aw-ay RH�PCP1(0.209) CCP3(0.207) PCP3(0.207) Pz(0.207) CP3
(0.206) P1(0.206) CPz(0.206) P5(0.202)

RF�T7(0.213) CFC7(0.210) OPO1(0.206) CCP7(0.204) P7
(0.203) Oz(0.203) FT9(0.203) FT7(0.202)

Table 2 Classification accuracies (%): inter-subject BCI (The cases in
which Acc (S1 → S2) Case I < Acc (S1 → S2) Case II are italicised.)

S1–S2 Case I Case II S1–S2 Case I Case II

aa-al 60.71 76.79 al-aa 56.43 57.14
aa-av 56.79 57.86 av-aa 53.57 61.07
aa-aw 57.86 65.36 aw-aa 62.86 51.43
aa-ay 58.21 51.43 ay-aa 50.36 49.64
al-av 49.64 47.14 av-al 70.71 54.29
al-aw 69.64 73.93 aw-al 56.79 81.79
al-ay 63.57 76.79 ay-al 67.50 67.50
av-aw 55.71 52.14 aw-av 53.57 50.36
av-ay 62.14 57.50 ay-av 51.79 53.21
aw-ay 63.21 53.57 ay-aw 52.50 64.29
mean 59.75 61.25 mean 57.61 59.07
Acc(S1 � S2)Case I , Acc(S1 � S2)Case II indicates the increased
classification performances of inter-subject BCI by using associa-
tive channels only. However, the maximum classification accuracy
achieved for subject pair aw-al is Acc(aw � al)Case II = 81.79%.
But, the classification accuracy for this subject pair in Case I is
Acc(aw � al)Case I = 56.79%. Interestingly,
Acc(aw � al)Case I ≪ Acc(aw � al)Case II evinces the potential
applicability of the proposed channel selection method. Also, the
classification performances are not symmetric, i.e. interchanging
of training and testing trials significantly influences the perfor-
mances. For example, Acc(al � aw)Case II = Acc(aw � al)Case II
and Acc(al � aw)Case I = Acc(aw � al)Case I etc. The achieved
classification accuracy Acc(al � aw)Case II = 73.93% is signifi-
cantly lower than Acc(aw � al)Case II = 81.79%. Such asymmetric
Acc occurs, due to the fact that data-driven spatial filtering methods
are prone to be overfitted while estimating unreliable parameters
[26]. Although there are significant observations in which
Acc(S1 � S2)Case I ≪Acc(S1 � S2)Case II , some Acc(S1 � S2)
do not necessarily show any promising performance in any of the
case. The cases in which Acc(S1 � S2)Case I , Acc(S1 �
S2)Case II are italicised in Table 2.

Many time variant psychophysiological factors including atten-
tion, memory load, spontaneous cognitive processes etc. [27] and
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user’s basic characteristics, such as lifestyle, gender, age etc. influ-
ence the individual brain dynamics over time [28], thus affect BCI
performance. This inherent fluctuation of individual brain dynamics
causes inter-subject variability that poses difficulties while develop-
ing BCI without subject-specific calibration. In EEG-based BCI,
undesired channels additionally degrade performances by produ-
cing outliers [18]. Fig. 2 shows both highly associative and dis-
sociative inter-subject sensorimotor oscillations and their
corresponding WC. In this Letter, a novel T–F approach has been
proposed to sort out associative sensorimotor inter-subject channels
while most of the literatures have addressed the adaptation of
machine learning algorithms for compensating variabilities [13–
17]. Results show that selecting inter-subject coherent channels
can significantly increase performances, thus implicating future de-
velopment of efficient inter-subject BCI paradigm. An interesting
aspect that arises from the proposed approach is the possibility to
generalise it towards finding common spatial components (i.e. a
subspace of the data) instead of selecting individual electrodes;
yet, this is left as a future endeavour.

4. Conclusions: Inter-subject BCI, without time-consuming,
sometimes frustrating calibration session, seems more convenient
to users. Nevertheless, inherent instantaneous variability in EEG
signals poses significant challenges. Outliers that have been
generated within insignificant channels may be due to diversity in
psychophysiological or other factors, limit the development of
BCI in subject independent context. Interestingly, the only
channels which share similar sensorimotor dynamics can be
employed for improving BCI performance. This study delineates
a novel method for selecting inter-subject associative channels
based on WC and show how BCI performances can be improved
in subject independent settings.
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