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This paper proposes a new perspective of analyzing non-linear acoustic characteristics

of the snore sounds. According to the ERB (Equivalent Rectangular Bandwidth) scale

used in psychoacoustics, the ERB correlation dimension (ECD) of the snore sound

was computed to feature different severity levels of sleep apnea hypopnea syndrome

(SAHS). For the training group of 93 subjects, snore episodes were manually segmented

and the ECD parameters of the snores were extracted, which established the gaussian

mixture models (GMM). The nocturnal snore sound of the testing group of another 120

subjects was tested to detect SAHS snores, thus estimating the apnea hypopnea index

(AHI), which is called AHIECD. Compared to the AHIPSG value of the gold standard

polysomnography (PSG) diagnosis, the estimated AHIECD achieved an accuracy of

87.5% in diagnosis the SAHS severity levels. The results suggest that the ECD vectors

can be effective parameters for screening SAHS.

Keywords: apnea hypopnea index, correlation dimension, non-linear acoustic characteristics, snore sound, sleep

apnea hypopnea syndrome

INTRODUCTION

Snoring is one of the most important symptoms of Sleep Apnea Hypopnea Syndrome (SAHS) and
carries much information for diagnosing the upper airway disorder (1). Snoring sounds can be
recorded by a non-contactmicrophone using acoustical property analysis for the screening of SAHS
(2, 3). The pitch and spectral characteristics of snoring have been widely applied (4, 5). The total
airway response for a snore was extracted to examine SAHS by a higher-order statistics algorithm
(6). Multiclass classification of snoring was acquired on the acoustic analysis of snore sounds (7). A
genetic algorithm was applied to select the better features that can be extracted from the time and
spectral domains of full-night recordings to determine the Apnea Hypopnea Index (AHI) value (8).
The rhythmic variations in the snores were described to assess the AHI (9). HiddenMarkov models
with Mel frequency cepstral coefficients (MFCC) were used to classify subjects into different ranges
of the AHI (10). Our previous work used snore spectral information to estimate the AHI (11).
Traditional time and frequency analysis and the classic method for snore sounds were adopted in
the studies mentioned above.

However, the irregular and turbulent airflow that is produced within the upper airway
tissue vibrations that cause the snore, such as the intensity of respiratory airflow, vibration on
the soft palate, thick tongue root, and epiglottic hypertrophy, etc. could be non-linear (12).
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It was suggested that linear analysis methods were limited and
that more useful information could be obtained using chaos
theory to analysis the snore (13, 14). The largest Lyapunov
exponent and entropy were calculated to classify snore-related
sounds with multiclass system (15).

In this paper, a new correlation dimension was proposed
to analyze the non-linear properties of snoring sounds for
automatic AHI prediction. In contrast to the conventional
correlation dimension, the all frequency region was divided
into multi-sub-bands on an equivalent rectangular bandwidth
(ERB) scale, and the correlation dimensions were calculated in
each sub-band. Therefore, ERB correlation dimension (ECD)
vectors were extracted rather than a single correlation dimension.
The gaussian mixture model (GMM) was applied to build the
ECD vector models. Whole-night snore sounds of patients were
detected in our experiments, and then, the AHIECD values were
estimated. The early experimental studies have been published
in Chinese journals, when the experiment is the number of
60 snorers in reference (16). This research continues to now
increased to 120 snorers. In other words, the experimental results
of adding 60 people dropped slightly from the original 90 to 87%.
It illustrates the robustness of new features. This study further
adds a comparison with the classic feature MFCC. Compared to
the polysomnography (PSG) diagnosis, our non-linear features
achieved higher accuracy than the MFCC based snore spectrum
information in the severity levels of the SAHS. The ECD vectors
were found to characterize various severity levels of snores.

ERB CORRELATION DIMENSION

The phase space reconstruction technique has been widely used
in the field of chaos and fractal theory (17), and it has been used in
some applications in medical and speech signals (18–20). It could
be more comprehensive disclosure of snore implied information
by transforming them to high-dimensional space. The general
representation of a snore is a time series. Let a one-dimensional
discrete series s(n) be denoted by the snore signal, that is get by
sampling rate Fs.

Based on the Takens embedding theorem (21), the phase
space reconstruction could transform a one-dimensional time
series into a high-dimensional phase space vector Y ǫ Rm as in
Equation (1).

Y = [Y1 Y2 · · · Yi · · · YI]

Where

Yi = [s (ni) s (ni + τ) · · · s
(

ni + (m− 1)τ
)

]
T

(1)

Here, τ is the time delay, andm is the embedding dimension. The
reconstruction vector Y is an m-dimensional vector with I phase
points. The appropriate time delay was selected according to the
autocorrelative function (AR function) (22). The time delay τ is
an integer multiple of the sampling interval: τ =n/Fs.

The purpose of choosing the embedding dimension is to
make the original chaos attractor and the reconstructed attractor

topology equivalent. We used the false nearest neighbor (FNN)
method to determine the embedding dimension m (23). As
the embedding dimension m increases, the orbit of the chaotic
motion will gradually open, and the false nearest neighbors will
be gradually eliminated, until the trajectory tends to be stable
and the proper m is obtained (24). When the frame length was
> 150 ms, the slope of the correlation integral curve increased
very slowly. Finally in our snore work, the time delay of 0.75 ms
and the embedding dimension of 15 were confirmed by the above
method with a frame length of 150 ms.

The traditional correlation dimension has only a single
parameter, it is difficult to make a more comprehensive analysis
of complicated signals. Based on the ERB scale related to
auditory perception (25, 26), several sub-bands were divided
from the whole frequency band of the snore signal. Phase
space reconstruction was performed in each of the sub-band
signals of the snore. Then, the correlation dimension on these
sub-bands were calculated, which obtained auditory sub-band
ERB correlation dimension (ECD) vectors. The flow chart of
extracting the ECD is shown in Figure 1.

Equation (2) is the correlation integral Cq (I, r) of the qth
subband, which calculates the probability that the distance of
paired (Yiq, Yjq) is smaller than r.

Cq (I, r) =
1

I (I − 1)

I
∑

i,j=1

θ(r −
∣

∣Yi,q − Yj,q

∣

∣) (2)

Where θ (·) is the Heaviside function, and if x < 0, θ (x) = 0; if
x > 0, then θ (x) = 1. The correlation dimension D is estimated
based on the ratio of the logarithm of the correlation integral and
the logarithm of the distance r, as in Equation (3).

Dq=
lnCq(I, r + 1r)− lnCq(I, r)

ln (r + 1r)− ln r
(3)

Therefore, the correlation dimension of the qth subband was
calculated by Equations (2, 3) based on the Grassberger-Procaccia
(GP) algorithm (24). Finally, we get the ECD vector by arranging
and integrating ERB subband’ correlation dimension, as in
Equation (4).

FIGURE 1 | Flow chart of the ECD calculation.
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ECD (n) = [D1 (n) D2 (n) · · · Dq (n) · · · DQ(n)](4)

In this study, the gap of the adjacent sub-bandwas one bandwidth
of the ERB scale, the frequency range of 60 Hz to 4 kHz was
divided into 24 sub-bands, that isQ= 24, and the 24-dimensional
vector of the auditory sub-band ECDs were extracted.

Moore and Glasberg proposed the relationship between
frequency and ERB scale (25, 26), as in Equation (5).

ERB
(

f
)

= 6.23f 2 + 93.39f + 28.52

ERBS
(

f
)

= 11.17628 ∗ ln(1+
46.06538f

f + 14678.49
) (5)

where f is physical frequency in kHz. ERB(f ) is the calculated
rectangular bandwidth of the equivalent filter in Hz. ERBS(f ) is
the ERB scale in physical frequency f in Hz.

SNORE ECD FEATURES

Snore Data
Snore sounds were recorded in the sleep monitoring laboratory
in the Department of Otolaryngology of Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital by a non-contact
ambient microphone, and simultaneously, polysomnography
(PSG) diagnosis was performed. The recording uses a non-
contact microphone Sony EM-C10, which is hung on the head
of the bed, about 30 cm away from the patient’s nose and
mouth. The recording sound card is Creative Audigy 4 Value, the
desktop computer is Dell Inspiration 570, the recording software
Adobe Audition 3.0, the sampling frequency is 8 kHz sampling,
16 bit quantization, and saved as WAV audio files. The recording
duration is 7 h from 10:30 p.m. to 5:30 a.m. the next morning. In
this test experiment, the half hour before the beginning and the
end are removed, and 6 h of recording are used. The details of
recording for snore sounds were the same as literature (11).

The AHIPSG was the apnea hypopnea index as diagnosed
by the gold standard PSG. The severity levels of SAHS were

determined using the AHI value. The subjects with AHI > 30,
15 < AHI ≤ 30, 5 ≤ AHI ≤ 15, and AHI < 5 were classified as
severe (S), moderate (M), mild (L) SAHS, and non-SAHS (N),
respectively (27).

The 213 subjects were consecutively recruited. In our
experiment training phase, the snore episode was cut artificially
from the sound of overnight recordings by a non-contact
microphone on the bedhead, which included 93 subjects from
213. According to synchronized PSG nocturnal monitoring data,
there were two types of snore episodes that were labeled. One
was snoring sound labeled snore events by PSG diagnosis, which
was only resounding and occurred periodically. The other was
a loudly snoring sound appearance behind apnea or hypopnea
events labeled by PSG. We called the former a simple snore
(SIMP) and the latter a SAHS snore (SAHS). These are shown
in Figure 2.

Another 120 subjects from 213 were as a test data set by
their overnight recording of sounds. We removed the starting
30min and the ending 30min of recording. The remaining 6 h
audio signal (11) were used for our test experiments as shown in
Table 1.

The Largest Lyapunov Exponent
The largest Lyapunov exponent (LLE) of snores has been
calculated to measure the rate of local divergence of nearby
trajectories in the state space from dynamical systems theory (28).
The LLE of all type snores are shown in Figure 3. The LLE of the
four types of simple snore and SAHS snore are all positive. A few
of the severe types have the Lyapunov exponent of SAHS snore<

0, accounting for only 2.4% of the severe type of snoring episodes.
The LLE of other types of snores did not appear negative, which
also shows that the chaos of snoring is universal. This conclusion
is consistent with other researches (13, 15, 29).

The mean of the LLE distribution of simple snore is greater
than the LLE distribution of SAHS snore in same severity
level. This phenomenon is common in the four types of snore
signals. In moderate and severe levels, the difference between the
two means of SIMP snore and SAHS snore is increasing. The
results reveal that the orbital divergence speed of SIMP snore is
greater than that of the SAHS snore, and is consistent with the
other study (29). The LLE distribution suggests that unconscious
airflow from simple snoring may have more freedom to roam,

FIGURE 2 | (A) The simple snore wave. (B) The SAHS snore wave.
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TABLE 1 | Snore data for training and test.

Training Data

N L M S

Subjects (number) 10 23 24 36

Gender (M/F) 9/1 21/2 23/1 36/0

Age (years) 42.1 ± 8.5 46.2 ± 12.4 40.4 ± 13.2 45.6 ± 12.5

AHIPSG (events/h) 2.4 ± 1.4 10.8 ± 3.5 24.5 ± 3.8 57.0 ± 16.8

SIMP Episodes

(number)

339 919 480 430

SAHS Episodes

(number)

55 376 480 916

Test Data

Subjects (number) 30 30 30 30

Gender (M/F) 19/11 26/4 25/5 27/3

Age (years) 29.9 ± 8.6 40.7 ± 12.4 43.0 ± 13.8 38.9 ± 11.7

AHIPSG (events/h) 1.9 ± 1.6 9.3 ± 3.0 22.2 ± 4.3 62.5 ± 17.8

Recording length

(minutes)

360 × 30 360 × 30 360 × 30 360 × 30

FIGURE 3 | Largest Lyapunov exponents of snore for different SAHS

severity levels.

while SAHS snoring may form a certain trend of airflow after
being squeezed in the narrow upper airway.

ECD Calculation
According to the illustration in Figure 1, the ECD of the
snore from the training data in Table 1 were calculated. The
distribution of the ECD vectors in each sub-band of the SIMP
snore and SAHS snore of the N, L, M, and S levels, respectively,
are shown in Figures 4A–D. The ECD vectors distinctively
increased with the aggravation of the SAHS severity level
in the middle and high-frequency sub-bands. Moreover, the
distributions of the ECD vectors were not exactly the same for
the SIMP snores and the SAHS snores at the same severity level,

and the ECDs of the SAHS snores were always higher than those
of the SIMP snores.

In our study, the SIMP and SAHS snores of four levels (N,
L, M, and S) were modeled using the Gaussian Mixture Model
(GMM), which formed eight types, including N-simp, N-sahs, L-
simp, L-sahs, M-simp, M-sahs, S-simp, and N-sahs. The ECDs of
the training data in Table 1 were extracted to model eight GMMs
for the training phase (30), and are showed in Figure 5.

RESULTS AND DISCUSSION

Results
Mixture Number of GMM were assigned 2, 12, 12, and 8 for
both SIMP and SAHS snore of N, L, M, and S level, respectively.
GMM was solved by expectation-maximization (EM) algorithm.
Two-fold cross-validation method was employed to evaluate the
performance of clustering and classification of GMM regarding
training data in Table 1. For each type of snore, the rate of being
classified as different types is shown in Figure 6.

According to the PSG clinical diagnosis definition, AHI is
the number of respiration events per hour of sleep. The ECD-
calculated AHI is AHIECD as in Equation (6).

AHIECD =
Number of sleep respiratory events

Duration of nocturnal sleep
events/h (6)

Figure 5 shows the testing phase, there were another 120
participants for the testing data, which consisted of 30 subjects
for each severity level among N, L, M, and S in Table 1. Firstly,
automatic endpoint detection was performed for snore signals
of whole-night recordings to detect the snore sounds (16, 31).
Thus, we obtained candidate respiratory events based on the
unique rhythm of snores (16, 31). Then, the ECD vectors of these
candidate respiratory events were extracted, and we calculated
the probabilities of matching with eight GMMs. On the basis of
the Bayesian maximum posterior probability rule, the maximum
posterior probability winner among the eight GMMs was the
snore type. When some snore episodes in a candidate respiratory
event were classified as any SAHS snores among N, L, M, and S
levels by the GMM, that candidate respiratory event was a true
sleep respiratory event. Finally, the AHIECD score was estimated
by the number of sleep respiratory events and the nocturnal sleep
duration, as in Equation (6).

In the same way, we extracted another feature set that is
MFCC, and estimated the AHIMFCC score also. The MFCC is a
classical feature and widely used automatic speech recognition.
All experiment results in precision and recall were listed in
Table 2.

Comparisons of AHIECD, AHIMFCC, and AHIPSG values of
each subject, consistency with the severity of the gold standard
PSG diagnosis was correctly screened. There are 120 testers in
Table 2, including 30 people of four different severity levels. As
a result of the MFCC classic feature test, 30 people who are
non-ASHS can correctly estimate. Twelve of the 30 mild patients
were incorrectly classified as non-SAHS ormoderate SAHS types.
Eleven of 30 moderate patients were wrongly assorted as mild
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FIGURE 4 | Box plot of ECD vector for different SAHS severity levels. (A) The N level, (B) The L level, (C) The M level, and (D) The S level.

FIGURE 5 | Flow chart of the snore training and testing system.

or severe SAHS types. Thirty patients with severe patients, one
of whom were mistakenly estimated as moderate SAHS patients.
Compared to AHIPSG in the diagnosis of the SAHS severity level,
and the AHIMFCC estimation achieved the mean precision and
recall of 79.25 and 80.00%, respectively, as shown in Table 2.

As a result of the ECD feature test, two out of 30 non-SAHS
people were mistakenly estimated to be mild patients. Thirty
patients with mild patients, eight of whom were incorrectly
estimated to be non-SAHS or moderate patients. Of the 30
patients with moderate disease, five of them were incorrectly
estimated to be mild or severe SAHS patients. Thirty people with

severe patients were correctly estimated. The AHIECD estimation
using our proposed method achieved, respectively, the mean
precision and recall of 87.74 and 87.50% compared to AHIPSG
in the diagnosis of the SAHS severity level as shown in Table 2.

The precision and recall of AHIECD are higher than AHIMFCC

in mild and moderate levels especially.
Comparisons results of AHIECD and AHIMFCC, both features

are good at both ends (i.e., non-SAHS and severe patients).
However, for patients with mild SAHS and moderate SAHS, the
number of errors by usingMFCC is higher than ECD feature. The
precision and recall of AHIECD are higher than AHIMFCC in mild
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and moderate level especially. New fractal features achieve better
results than classical spectral features. Relative literature (16), this
work increased the number of patients in test experiments from
60 to 120 and adds to compares them with the classic feature
MFCC. Therefore, the experimental results of this paper are
almost the same as the initial experiments, once again confirming
the advantages of the new features.

Discussion
Most of the previous studies of detecting snore used the acoustic
characteristics of the speech signal of the active pronunciation (4–
11), that is limit. Because the snoring contained more breathing
sounds than speech. This airflow has more randomness and is
generated by passive vocalization. Thereby, we proposed a new
feature from the chaos and fractal theory to characterize the
irregular extent of snore.

The AHIECD by new features is closer to clinical diagnosis
results than AHIMFCC by conventional parameters. The
distribution scatter plot of AHIPSG vs. AHIMFCC, AHIECD is
shown in Figure 7. The black asterisk represents the result

FIGURE 6 | Confusion matrix of eight types.

of PSG diagnosis AHIPSG, the green pentagram represents
AHIMFCC, and the purple circle represents AHIECD, and the red
dotted line represents the boundary of different severity. The
cohen’s kappa coefficient of AHIECD and AHIPSG consistency is
0.833, and AHIMFCC and AHIPSG consistency is 0.733.

The Bland-Altman-plot is depicted in Figure 8. The ordinate
represents the difference of AHIPSG and AHIECD with pinkish,
the difference of AHIPSG and AHIMFCC with green. The mean
and variance of difference of AHIECD and AHIPSG were smaller
than AHIMFCC. Compared with PSG, 92.50% (111/120) of
AHIECD falls within the consistency limit of 1.96 times variance,
higher than 88.33% (106/120) of AHIMFCC. This further suggests
AHIECD estimated by ERB correlation dimensions is more
accordance with AHIPSG than AHIMFCC.

In terms of the severity of SAHS, especially the N-type and
the severe type, their frequency spectrum has obvious differences.
Therefore, the MFCC parameters maintain a good performance
for the judgment of these two types. The ECD feature is the
same. However, for the intermediate types of mild and moderate,
the accuracy of MFCC’s outcome drops sharply. The ECD we
proposed is much better than MFCC in these two types.

This paper presents a method to measure the degree of
disorder of the snoring signal like noise, which were new features
called the ECD vectors. The correlation dimensions of the
high frequency sub-bands were larger than those of the low-
frequency sub-bands in ECD vector. The maximal correlation
dimension appeared in the 21st ERB sub-band as shown in
Figure 2. This finding suggested that the SAHS snores contain
much more irregular and fast-changing components in the high
frequency range. The ECD vectors could reveal information that
is consistent with the characteristic of the time-domain waveform
of the snore. When the upper airway is blocked, the airway
becomes shorter.When the upper airway rushes open, the airflow
in the narrow area is squeezed, and the turbulent airflow is
released. However, the snore spectrum is attenuated to a smaller
magnitude in the high frequency range, and thus, it is difficult to
give an appropriate description for the mild and moderate level
of a snore, which could be to too small to distinguish different
level. These non-linear methods are expected to provide useful
information for better understanding of irregular snoring sounds
(13, 14). MFCC includes only magnitude of snore spectral, but
our ECD feature completes information in snore sound. When
the upper airway is obstructed, the shortening of the airway leads
to an increase in the medium and high frequency components,
the airflow in the narrow area is squeezed, and some the rapid

TABLE 2 | Precision and recall of AHIMFCC and AHIECD compared AHIPSG.

Levels N L M S Total Correct Mean

Subjects(number) 30 30 30 30 120

Precision of AHIMFCC 85.71% 64.28% 70.37% 96.66% 96 79.25%

Recall of AHIMFCC 100% 60% 63.33% 96.66% 96 80.00%

Precision of AHIECD 100% 81.48% 75.75% 93.75% 105 87.74%

Recall of AHIECD 93.33% 73.33% 83.33% 100% 105 87.50%
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FIGURE 7 | The compared between AHIECD, AHIMFCC, and AHIPSG.

FIGURE 8 | Bland-Altman-plot (the difference of AHIPSG and AHIECD with

pinkish, the difference of AHIPSG and AHIMFCC with green).

change component increases. The Fourier transform shows a
characteristic of global decline and local prominence. Compared
with MFCC, the ERB enlarged partially and highlighted the
anomaly of the mid and high frequency components.

Inspired by the non-linear frequency scale and MFCC
characteristics of the Mel spectrum, we use ERB to set the sub-
band frequency interval to 8, 4, 2, and 1 ERB bandwidth, so
that 3, 6, 12, and 24 subbands are obtained severally in formula
(5). The obvious differentiation the snoring sounds of different
severity appears when dividing three sub-bands but the details
are not enough to distinguish well. As the number of subbands
increases, more and more details provide a richer diversity of
different severity level of SAHS. According to the distribution
of the auditory filter, as it is divided into about 20 subbands in
4 kHz, a set of features is more effective. We adopted one ERB
bandwidth and 24 subbands are obtained in formula (5).

No matter how many take the ERB scale, ECD features
exhibits SAHS severity is directly proportional to the
relationship, that is, the more severe the SAHS, the faster
the ECD rises in the middle and high frequency regions, shown
as in Figure 4.

However, the calculation of the correlation dimension was
time-consuming. This limitation requires us to optimize the
algorithm for the correlation dimension. The nature of the
correlation dimension on the number of more subbands may
need further study.

CONCLUSIONS

Based on the previous experiment, we prove the chaotic nature
of snoring sound by the LLE and perfect a new method
for estimating the AHI value of SAHS using the correlation
dimension vector for snore sounds, which was superior to the
conventional spectrum analysis. The ECD vectors might be
closely related to the SAHS severity level and reveal the effect of
different SAHS severities on the upper airway. The correlation
dimension of the sub-bands reveals the inherent information of
the mid and high frequencies, while the Fourier transform has
its limitations. Chaos provides many quantitative parameters for
exploring the nature of this internal information. It could be a
study about correlation between fractal dimension and internal
physical properties of sleep respiratory sound. There is a positive
effect on the development of a medical supplementary diagnosis
and in-home healthcare in the internet era.
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