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Abstract

Background: An R30 fraction from the growth medium of Aeropyrum pernix was analyzed for the protease that can digest
the pathological prion protein isoform (PrPSc) from different species (human, bovine, deer and mouse).

Methodology/Principal Findings: Degradation of the PrPSc isoform by the R30 fraction and the purified protease was
evaluated using the 6H4 anti-PrP monoclonal antibody. Fragments from the N-terminal and C-terminal of PrPSc were also
monitored by Western blotting using the EB8 anti-PrP monoclonal antibody, and by dot blotting using the C7/5 anti-PrP
monoclonal antibody, respectively. For detection of smaller peptides from incomplete digestion of PrPSc, the EB8
monoclonal antibody was used after precipitation with sodium phosphotungstate. Characterization of the purified active
protease from the R30 fraction was achieved, through purification by fast protein liquid chromatography, and identification
by tandem mass spectrometry the serine metalloprotease pernisine. SDS-PAGE and zymography show the purified pernisine
plus its proregion with a molecular weight of ca. 45 kDa, and the mature purified pernisine as ca. 23 kDa. The purified
pernisine was active between 58uC and 99uC, and between pH 3.5 and 8.0. The temperature and pH optima of the
enzymatic activity of the purified pernisine in the presence of 1 mM CaCl2 were 105uC 60.5uC and pH 6.560.2, respectively.

Conclusions/Significance: Our study has identified and characterized pernisine as a thermostable serine metalloprotease
that is secreted from A. pernix and that can digest the pathological prion protein PrPSc.
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Introduction

The term ‘prion’ was first introduced by Prusiner in 1982. He

defined it as a small proteinaceous infectious particle that can resist

inactivation by nucleic-acid-modifying procedures. At first, the

research was oriented towards identification of the agent causing

scrapie in sheep and goats. Scrapie is a type of transmissible

spongiform encephalopathy (TSE) that belongs to a group of

diseases that have also been recognized in several other animal

species, as well as in humans: the prion diseases.

It is believed that TSEs develop after the cellular prion protein

(PrPC) undergoes structural changes. PrPC is a monomeric,

glycosylated protein that is attached to cell membranes through

a glycosylphosphatidylinositol anchor [1], and it is highly

conserved among mammals [2–5]. It is expressed in different cell

types, with the highest expression levels in the brain of animals and

human. However, its function has not yet been clearly established

[6–16]. The key step in the development of TSEs is the

accumulation of the pathological PrP isoform (PrPSc) with a ß-

sheet rich region, unlike the a-helices that are the predominant

secondary structure of PrPC [17,18].

As a consequence of its conformational characteristics, PrPSc has

some unique features, among which there is resistance to protease

digestion, and to detergents, heat, UV and ionization radiation

treatments [19]. The PrPSc isoform thus has an unusual resistance to

conventional chemical and physical decontamination methods,

which raises substantial medical and food-industry considerations

[20–22]. For this reason, several reports on proteolytic decontam-

ination of TSE agents have been published in recent years.

The majority of proteases that have been studied require

additional chemical or physical treatments of brain homogenates

to enhance their ability to digest this PrPSc isoform. Pretreatment of

brain homogenates with 0.1 M NaOH or 2% sodium dodecyl

sulfate (SDS) increases PrPSc susceptibility towards some commer-

cially available proteases [23,24]. Furthermore, only after PrPSc

heat treatment to 115uC can Bacillus licheniformis PWD-1 keratinase

digest PrPSc in homogenates of bovine spongiform encephalopathy

(BSE) and scrapie-infected brain [25]. Similarly, after long

incubation times, the thermally denatured amyloid recombinant

ovine PrPSc isoform was only partially degraded when incubated

with extracellular proteases from anaerobic thermophilic prokary-
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otes and from Streptomyces subspecies [26]. Several other microbial

proteases have been tested for activity against PrPSc [27–29].

Recently, some lichen extracts containing unknown serine proteases

have been shown to promote PrPSc degradation [30] and some

earthworm proteases in water extracts can successfully degradate

PrPC [31].

In the present study, we show that a protein fraction prepared from

growth medium (the R30 fraction) in which the hyperthermophilic

marine archaeon Aeropyrum pernix has been cultivated has proteolytic

activity against the PrPSc isoform of different species. In Western

blotting and dot blotting, several PrPSc fragments were revealed using

monoclonal antibodies against different PrP epitopes. This proteolytic

activity is additionally demonstrated by intracerebral bioassays.

Further analysis of this R30 fraction shows that this proteolytic

activity is associated with the serine metalloprotease pernisine.

Materials and Methods

Strain and Growth Conditions
A. pernix strain K1 (JCM 9820) was used in this study. The cells

were grown under aerobic conditions at 92uC in a medium

containing yeast extract (1.0 g/L), peptone (5.0 g/L), Na2-

S2O3.5H2O (1.0 g/L), AZOO reef salt (34 g/L) and HEPES

(20 mM), pH 7.0, as described previously [32].

Preparation and Analysis of the R30 Extracellular Extract
with Proteolytic Activity

A cultivation batch (6.4 L) of A. pernix was stopped after 40 h of

growth, and the cells were removed by centrifugation at 10,0006g for

15 min; the supernatant (growth medium) was then filtered through

45 mm and 20 mm cellulose nitrate filters. This growth medium was

concentrated ca. 1500-fold using a concentrator (Pall Corp.) with a

10-kDa molecular-weight cut-off, and ultrafiltered using YM10

membranes (Millipore). This concentrated growth medium was

loaded onto a Superdex 200 preparative grade gel filtration column

(GE Healthcare), equilibrated with phosphate-buffered saline (PBS),

pH 8.0. Fast protein liquid chromatography (FPLC) was carried out

on an Äkta Explorer system (GE Healthcare). The fractions with the

highest proteolytical activities were collected and ultrafiltered using

Amicon Ultra-4 filters (Millipore). All of the purification procedures

were performed at 4uC. For the analysis of the protein content of this

R30 fraction, it was subjected to SDS polyacrylamide gel electro-

phoresis (SDS-PAGE), according to Laemmli et al. [33]. After

separation on 12% SDS polyacrylamide gels, the protein bands were

stained with Simplyblue dye (Invitrogen), according to the standard

manufacturer protocol. The protein molecular weights were calcu-

lated from the SDS-PAGE using the BioNumerics program (Applied

Maths NV, Belgium). Selected protein bands were analyzed by

Orbitrap–tandem mass spectrometry (MS/MS) (at the Jozef Stefan

Institute, Slovenia).

Immunodetection of PrP Fragments after Treatment with
the R30 Fraction and Purified Pernisine

The proteolytic activity of the R30 fraction against PrPSc was

tested on the post-nuclear fractions from several uninfected and

infected brain homogenates. These post-nuclear fractions were

prepared by homogenization of the brain tissue (10%; w/v) in

PBS, with added 0.5% NP-40 and 0.5% sodium deoxycholate,

using a HT1000 Potter homogenizer, with aliquots stored at –

80uC. Prior to use, the brain homogenates were cleared of

particulate matter by centrifugation at 5,0006g for 5 min,

followed by centrifugation for 10 min at 15,0006g to remove

the nuclear fraction.

The reaction mixture (final volume, 15 mL) contained the R30

fraction (0.2 U; see below), 3 mL post-nuclear fraction, and the

appropriate amount of PBS. These mixtures were incubated at

92uC for the times specified. A reference reaction mixture that

contained 0.75 mg proteinase K instead of the R30 fraction was

incubated in parallel at 37uC.

The reactions were stopped by the addition of 26 Laemmli

sample buffer, and 20 mL was used for standard 12% SDS-PAGE.

The gels were run at 120 V for 55 min, and then the proteins were

transferred to nitrocellulose membranes using Towbine buffer

(25 mM Tris, 192 mM glycine, 20% methanol, pH 8.3) at

200 mA for 75 min, in a semi-dry blot system (BioRad). The

nitrocellulose membranes were then incubated in the blocking

solution (TBS: 50 mM Tris, 150 mM NaCl, pH 7.6, with 0.1%

[v/v] Tween 20 and 5% [w/v] nonfat milk), overnight at 4uC,

according to Čurin Šerbec et al. [34]. Alternatively, a reaction

mixture containing the post-nuclear fraction diluted 20-fold in

PBS and an appropriate amount of the R30 fraction (0.2 U per

3 mL post-nuclear fraction) was incubated at 92uC for 20 min.

Whole-brain homogenates (2 mL) from TSE infected human,

bovine and mouse, and from human Alzheimer’s disease brain,

were incubated without or with proteinase K (0.50 mg), for 20 min

at 37uC, or without or with the purified pernisine (0.2 U, with the

addition of 1 mM CaCl2), for 20 min at 92uC. The proteins from

the 50-mL reaction mixtures were then dot blotted using standard

procedures (BioRad).

The presence of all PrP isoforms and peptides was revealed on

the nitrocellulose membranes by immunodetection using the 6H4

anti-PrP monoclonal antibody [35]. The further specific mono-

clonal antibodies used were: the EB8 anti-PrP monoclonal

antibody that recognizes an N-terminal epitope (between residues

20 and 40 of human PrP; our unpublished data); and the C7/5

anti-PrP monoclonal antibody that recognizes a C-terminal

epitope (residues 214 to 226 of human PrP [36]). These primary

antibodies were revealed using horseradish-peroxidase-conjugat-

ed anti-mouse antibodies (Amersham) as the secondary antibod-

ies. The primary antibodies were diluted in TBST (TBS with

0.1% [v/v] Tween 20 and 1% [v/v] nonfat milk) to final

concentrations of 0.2 mg/mL (6H4) or 5 mg/mL (EB8 and C7/

5). The secondary antibodies were 1500-fold diluted in TBST

buffer. Incubations of the membranes with these primary and

secondary antibodies were carried out for 1 h at 24uC, with

constant agitation. The overnight blocking and the incubation

steps were followed by washing steps in TBS with 0.1% (v/v)

Tween 20, as two rapid washes, one 15-min wash, and two 5-

min washes. After the final washing step, the standard ECL

procedure was performed (GE Healthcare), followed by 15 min

exposure of the membrane to an ECL film.

Phosphotungstate Precipitation
The brain-tissue homogenates (post-nuclear fractions; see

above) were subjected to proteinase K or R30 fraction digestion

before the sodium phosphotungstate (NaPTA) precipitation, with

125 mL digested for 20 min with either proteinase K at 37uC (final

concentration, 50 mg/mL) or the R30 fraction at 92uC. For the

negative control, aliquots of 25 mL post-nuclear fraction were

incubated in the absence of any enzyme activity at 37uC and

92uC. The NaPTA precipitation was performed according to

Wadsworth et al. [37]. An equal volume of 4% sarcosyl in PBS was

added to the enzyme-digested samples and incubated for 15 min

at 37uC, with constant agitation. Then, the samples were adjusted

to a final concentration of 500 U/mL benzonase (Sigma Aldrich)

and 1 mM MgCl2 (Sigma Aldrich), and incubated for 30 min at

37uC. Then 27.5 mL PBS and 47.5 mL complete TM-Mini 76
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stock (Roche) were added to the enzyme-treated samples, and 5-

fold lower amounts to the non-treated samples. Subsequently,

5 mL 4% (w/v) sodium phosphotungstatic acid in 170 mM MgCl2
(pH 7.4) was added to the final concentration of 0.3% (w/v)

sodium phosphotungstatic acid. The samples were incubated for

30 min at 37uC, with constant agitation, and then centrifuged

(140006g, 30 min). The precipitation was also performed for the

control samples, with 5-fold lower volumes of reagents used, as

compared to the samples treated with the enzymes. The

supernatants from the precipitation were discarded, and the

pellets were resuspended in 20 mL 0.1% sarcosyl in PBS (pH 7.4).

Finally, 10 mL of 36 loading buffer, containing 16% 2-mercap-

toethanol, was added.

Additional Purification of the R30 Proteolytically Active
Fraction

The proteolytically active R30 fraction from the Superdex 200

preparative grade gel filtration column was further purified, to

identify the active protease(s). The next step of purification/

separation of this fraction was using a MonoQ 4.6/100 ion-

exchange gel column (GE Healthcare) on a FPLC system. The

column was eluted with 50 mM Tris/HCl, pH 8.0, with a linear

gradient of NaCl from 0.0 M to 1.0 M at a flow rate of 1 mL/

min. The active fraction, which eluted at around 0.5 M NaCl, was

ultrafiltered and concentrated with an Ultra-15 Amicon centrif-

ugal filter unit (Millipore) with PBS. The purity of the enzyme

activity was analyzed by 12% SDS-PAGE. The proteolytic activity

was tested on zymogram gels, as described below.

Qualitative Proteolytic Activity Assay
To assay the proteolytic activity of specified samples, we

followed the zymography procedure described by Foophow et al.

[38], which is based on zymogram gels (12% SDS-PAGE gels

containing 0.1% [w/v] casein (Sigma Aldrich) as substrate).

Samples (0.5 mg) were applied to these casein-containing

zymogram gels and electrophoresed at a constant 125 V for

70 min. The gels were then soaked in 2.5% (v/v) Triton X-100

on a shaker for 60 min, washed twice with 50 mM Tris/HCl,

pH 8.0, containing 1 mM CaCl2, and incubated in the same

buffer for 4 h at 80uC. The proteolytic activity was visualized as

clear bands on the gel against a blue background, using

Simplyblue staining.

Quantitative Proteolytic Activity Assay
The proteolytic activities of specified fractions were determined

using the azocasein assay described by Charney et al. [39], with

some modifications. The protein concentrations were determined

by the Bradford method [40], using the BioRad Protein Assay

(BioRad) with bovine serum albumin as the standard. Briefly, the

reaction mixtures were prepared in PCR tubes and contained

40 mL 50 mM Tris/HCl, pH 8.0, 50 mL 0.2% (w/v) azocasein

(Sigma Aldrich) in the same buffer and 10 mL sample (1 mg

protein). After 20 min at 92uC, the reactions were stopped by

adding 50 mL 15% (w/v) trichloroacetic acid. The samples were

kept at 4uC for 10 min, and then centrifuged at 100006g for

10 min. The absorbance of the supernatants was measured at

366 nm against the blank (complete reaction mixture stopped

before incubation at 92uC). One unit of protease activity was

defined as the amount of enzyme that yielded an increase in A366

of 0.1 O.D. under the relevant experimental conditions. The

samples were assayed as triplicates and the standard errors

calculated. The maximal activity was defined as the highest

activity of the purified pernisine in the absence of CaCl2.

Protease Activity
The azocasein assay described above was used to determine the

proteolytic activity optimum of the purified pernisine under the

different experimental conditions. Initially, the optimum proteolytic

activity of the purified pernisine in the presence of different CaCl2
concentrations (0 to 8 mM) was investigated. Then, the effects of

different NaCl concentrations (0 to 500 mM) on the proteolytic

activity of the purified pernisine were examined. To determine the

effects of CaCl2 on the temperature optimum, the activity of the

purified pernisine was measured in the temperature range from

50uC to 150uC in the absence and presence of 1 mM CaCl2. A

heating block (StarLab, Germany) was used to incubate the reaction

mixture for 20 min at 50uC, 70uC, 80uC, 90uC, 99uC, 110uC,

120uC, 130uC and 150uC. To avoid evaporation, the tubes were

sealed with parafilm. A similar experiment was performed for the pH

range from pH 2 to pH 13. The buffers used were: 50 mM glycine/

HCl (pH 2 to 4), 50 mM HEPES (pH 6 to 8) and 50 mM glycine/

NaOH (pH 9 to 13). The pH values at the incubation temperature

(92uC) were calculated taking into account the dpH/dT coefficients

[41]. Similarly, the thermostability of pernisine was determined by

the enzymatic activity measurement at different temperatures (70uC
and 90uC) in the presence and absence of Ca2+ ions at pH 8.0 for

prolonged incubation times (0 min, 20 min, 40 min, 120 min) was

measured as previously described Catara et al. [42].

The effects on the proteolytic activity of inhibitors, reductants,

denaturants and detergent were also analyzed. Samples of the

purified pernisine in the reaction mixture were preincubated at room

temperature for 10 min prior to the azocasein assays. The inhibitors

studied were ethylenediaminetetraacetic acid (EDTA; 1, 10 mM),

ethylene glycol-bis(b-aminoethyl ether)-N, N, N, N-tetraacetic acid

(EGTA; 1, 5 mM), iodoacetamide (IAA; 1 mM) and phenylmethyl-

sulfonyl fluoride (PMSF; 1, 10 mM); the reductants were 2-

mercaptoethanol (1%, 5%) and dithiothreitol (DTT; 1, 5 mM); the

denaturants were urea (1, 4 M) and guanidinium hydrochloride

(GdnHCl; 1, 4 M); and the detergent was SDS (0.1%, 3.0%).

Protein Identification by Tandem Mass Spectrometry
Selected protein bands from the SDS-PAGE were destained and

reduced in 25 mM NH4HCO3 containing 10 mM DTT, for 45 min

at 56uC. They were then alkylated in the same buffer containing

55 mM IAA for 30 min at room temperature. The gel pieces were

washed with 25 mM NH4HCO3 and dried. Trypsin solution

(12.5 ng/mL trypsin in 25 mM NH4HCO3) was added, and the

samples were incubated overnight at 37 uC. The digested peptides

were extracted from the gel with a mixture of 50% acetonitrile and

5% formic acid. The extracts were concentrated to 10 mL using a

Concentrator (Eppendorf model 5301) and analyzed by MS/MS.

The MS/MS analysis was performed using a Proxeon EASY-

nLC II HPLC unit (Thermo Scientific) coupled to a LTQ

Orbitrap Velos ETD mass spectrometer. The peptide samples

were loaded onto an Aquasil C18 Picofrit HPLC column (New

Objective), and eluted with a 30-min 3% to 50% acetonitrile

gradient at a 350 nL/min flow rate. The mass spectra were

analyzed by Proteome Discoverer (Thermo Scientific) using a

nonredundant NCBI protein database. Positive hits were re-

evaluated by Scaffold (Proteome Software). Hits that showed

100% probability were considered as significant.

Results

Initial Temperature- and Time-dependent Digestion of
PrPSc by the R30 Fraction

The effectiveness of the R30 fraction from the Superdex 200

preparative grade gel filtration column for the proteolytic removal of

Enzymatic Degradation of PrPSc
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PrPSc from Creutzfeldt-Jakob disease (CJD)-infected brain homog-

enates was first estimated. This was followed as the time-dependent

degradation of the PrPSc isoform in the supernatant of the CJD brain

homogenates. From Figure 1, it can be seen that the PrPSc in the

supernatant of these brain homogenates is stable over 60 min at

92uC in the absence of the R30 fraction (Fig. 1, lane 1). After addition

of the R30 fraction to the reaction mixture, PrPSc was not detected in

the supernatant after just 10 min of incubation at 92uC (Fig. 1, lane

3). On this basis, all of the further incubations were carried out for

20 min at the appropriate temperatures. This proteolysis was due to

a hyperthermophilic protease in the R30 fraction, as the degradation

of PrPSc was not complete when the reaction mixture was incubated

at room temperature (Fig. 1, lane 2).

Digestion of PrPSc by the R30 Fraction
Digestion of the cellular prion protein, PrPC, by the R30

fraction at 92uC was comparable with that of proteinase K at 37uC
(Fig. 2). Proteinase K and the R30 fraction both removed the

immunoreactive material from the reaction mixtures to below the

detection level of Western blotting (Fig. 2, lanes 2, 4, respectively).

Furthermore, a significant difference in proteolytic degradation

was obtained when supernatants of CJD brain homogenates were

used (Fig. 2, panel A1). After 20 min of incubation of the PrPSc

samples with proteinase K, there was little digestion of the

immunoreactive material (Fig. 2, lanes 5, 6). On the contrary, with

the R30 fraction, the immunoreactive material from the reaction

mixtures was again below the detection level of Western blotting

(Fig. 2, lanes 7, 8). The proteolytic activity of the R30 fraction also

did not depend on the species of origin of the PrP used (Fig. 2,

panels A1, B, C). The activities of proteinase K and the R30

fraction were also tested against the protein from amyloid plaques

typical for human Alzheimer’s disease (Fig. 2, panel A2). Here,

again, the R30 fraction completely digested the immunoreactive

material from the reaction mixtures to below the detection level of

Figure 1. Temperature- and time-dependent degradation of
PrPSc by the R30 fraction, in post-nuclear homogenates from
CJD-infected brain. A post-nuclear homogenate from CJD-infected
brain was incubated as indicated, without (lane 1) or with (lanes 2–6)
the R30 fraction from the Superdex 200 preparative grade gel filtration
column, under the following conditions: at room temperature for
60 min (lane 2; RT); or at 92uC for 10 min (lane 3), 20 min (lane 4),
40 min (lane 5), and 60 min (lanes 1, 6). The proteins were separated by
SDS-PAGE and transferred to nitrocellulose membrane. The immuno-
reactive species were detected as described in Materials and Methods,
with the 6H4 anti-PrP monoclonal antibody used as the primary
antibody.
doi:10.1371/journal.pone.0039548.g001

Figure 2. Digestion of PrPC and PrPSc of different species by the R30 fraction. Post-nuclear homogenates from human (A), bovine (B) and
mouse (C) uninfected (lanes 1–4), TSE infected (lanes 5 to 8) and Alzheimer’s disease (lanes 9 to 12) brains were incubated as indicated, without (lanes
1, 5, 9) or with (lanes 2, 6, 10) 0.75 mg proteinase K (PK), for 20 min at 37uC, or without (lanes 3, 7, 11) or with (lanes 4, 8, 12) the R30 fraction from the
Superdex 200 preparative grade gel filtration column, for 20 min at 92uC. The proteins were separated by SDS-PAGE and transferred to nitrocellulose
membranes. The immunoreactive species were detected as described in Materials and Methods, with the 6H4 anti-PrP monoclonal antibody used as
the primary antibody.
doi:10.1371/journal.pone.0039548.g002

Enzymatic Degradation of PrPSc
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Western blotting (Fig. 2, panel A2, lanes 11, 12), although here the

same was also seen for proteinase K (Fig. 2, panel A2, lanes

9, 10).

Detection of Smaller sized Peptides Following PrPSc

Digestion
The degradation of PrPSc by the R30 fraction was further

examined with the use of two monoclonal antibodies against

different epitopes of PrPSc, for the N-terminal (EB8) and the C-

terminal (C7/5). For the detection of smaller peptides that would

result from incomplete digestion of PrPSc at the N-terminal with

the EB8 antibodies, no immunoreactive material (and hence no

smaller N-terminal fragments) were detected with Western blotting

(Fig. 3A, lanes 2–5). Furthermore, even in reaction mixtures with

up to 4-fold the original amount of PrPSc-infected brain

homogenate supernatant there were still no smaller degradation

products of PrPSc detected following this treatment with the R30

fraction (Fig. 3A, lane 5).

Similarly, for the detection of smaller peptides that would result

from incomplete digestion of PrPSc at its C-terminal, the C7/5

monoclonal antibody was used. Here, dot blot analysis was used,

as the C7/5 monoclonal antibody does not bind to the denatured

epitope. The PrPSc isoform was confirmed only in the control

reaction mixture, while the addition of the R30 fraction also

resulting in the complete disappearance of the signal in the dot

blot analysis (Fig. 3B). The appropriate controls with the 6H4

monoclonal antibody and the secondary antibodies alone were

incorporated in the same experiment, and gave the expected

results (Fig. 3B). The 6H4 monoclonal antibody reacted only with

the undigested PrPSc samples, and the secondary antibodies did

not react with either of these samples.

The extent of degradation of PrPSc by the R30 fraction was

further estimated using NaPTA precipitation. The post-nuclear

fractions from CJD-infected brain homogenates were incubated

for 20 min in the absence and presence (5-fold greater volume) of

proteinase K (at 37uC) or the R30 fraction (at 92uC), and then

subjected to the NaPTA precipitation procedure (Fig. 4, lanes 1, 2,

and lanes 3, 4, respectively). The proteins were separated by SDS-

PAGE and then transferred to nitrocellulose membranes. The

immunoreactive species were detected using the 6H4 monoclonal

antibody. From the intensities of the bands in Figure 4 for lanes 1

and 3, although there was less human PrPSc in the sample than in

that incubated with the R30 fraction at 92uC (Fig. 4, lane 3), as

compared to proteinase K at 37uC (Fig. 4, lane 1), there were no

detectable fragments from the proteolytic degradation of PrPSc by

the R30 fraction in this Western blotting (Fig. 4, lane 4).

Figure 3. Detection of smaller sized peptides as a result of
PrPSc digestion. A. Post-nuclear homogenates from uninfected (lane
1) and CJD-infected (3, 6, 9 and 12 mL; lanes 2–5, respectively) brains
were incubated as indicated, without (lane 1) and with the R30 fraction
from the Superdex 200 preparative grade gel filtration column, for
20 min at 92uC. The proteins were separated by SDS-PAGE and
transferred to nitrocellulose membranes. The immunoreactive species
were detected as described in Materials and Methods, with the EB8 anti-
PrP (N-terminal) monoclonal antibody used as the primary antibody. B.
Diluted (20x) post-nuclear homogenates from CJD-infected brain were
incubated as indicated, without (lane 1) or with (lane 2) the R30 fraction
from the Superdex 200 preparative grade gel filtration column, for
20 min at 92uC. The proteins were dot blotted onto nitrocellulose
membranes. The immunoreactive species were detected as described in
Materials and Methods, with the C7/5 anti-PrP (C-terminal) and the 6H4
anti-PrP monoclonal antibody used as the primary antibodies, as
indicated.
doi:10.1371/journal.pone.0039548.g003

Figure 4. Detection of phosphotungstate-precipitable PrP. Post-nuclear homogenates from CJD-infected brain were incubated as indicated,
without (lane 1) or with (lane 2) 0.75 mg proteinase K (PK), for 20 min at 37uC, or without (lane 3) or with (lane 4) the R30 fraction from the Superdex
200 preparative grade gel filtration column, for 20 min at 92uC. Following NaPTA precipitation as described in Materials and Methods, the proteins
were separated by SDS-PAGE and transferred to nitrocellulose membranes. The immunoreactive species were detected as described in Materials and
Methods, with the 6H4 anti-PrP monoclonal antibody.
doi:10.1371/journal.pone.0039548.g004
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Identification of Proteolytically Active Purified Pernisine
from the R30 Fraction

The R30 fraction from the Superdex 200 preparative grade gel

filtration column was further purified using a monoQ column, as

described in Materials and Methods. The purification steps from

the crude extract to this purified pernisine are summarized in

Table 1. This pernisine protease was purified 9.7-fold, with a final

17% yield, and with a specific activity of 2091 U/mg protein. In

Fraction R30 there are clearly visible two distinctive protein bands

with molecular masses (MW) of 34 kDa and 23 kDa (Fig. 5A, lane

2, IV, VI) and low intensity bands at 46 kDa (lane 2, I) and

10 kDa (Fig. 5A, lane 2). Further purification of this R30 fraction

using monoQ ion-exchange chromatography highlighted protein

bands at 23 kDa and at around 34 kDa (Fig. 5A, lane 3, III, IV).

Activity staining showed that the R30 fraction and the additionally

purified post-monoQ fraction both contained a proteolytically

active band, as estimated from a zymogram gel (Fig. 5B, lanes 5,

6), with a MW of around 23 kDa (Fig. 5A) and at 34 kDa,

observed only in purified pernisine.

Mass spectrometry analysis revealed that bands I and IV of

Figure 5A, lane 2, contained fragments from pernisine. The other

bands contained various fragments from other A. pernix proteins:

ABC-transporter like proteins, hypothetical proteins APE_0061

and APE_1117, and a surface-layer protein (Table S1). All of these

identified proteins are part of the extracellular fraction of proteins

from A. pernix [43,44].

Data from the SDS-PAGE, MS/MS analysis and zymography

imply that this purified pernisine has a proregion that is

autocleaved during maturation. Pernisine has a MW of 44 kDa,

as calculated from its amino-acid sequence. Based on MS/MS

data (Table S1), the protein bands with MW of 46 kDa and

34 kDa in R30 fraction (Fig. 5A, lane 2) as well as the protein

bands at 34 kDa and 23 kDa in the purified pernisine (Fig. 5A,

lane 3) correspond to the same enzyme - pernisine. According to

Figure 5, the purified pernisine is in active mature form at 23 kDa

and in pre-form at 34 kDa (Fig. 5A, lane 6). Thus, it appears that

the purified pernisin is a mixture of two different active forms,

which will have to be further analysed.

Digestion of PrPSc by the Purified Pernisine
As described for fraction R30, digestion of the cellular prion

protein, PrPC, by the purified pernisine at 92uC was comparable

with that of proteinase K at 37uC (Fig. 6). A significant difference

in the proteolytic degradation was obtained when supernatants

(data not shown) of CJD brain or complete homogenates were

used (Fig. 6, panel A1). After 20 min of incubation of the PrPSc

samples with proteinase K, there was little digestion of the

immunoreactive material (Fig. 6, lanes 2). On the contrary, with

Table 1. Summary of the steps for the purification and identification of the pernisine from the growth medium of A. pernix K1.

Purification step
Specific activity
[U/mg protein]# Total protein [mg] Total activity [U]# Yield [%] Purification [fold]

Concentrated crude extract* 216 25 5400 100 1

Post S-200 (R30 fraction)1 727 6.15 4470 83 3.4

Post monoQ (purified pernisine)1 2091 0.44 920 17 9.7

*Note: during concentration using 10-kDa cut-off membranes, low molecular mass proteins were lost.
#One unit of protease activity is defined as the amount of enzyme that yields an increase in A366 of 0.1 O.D. under the relevant experimental conditions.
1As used in the present study.
doi:10.1371/journal.pone.0039548.t001

Figure 5. SDS-PAGE analysis and zymography through the purification steps of the medium from A. pernix. Representative gels of
medium samples through the purification, following electrophoresis on standard 12% SDS-PAGE (A) and on 12% SDS-PAGE with casein as substrate
for zymography activity (B: 4 h at 80uC), with staining with Simplyblue dye. Lanes 0, protein MW markers (as indicated left); lanes 1 and 4,
concentrated medium fraction; lanes 2 and 5, R30 fraction from the Superdex 200 preparative grade gel filtration column; and lanes 3 and 6, the post-
monoQ purified pernisine fraction (see Table 1). Lane 2, I-VI, selected protein bands of R30 fraction taken for MS/MS analysis.
doi:10.1371/journal.pone.0039548.g005
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the pernisine, the immunoreactive material from the reaction

mixtures was again below the detection level of Western blotting

(Fig. 6, lanes 4). The proteolytic activity of pernisine also did not

depend on the species of origin of the PrP used (Fig. 6, panels A1,

B, C). The activities of proteinase K and pernisine were also tested

against the protein from amyloid plaques typical for human

Alzheimer’s disease (Fig. 6, panel A2). Here, again, the pernisine

digested the immunoreactive material from the reaction mixtures

Figure 6. Digestion of PrPC and PrPSc of different species by purified pernisine. Post-nuclear homogenates from human (A), bovine (B) and
mouse (C), TSE infected (lanes 1 to 4) and Alzheimer’s disease (lanes 5 to 8) brains were incubated as indicated, without (lanes 1, 5) or with (lanes 2, 6)
0.75 mg proteinase K (PK), for 20 min at 37uC, or without (lanes 3, 7) or with (lanes 4, 8) pernisine for 20 min at 92uC. The proteins were separated by
SDS-PAGE and transferred to nitrocellulose membranes. The immunoreactive species were detected as described in Materials and Methods, with the
6H4 anti-PrP monoclonal antibody used as the primary antibody.
doi:10.1371/journal.pone.0039548.g006
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to below the detection level of Western blotting (Fig. 3, panel A2,

lane 8), although the same was observed for proteinase K (Fig. 3,

panel A2, lane 6).

Effects of CaCl2 and NaCl on the Enzymatic Activity
Figure 7A shows the results for the relative activity of this

purified pernisine at 92uC and pH 8.0 according to the addition of

increasing concentrations of CaCl2 (0–8 mM). The maximum

enhancement of the purified pernisine activity was observed at

around 1 mM CaCl2. Further increasing the CaCl2 above 1 mM

led to a gradual decline in this enhanced activity. Similar

enhancement of CaCl2 on enzyme activity was reported for

aeropyrolysine, another heat-stable extracellular protease from

A. pernix K1 [45].

The effects of increasing concentrations of NaCl (0–500 mM)

on the relative activity of the purified pernisine in the absence and

presence of 1 mM CaCl2 are presented in Figure 6B. The

maximal activity in the absence of added CaCl2 was seen with

20 mM NaCl. As the concentration of NaCl was increased from

0 mM to 500 mM, the proteolytic activity of the purified pernisine

decreased by more than 50%. The initially higher activity in the

presence of 1 mM CaCl2 showed a decrease with the addition of

NaCl, although this was seen as only around 10% over the same

concentration range of NaCl (Fig. 7B). The maximal activity of the

purified pernisine seen for 20 mM NaCl in the absence of 1 mM

CaCl2 increased to more than two-fold after the addition of CaCl2,

with even larger relative enhancement by CaCl2 at higher NaCl

concentrations (Fig. 7B).

Single charged electrolytes like NaCl can have influences on

charged groups on the surface of a protein [46], which can be

Figure 7. Azocasein assays of the purified pernisine: effects of CaCl2 and NaCl. Relative activities of the purified pernisine according to
increasing CaCl2 concentrations (A), and according to increasing NaCl concentrations in the presence (gray, dot-dash line) and absence (black line) of
1 mM CaCl2 (B). Assays were carried out in 50 mM Tris/HCl, pH 8.0, with 0.1% (w/v) azocasein, for 20 min at 92uC. Data are means 6 SD from three
independent experiments. The lines shown represent the best fit of the data according to OriginPro 8.0 program.
doi:10.1371/journal.pone.0039548.g007

Figure 8. Azocasein assays of the purified pernisine: effects of temperature and pH. Relative activities of the purified pernisine in the
presence (gray dashed lines) and absence (black lines) of 1 mM CaCl2 according to temperature (A), in 50 mM Tris/HCl, pH 8.0, and according to pH
(B), in 50 mM glycine/HCl, pH 2 to 5, 50 mM HEPES, pH 6 to 8, or 50 mM glycine/NaOH, pH 9 to 11, at 92uC. Assays were carried out for 20 min. Data
are means 6 SD from three independent experiments. The lines shown represent the best fit of the data according to OriginPro 8.0 program.
doi:10.1371/journal.pone.0039548.g008
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especially important if these are charged groups near to a

catalytically active site. The further increases in the concentration

of NaCl (as ionic strength) might affect such charges near to the

active site. Indeed, the net charge of a protein depends on the ionic

strength, pH, salt type, salt concentration, and ionic valence.

Altogether, changes to the charge of a protein can have influences

on its thermostability, solubility and biological activity [46]. We

can also conclude here that NaCl and CaCl2 together do not show

any cumulative effects, as they appear to separately affect the

activity, reflecting their relatively different effects on enzyme

stabilization and/or kinetics.

Effects of Temperature and pH on the Enzymatic Activity
The effect of temperature on the proteolytic activity of the

purified pernisine was examined in the absence and presence of

1 mM CaCl2 (Fig. 8A), using the azocasein assay at pH 8.0 (in

50 mM Tris/HCl). The purified pernisine showed proteolytic

activity in the broad temperature range from 70uC to 95uC, with

the maximal activity at around 85.060.5uC. In the presence of

1 mM CaCl2, the proteolytic activity of pernisine was enhanced,

to reach around 75% greater activity, with the maximum activity

at 105.060.5uC (Fig. 8A).

The shift in the temperature optimum in the presence of CaCl2
has already been described for pernisine [42] and for some other

proteins: e.g. aeropyrolysine [45], recombinant tengconlysine [47]

and aqualysin I [48]. The effects of pH on the enzymatic activity

of the purified pernisine at 92uC are shown in Figure 8B. The

activity of pernisine at 92uC was detected (.20%) in the broad

range from pH 3.5 to 8.0, with a pH optimum at 7.060.2. In the

presence of 1 mM CaCl2, there was significantly enhanced activity

of the purified pernisine observed in the wide pH range from 3 to

10 (Fig. 8B), with the pH optimum at 6.5.

The enzymatic activity of pernisine at different temperatures

(70uC and 90uC) in the presence and absence of Ca2+ ions at

pH 8.0 for prolonged incubation times (0 min, 20 min, 40 min,

Figure 9. Thermostability of pernisine. Residual activity of pernisine incubated at different temperatures (70uC and 90uC) in the presence and
absence of Ca2+ ions at pH 8.0 for prolonged incubation times (0 min, 20 min, 40 min, 120 min) as marked.
doi:10.1371/journal.pone.0039548.g009

Table 2. Residual protease activity of the purified pernisine in the absence and presence of CaCl2 and protease inhibitors.

Inhibitor
Concentration
added [mM] Class of inhibitor

Residual protease activity
without CaCl2 [%]

Residual protease activity with
1 mM CaCl2 [%]

None – – 100 216

EDTA 1 Metalloprotease 3 202

5 0 1

EGTA 1 Metalloprotease 1 197

5 0 3

PMSF 1 Serine protease 7 15

10 2 6

Iodoacetamide 10 Cysteine protease 103 198

doi:10.1371/journal.pone.0039548.t002
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120 min) showed that pernisine remains proteolytic activity in the

presence of Ca2+ ions. In the absence of Ca2+ decreasing of

residual proteolytic activity over time was observed (Figure 9).

Based on these observations we can conclude that pernisine is

thermally stable protease.

Effects of Protease Inhibitors on the Enzymatic Activity
Different inhibitors (Table 2) were used to test for their effects

on the protease activity of the purified pernisine. These included

inhibitors of metalloproteases and serine and cysteine proteases, as

specified in Table 2. EDTA, EGTA and PMSF had the greatest

inhibitory effects on the purified pernisine activity, which confirms

that it is a metalloprotease and serine protease. Addition of 1 mM

EDTA or EGTA to the purified pernisine in the absence of added

CaCl2 effectively completely inhibited the protease activity of the

purified pernisine (Table 2). However, in the presence of 1 mM

CaCl2, 1 mM EDTA and EGTA had no significant effects, with

the need for higher (5 mM) EDTA and EGTA for complete

inhibition of the purified pernisine. In contrast, as a serine protease

inhibitor, PMSF (1 mM, 10 mM) effectively blocked this activity

both in the presence and absence of 1 mM CaCl2, while IAA as a

cysteine protease inhibitor showed no inhibition here, even at

10 mM.

Its is likely that EDTA and EGTA affect this purified pernisine

activity not only by extracting the Ca2+ ions, which could lead to

denaturation of the protein, but also by influencing the autolysis of

the purified pernisine, as implied by Catara et al. [42]. Thus, it is

likely that some Ca2+ ions will already be coordinated with this

purified pernisine, similar to what has been shown for Tk-SP: Ca2+

is bound too tightly to Tk-SP to be removed with extensive dialysis

against Ca2+-free buffer, but it can be removed by treatment with

10 mM EDTA [49].

Effects of Denaturing Agents on the Enzymatic Activity
Table 3 gives the data for the residual purified pernisine activity

in the presence of further reagents: two reductants (DTT and 2-

mercaptoethanol), two denaturants (GdnHCl and urea) and a

detergent (SDS). With the purified pernisine in the absence of

1 mM CaCl2, at both 1 mM and 5 mM, DTT showed about 65%

inhibition of the purified pernisine activity, which was slightly

reduced, to around 45% inhibition, in the presence of 1 mM

Table 3. Residual protease activity of the purified pernisine in the absence and presence of CaCl2 and reductants, denaturants and
detergent.

Reagent Concentration added Class of reagent
Residual protease activity
without CaCl2 [%]

Residual protease activity with
1 mM CaCl2 [%]

None – – 100 201

Dithiothreitol 1 mM Reductant 35 56

5 mM 34 52

2-mercaptoethanol 1% Reductant 48 70

5% 39 62

Guanidine HCl 1 M Denaturant 27 133

4 M 35 306

Urea 1 M Denaturant 52 104

4 M 50 94

SDS 0.1% Detergent 69 132

3.0% 20 68

doi:10.1371/journal.pone.0039548.t003

Figure 10. Model of the three-dimensional structure of
pernisine. Proposed proregion (black; Val1-Met62) and mature (gray;
Ala63-Val396) forms. Model structure was built using the Geno3D2
program. Note: part of the N-terminal of the amino-acid sequence (M1-
V32) is missing.
doi:10.1371/journal.pone.0039548.g010
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CaCl2 (Table 3). Similar effects were seen for 2-mercaptoethanol,

with about 55% and 35% inhibition, respectively (Table 3).

For the denaturants, in the presence of 1 mM CaCl2, 1 M

GdnHCl showed greater inhibition of the purified pernisine

compared to 4 M urea (residual activities, 27% vs. 50%,

respectively). Of note, at the higher GdnHCl of 4 M, this also

decreases the pH, which reflects on the change in the enzyme

activity. Similarly, this might also be related to the case of addition

of CaCl2 here, where 4 M GdnHCl increased the enzyme activity

over and above the Ca2+ effect (Table 3). However, it is also

known that some denaturants can affect enzyme active sites,

promoting faster catalysis [47].

The purified pernisine remains relatively active with a low SDS

concentration (0.1%), both in the absence and presence of 1 mM

CaCl2, with residual activity also remaining with the addition of

3% SDS (Table 3).

Discussion

In the present study, we have shown that pernisine is the

proteolytic enzyme that we have purified from the growth medium

of A. pernix and that can digest PrPSc that is resistant to degradation

by proteinase K. The R30 fraction and the purified pernisine can

digest PrPSc from different species (bovine, mouse, human)

(Figures 2, 6 A1), as well as protein plaques in Alzheimer disease

(Figures 2, 6, A2). Thus our analysis of the fraction (R30) and

purified enzyme (Table S1) by MS/MS identified pernisine as the

active enzyme.

Catara et al. [42] identified pernisine by SDS-PAGE and gel

filtration, and they determined its proteolytic activity by SDS-

PAGE with casein overlay. In their study, the recombinant

pernisine was expressed in Escherichia coli, and the data suggested

that it has a proregion. Our data in the present study also indicate

that the purified pernisine is likely to have a proregion, as was seen

for the similar protease Tk-subtilisin [50], and for other bacterial

subtilisins [38]. The alignment of the amino-sequence of pernisine

with Tk-subtilisin showed 51.7% identity and 66.5% consensus in

their sequences. Tk-subtilisin has a signal sequence M1-A24 and a

prosequence G25-L93. Analysis of the amino-sequence of pernisine

using the SignaIP 3.0 program, which uses neural networks and

hidden Markov models that are trained on eukaryotes, leads us to

propose that pernisine has a M1-G24 signal sequence. From an

alignment of pernisine with Tk-subtilisin, we propose a prose-

quence of S25-M94. This prediction is in agreement with the data

from SDS-PAGE of the purified pernisine, with the two bands

seen corresponding the MWs of 45 kDa with the proregion, and

34 kDa without it (Figure 10). The active form of pernisine

observed at 23 kDa at higher protein concentrations could be the

result of further autocatalytic activity of pernisine, similarly as it

was reported before for Tk-SP [38]. By following the changes in

the enzymatic activity under a broad range of temperature for

prolonged incubation times (Figure 9), we can conclude that

pernisine is a thermostable metalloprotease that is compatible with

other thermostable enzymes that have already been described,

such as: Tk-subtilisin and Tk-SP from T. kodakaraensis [49],

aerolysine from A. pernix [45], and Aqualysin I from Thermus

aquaticus YT-1 [48].

Pernisine is a serine metalloprotease that is active in the

temperature range from 60uC to 99uC, in the pH range from 3.5

to 8.0, and at NaCl concentrations from 0 mM to 500 mM. Its

enzymatic activity optimum is at 85.060.5uC, pH 7.060.25 and

20 mM NaCl. The presence of 1 mM CaCl2 increases the

enzymatic activity to azocasein by two-fold, and shifts the activity

optimum to 10561uC and the pH optimum to 6.560.2. In the

presence of 1 mM CaCl2, the purified pernisine maintains its

enzymatic activity at NaCl concentrations of 0 mM to 500 mM,

while with 5 mM EDTA or EGTA, the purified pernisine is

completely inhibited. This purified pernisine activity is not

restored here even after addition of 1 mM CaCl2. Furthermore,

the purified pernisine is inhibited by the serine protease inhibitor

PMSF.

Based on our biochemical characterization of the purified

pernisine, we can conclude that CaCl2 has a crucial role in the

proteolytic activity at higher temperatures. This broad range of

pH and temperature activity of pernisine can thus be exploited for

different biotechnological and industrial applications in the food

industry, in decontamination processes of wastes, in the leather

industry, and in the degradation of infective protein aggregates

[38].

Supporting Information

Table S1 Proteins identification by tandem mass spec-
trometry in fraction R30 and post monoQ fraction-
purified pernisine. Bands marked I-VI and monoQ fraction of

purified pernisine in Figure 5A were analyzed by MS/MS and

data of identified proteins of specific bands are presented in the

table.
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