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Diallyl disulfide (DADS), a garlic extract also known as allicin, has been reported to have
numerous biological activities, including anticancer, antifungal, and inflammation-inhibiting
activities, among others. Although many studies have assessed whether DADS can treat
Candida albicans infection in vitro, its in vivo function and the underlying mechanism are
still not clear. Accumulated evidence has implicated the gut microbiota as an important
factor in the colonization and invasion of C. albicans. Thus, this study aimed to identify the
mechanism by which DADS ameliorates dextran sulfate (DSS)-induced intestinal C.
albicans infection based on the systematic analysis of the gut microbiota and
metabolomics in mice. Here, we determined the body weight, survival, colon length,
histological score, and inflammatory cytokine levels in the serum and intestines of
experimental mice. Fecal samples were collected for gut microbiota and metabolite
analysis by 16S rRNA gene sequencing and LC–MS metabolomics, respectively. DADS
significantly alleviated DSS-induced intestinal C. albicans infection and altered the gut
microbial community structure and metabolic profile in the mice. The abundances of some
pathogenic bacteria, such as Proteobacteria, Escherichia–Shigella, and Streptococcus,
were notably decreased after treatment with DADS. In contrast, SCFA-producing
bacteria, namely, Ruminiclostridium, Oscillibacter, and Ruminococcaceae_UCG−013,
greatly increased in number. The perturbance of metabolites in infectious mice was
improved by DADS, with increases in secondary bile acids, arachidonic acid, indoles and
their derivatives, which were highly related to the multiple differentially altered metabolic
pathways, namely, bile secretion, arachidonic acid metabolism, and tryptophan
metabolism. This study indicated that DADS could modulate gut microbiota and
metabolites and protect the gut barrier to alleviate DSS-induced intestinal C. albicans
infection in mice. Moreover, this work might also provide novel insight into the treatment of
C. albicans infection using DADS.
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INTRODUCTION

Candida albicans is one of the most common commensal fungi in
humans but causes millions of disseminated infections each year
and can even cause death (Wisplinghoff et al., 2004; Bongomin et al.,
2017; Pappas et al., 2018; Toda et al., 2019). As an opportunistic
pathogen, C. albicans is a normal component of the human gut
microbiota. Several studies have shown that the gut community
could influence the colonization and invasion of C. albicans (Mason
et al., 2012; Gutierrez et al., 2020). Moreover, gutC. albicans can also
induce bacteremia and an imbalance in the gut microbiota (Neville
et al., 2015; Hiengrach et al., 2019; Valentine et al., 2019). Therefore,
symptomatic C. albicans infection is closely related to the interplay
of C. albicans with other gut bacteria. On the other hand, damage to
the intestinal barrier also plays an important role in gut microbiota
dysbiosis and fungal disease (Yan et al., 2013; Basmaciyan et al.,
2019; Kumamoto et al., 2020). Therefore, it is of great importance to
understand the factors affecting fungal colonization in order to
prevent disease associated with C. albicans infection. However,
when we establish intestinal C. albicans infectious models, mice
will excrete gavaged C. albicans and cannot be infected. Thus, we
used DSS to induce the gut damage and then gavage C. albicans
(Hiengrach et al., 2019). In our previous studies, we found that
cocultivation of pathogenic Escherichia coli with C. albicans could
reduce the colonization of intestinal cells by C. albicans and reduce
fungal virulence gene expression (Yang et al., 2016). An increasing
number of studies have indicated that the intestinal microbiota,
metabolites, and gut barrier could affect the colonization and
invasion of C. albicans. Previous studies using 16S rRNA
sequencing method suggested that intestine-derived C. albicans
can erode the intestinal mucosa by regulating the intestinal flora.
Moreover, compared with that in healthy mice, the relative
abundances of Bacteroides, Pseudomonas, and Enterococcus were
increased significantly, while the abundance of Firmicutes (such as
Lactobacillus) was decreased, in model mice with intestinal C.
albicans infection. In addition, C. albicans has a synergistic
pathogenic effect with Enterococcus, which can lead to the
destruction of the epithelial barrier by reducing the expression of
the intestinal epithelial adhesion protein E-cadherin. Additionally,
intestinal injury is a prerequisite for disseminated gut C. albicans
infection (Koh et al., 2008; Bertolini et al., 2019; Hiengrach et al.,
2019; Zhai et al., 2020). In addition, the gut microbiota and
metabolites are closely related. Nontargeted high-throughput
metabolomics analysis technologies provide an opportunity to
explore the changes in metabolites related to microbiota
community imbalance during disease development. As a part of
the gut microbiome, C. albicans could also produce some toxic
metabolites, such as adhesin and extracellular proteases
(Staniszewska, 2020). Moreover, the impact of C. albicans on gut
flora will also cause changes in the microbiota metabolites, but there
are not many studies in this area. Studies indicated that fungi, as a
kind of commensal fungi, could promote the production of indole
derivatives, such as, tryptophan and indole-3-aldehyde, which could
activate AhR to protect and maintain mucosal integrity during
fungal infections or chemical damage and induce anticandidal
resistance (Heath-Pagliuso et al., 1998; Wikoff et al., 2009; Zelante
et al., 2013; Bessede et al., 2014; Romani et al., 2015). Studies have
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shown that inflammatory bowel disease (IBD) is related to changes
in microorganisms and the metabolic environment in the colon,
which participate in signal transduction and immune system
regulation and affect the activity of antibiotics (Machiels et al.,
2014; Imhann et al., 2018; Franzosa et al., 2019). Some metabolites
produced by gut bacteria, such as short-chain fatty acids (SCFAs),
indoles, bile acids, and amino acids, can regulate the intestinal
epithelium and immune function (Sun et al., 2017; Parada Venegas
et al., 2019; Lavelle and Sokol, 2020). However, few researchers have
combined studies of the intestinal microbiota with studies of the
changes in fecal metabolites during intestinal C. albicans infection.

Other interesting studies have indicated that traditional
Chinese medicines have a certain effect in regulating gut
microbiota. Moreover, diet plays an important role in human
health through regulating gut microbiome (Gentile and Weir,
2018; Zmora et al., 2019). Garlic, as a food that is often consumed
daily, is also a longstanding commonly used Chinese folk
medicine. The effective ingredient in garlic is diallyl disulfide
(DADS), also known as allicin, which can exert antifungal,
antibacterial , and antitumor effects and ameliorate
cardiovascular disease (Yi and Su, 2013; He et al., 2021). The
antifungal effect of DADS against C. albicans involves the
inhibition of biofilm formation by preventing the conversion of
yeast to hyphae (Khodavandi et al., 2011). Additionally, DADS
can reduce oxidative stress and inflammation and inhibit the cell
apoptosis induced by C. albicans (Lemar et al., 2005). Moreover,
DADS also has important effects on cellular immunity and
humoral immunity (Yadegari et al., 2009). However, animal
experiments involving the treatment of gut C. albicans
infection with DADS have not yet been reported, and whether
the treatment mechanism involves the gut microbiota and the
metabolite intestinal barrier has not been studied. In this study,
the mechanism of DADS treatment was explored by establishing
mouse models with DSS-induced intestinal C. albicans infection,
which are more representative of the conditions in the human
body (Hiengrach et al., 2019).
MATERIALS AND METHODS

Animals and C. albicans Culture
Female C57BL/6 mice aged 8 weeks were purchased and housed
in the Animal Center of East China Normal University
(Shanghai, China). Mice were fed ad libitum and allowed to
adapt to the environment (24 ± 2°C, 60 ± 5% relative humidity,
12/12 h dark/light cycle) for one week. All animal experiments
were approved by the Experimental Animal Ethical Review
Committee, East China Normal University (Shanghai, China).
C. albicans (strain SC5314) was purchased from the China
General Microbiological Culture Collection Center (CGMCC)
and then cultivated in yeast extract peptone dextrose (YEPD)
liquid medium. Next, a loop was inoculated and streaked on
chromogenic medium for the detection of C. albicans
(CHROMagar Company, France). Then, a single colony was
streaked on a YEPD agar plate, incubated for 25 h at 35°C and
reidentified by mass spectrometry (Shanghai Fifth People’s
Hospital, Fudan University, Department of Laboratory). An
January 2022 | Volume 11 | Article 743454
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inoculum of 1.0 × 106 C. albicans cells was prepared in 0.3 ml
phosphate buffered saline (PBS, pH 7.4).

Induction of Intestinal C. albicans Infection
in a Mouse Model With DSS
Mouse models of intestinal C. albicans infection were
constructed as previously published (Hiengrach et al., 2019).
Dextran sulfate (DSS; 3% wt/vol, 40 kD, Sigma-Aldrich, USA)
was included in the drinking water throughout the entire process
to induce colon damage. The PBS yeast suspension was orally
administered every 3 days to promote C. albicans colonization in
the gut (Figure 1A). Repeated oral-gastric gavage of C. albicans
was performed to maintain the fungal load in the gut at a certain
level. The fecal C. albicans content was evaluated on
chromogenic medium (Figure 1B). To determine the optimum
treatment effect, we tested different concentrations of DADS to
treat C. albicans infectious mice; 6, 20, and 40 mg/kg were
selected based on previous publications (Benavides et al., 2007;
Yousuf et al., 2011; Alam et al., 2013; Liang et al., 2015; Motta
et al., 2015; Zhang et al., 2019). DADS was diluted in 0.3 ml PBS
and administered by oral-gastric gavage after 6 h of treatment
with C. albicans (Figure 1C). A dosage of 20 mg/kg DADS was
determined to be suitable for subsequent experimental groups
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
through an evaluation of survival rate, colon length and disease
activity index (Figure 2). Seventy-five female mice were
randomly divided into five groups: control, DSS, CA + DSS,
CA + DSS + DADS (20 mg/kg), and DSS + DADS. After fifteen
days of treatment, feces were collected from all mice and stored
at −80°C. Blood was sampled by retro-orbital puncture, after
which the mice were sacrificed by cervical dislocation and their
colons and spleens were harvested.

Histomorphological Analysis
Colon samples were fixed in 4% neutral paraformaldehyde
solution, dehydrated, embedded in paraffin, sectioned into 5-
mm-thick slices and then stained with hematoxylin and eosin
(H&E) for observation. Histological changes were assessed by
two blinded experienced pathologists at the same time using a
previously described scoring system (Williams et al., 2001;
Christophi et al., 2016), and the average score was taken.

Western Blot Analysis
To analyze the protein expression of colon tissues, western blot
analysis was performed according to standard methods. Primary
antibodies against Occludin (Proteintech, 13409-1-AP),
Claudin-1 (GeneTex, GTX54539), and b-actin (Cell Signaling
A

B

C

FIGURE 1 | Schematic of the animal experiment design, including C. albicans gavage and DADS administration. (A) Schematic of C. albicans infection in the animal
models. (B) Fungal burden in feces. (C) Schematic diagram of the experiment to compare the function of different concentrations of DADS.
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Technology, CST-3077) were used. The secondary antibodies
were obtained from Jackson ImmunoResearch company: anti-
mouse IgG (115-035-003) and anti-rabbit IgG (111-035-003).

Then, the protein bands were visualized using an ECL
chemiluminescence imaging system and quantified by ImageJ
software to calculate the ratios of IntDen (target protein)/IntDen
(b-actin).

Enzyme-Linked Immunosorbent Assays
Mouse blood samples were collected and then centrifuged at 3,000
rpm at 4°C for 10 min for serum collection. Colon tissues were
ground in 9× fold homogenization medium and then centrifuged
for 10 min at 3,000 rpm and 4°C to collect the supernatants. All
serum and tissue supernatants were stored at −80°C for later
simultaneous detection. Subsequently, the levels of IL-6 and IFN-g
were measured by murine ELISA kits (88-7064, Thermo Fisher,
Austria; EK280/3-01, MuLTI SCIENCE, Shanghai) according to
the manufacturer’s instructions.

Measurement of FITC-Dextran Leakage
As previously described (Watson et al., 2015), FITC-dextran
leakage was measured to evaluate gut permeability. Briefly, mice
were starved overnight for approximately 8 h and then
administered 25 mg/ml FITC-dextran (4 kDa, Sigma-Aldrich,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
USA) dissolved in PBS. FITC-dextran was gavaged at a dose of
0.6 mg per gram of body weight. Blood samples (400 ml) were
collected via retro-orbital puncture after 4 h. Then, the
supernatants were collected by centrifugation and mixed with
an equivalent amount of PBS. Afterward, the fluorescence
intensity of diluted serum (100 ml) from each sample was
detected using a multimode reader (excitation: 485 nm
emission: 528 nm, bandwidth: 20 nm). The quantity of FITC
was calculated with a standard curve.

16S rRNA Analysis of the
Microbial Community
The composition of the gut microbiota and profile of metabolites
were assessed as previously described (Hu et al., 2021). Feces were
collected from each group of mice. Then, we randomly selected 6
fecal pellets for microbiome and metabolomics analyses. Briefly,
DNA was extracted from feces by a Standard DNA Extraction Kit
(QIAGEN). Then, the quality and quantity of DNA were
confirmed by agarose gel electrophoresis. The V3–V4 regions of
the 16S rRNA genes were amplified, and the quality was verified;
the amplicon was then purified and amplified again. Sequencing
of the V3–V4 gene amplicons was obtained using the Illumina
MiSeq platform. The raw data were filtered, and clean tags were
removed to obtain valid tags for preparing operational taxonomic
A

B

D

C

FIGURE 2 | Effects of different concentrations of DADS on mice with C. albicans infection. (A) Survival study. (B, C) Colon length and relevant statistical analysis.
(D) The disease activity index of animals in each group. Data are presented as the mean ± SEM (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001.
January 2022 | Volume 11 | Article 743454
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units (OTUs), which were classified using Vsearch software
(version 2.4.2) (Rognes et al., 2016) with a threshold of 97%
sequence similarity. Subsequently, according to the sequence
comparison of OTUs, pynast (v0.1) software (Caporaso et al.,
2010) was used to construct a phylogeny. The diversity and
composition of the intestinal microbiota were determined based
on a rarefied OTU table. Alpha diversity indexes of fecal samples
were generated from a normalized OTU table at a uniform depth.
Beta diversity indexes were generated to determine whether
significant differences in gut microbiota existed among different
groups based on the Bray–Curtis algorithm and unweighted
UniFrac distance and were also determined by principal
component analysis (PCA).

Fecal Metabolome Analysis
LC–MS analysis was performed by OE BioTech (Shanghai,
China). Fecal sample preparation and analysis were performed
as previously described (Liu et al., 2020). Briefly, fecal pellets (60
mg) were mixed with 500 ml of solvent and then ground,
vortexed and centrifuged for 15 min at 13,000 rpm at 4°C.
Subsequently, the supernatant was filtered using a 0.22 mm
microfilter, and the resulting supernatant was stored at −80°C
for LC–MS analysis. The quality control (QC) group was
established by pooling equal volumes of supernatant from each
sample to determine whether the mass spectrum platform of the
system was stable during the whole experiment. The metabolite
profiles were analyzed on an AB TripleTOF 6600 mass
spectrometer (AB Sciex) combining ESI sources in both
positive and negative ion scan modes. TOF parameters were as
described previously (Xiong et al., 2019). All reagents used were
of high-performance liquid chromatography (HPLC) grade.

The LC–MS data from fecal pellets were processed by
Progenesis QI software (Waters Corporation, Milford, USA),
and then Progenesis QI Data Processing Software was used to
identify the metabolites. The normalized data were visualized by
PCA and orthogonal partial least squares-discriminant (OPLS-
DA) analysis using the ropls package in R. The ellipses in PCA
and OPLS-DA plots were employed to characterize metabolic
perturbation among groups in a Hotelling T2 region with a 95%
confidence interval threshold.

The variable importance in projection (VIP) was calculated
based on the OPLS-DA model to identify significant metabolites
with a VIP >1.0 and P-value <0.05. The KEGG (http://www.kegg.
com/) database was used to explore the related metabolic pathways.

Statistical Analysis
Statistical analysis was carried out by SPSS 24.0 software (SPSS
Inc., Chicago, IL). All data were calculated from no fewer than
three replicates and are presented as the mean ± S.E.M. All data
were tested for normal distribution before comparisons between
groups. If the data were normally distributed, the differences
between groups were examined for statistical significance by
Student’s t-test (for comparisons between two groups) or one-
way ANOVA (for comparisons between multiple groups).
Otherwise, nonparametric tests, including the Wilcoxon test,
Bray–Curtis distance, Euclidean distance, and UniFrac, were
used to analyze the gut microbiota and metabolite data.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Survival analysis was performed by log-rank test. The analysis
methods used are provided in the figure legends. A P-value <0.05
was considered statistically significant.
RESULTS

DSS-Induced Intestinal C. albicans
Infection Alleviated by 20 mg/kg DADS
in Mice
We evaluated whether DADS could exert antifungal and anti-
inflammatory effects in gut C. albicans infectious mouse models
(Figure 1). The fecal C. albicans level was maintained at 104

CFU/g feces after treatment with 3% DSS and repeated gavage
with C. albicans (Figures 1A, B).

Infected mice were treated with three concentrations of DADS:
6, 20, and 40 mg/kg (Figure 1C). Mice with intestinal C. albicans
infection exhibited a decreased survival rate and shortened colon,
both of which were improved by administration of 6 and 20 mg/kg
DADS but not 40 mg/kg DADS (Figures 2A–C). Meanwhile,
treatment with 20 mg/kg DADS caused a reduction in the disease
activity index (DAI), consistent with the findings of weight loss,
general condition and fecal occult blood tests (Figure 2D). From the
observations above, 20 mg/kg was regarded as the optimum
concentration of DADS for the following experimental grouping
(Figure 3A). Mice treated with DSS to induce colon damage were
considered the model control group (DSS), and mice treated with
DSS + DADS were the experimental group. While administration
DSS and C. albicans significantly decreased the body weight and
survival of mice, DADS treatment alleviated these effects
(Figures 3B, C). Moreover, DADS treatment caused a marked
decrease in the load of fecal C. albicans compared with the CA +
DSS group (Figures 3D, E). These data suggested that it is better to
alleviate DSS-induced intestinal C. albicans infection in mice with
20 mg/kg DADS treatment, compared with 6 mg/kg. As for 40 mg/
kg DADS, there is no improvement.

DADS Exhibited an Anti-Inflammatory
Effect and Protected the Epithelial Barrier
of Mice With DSS-Induced Intestinal
C. albicans Infection
Spleen size can reflect inflammation in mice. DSS and C. albicans
increased the spleen/body weight ratio, which was significantly
improved by DADS (Figures 4A, B). In addition, we employed
ELISA to quantify the expression of proinflammatory cytokines,
namely, IL-6 and IFN-g. Notably, DSS and C. albicans caused a
significant increase in IL-6 and IFN-g in both the serum and colon,
and these changes could be reversed by DADS treatment
(Figures 4C, D). To investigate the effect of DADS on intestinal
inflammation, the length of colons and histological changes were
compared among groups. Consistent with the above results, DADS
ameliorated the colon shortening observed in mice treated with DSS
and C. albicans (Figures 5A, B). The histological examination
results revealed partial loss of the mucosal glands, erosion of the
submucosal and muscular layers, and increased neutrophil
infiltration in mice with C. albicans infection, which was
January 2022 | Volume 11 | Article 743454
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alleviated by DADS (Figures 5C, D). Damage to the intestine was
also evaluated by quantifying the FITC content in the serum, which
indicated that the increased permeability in the DSS and CA +
DADS groups could be improved by DADS (Figure 5E).
Furthermore, the expression levels of the tight junction proteins
Claudin-1 and Occludin in the colon were also quantitatively
analyzed; these proteins were significantly depleted in intestinal C.
albicans-infected mice and improved in the CA + DSS + DADS
group (Figures 5F, G). These data demonstrated that DADS
treatment could ameliorate the damage to the intestinal barrier
caused by DSS and C. albicans.

DADS Altered the Gut Microbiota
Community Composition of Mice With
DSS-Induced Intestinal C. albicans
Infection
Many studies have indicated that certain gut microbiota could
influence the survival and colonization properties of C. albicans.
During inflammation of the colon and DADS treatment, the gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
microbial communities may be altered. Based on this model, 16S
rRNA gene sequencing was used to identify key bacteria and
relevant metabolic pathways that might be changed among
groups. More than 99.4% of the sequence exhibited good
coverage values, which indicated adequate sequencing depth for
all groups. All other alpha diversity values (OTUs, observed
species, Chao1, and Shannon index) were lower in mice after
treatment with DSS and/or C. albicans than in the control group
and were not improved by DADS (Table 1). PCA showed that C.
albicans, DSS, and DADS treatment induced changes in the
intestinal microbiota composition. Moreover, the fecal samples
from the DSS and CA + DSS groups were clustered together with
high similarity, but in DADS-treated mice, samples from the
CA + DSS + DADS group were clustered with the control samples
(Figure 6A). PCA also separated the CA + DSS and CA + DSS +
DADS groups, which indicated that these gut microbial
communities were significantly different (Figure 6B). As shown
in Figures 3C, D, we determined the relative abundances of the
top 15 bacteria at the genus level among the groups. The genera
A

B

D E

C

FIGURE 3 | DADS alleviated symptoms in mice with C. albicans infection. (A) Schematic of C. albicans gavage infection and 20 mg/kg DADS administration.
(B) Changes in body weight. (C) Survival study. (D, E) Fungal burden in feces.
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Bacteroides , Escherichia–Shige l la , Lachnospiraceae_
NK4A136_group, Parabacteroides, and others exhibited high
relative abundance in all groups. Compared with C. albicans-
infected mice, the DADS treatment group had decreased relative
abundances of Escherichia–Shigella and Parabacteroides.

The key bacteria were visualized by a heatmap and analyzed by
the Wilcoxon rank-sum test (Figures 7A, B). At the phylum level,
DADS treatment was associated with a decreased abundance of
Proteobacteria (P = 0.019, Figure 7C) and increase abundance of
Tenericutes (P = 0.002, Figure 7D) compared to the intestinal
C. albicans infectious group (P < 0.05) (Figure 7A). As shown in
Figure 7B, at the genus level, the abundances of Escherichia–
Shigella (P = 0.014, Figure 7E), Faecalibacterium (P = 0.027,
Figure 7F), Parabacteroides (P = 0.001, Figure 7G), and
Streptococcus (P = 0.023, Figure 7H) were significantly
decreased, and the abundances of Prevotellaceae_NK3B31_group
(P = 0.002, Figure 7I), Ruminiclostridium (P = 0.023, Figure 7J),
Ruminococcaceae_UCG-013 (P = 0.002, Figure 7K), and
Oscillibacter (P = 0.038, Figure 7L) were enriched in DADS-
treated mice (Table 2).

DADS Improved the Fecal Metabolite
Profiles of Mice With DSS-Induced
Intestinal C. albicans Infection
Metabolic changes are closely related to alterations of the gut
microbiota and are also considered a crucial hallmark of
intestinal inflammation (Lanis et al., 2017). Thus, we
performed LC–MS analysis to detect differentially expressed
metabolites and relevant key metabolic pathways among
groups. A total of 8,689 metabolites were identified in 30 fecal
samples among the five groups. The PCA scatter plots showed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
clustered QC samples, which indicated the high quality of
metabolomics analysis (Figure 8A). We further identified the
differences in the metabolic profile between the CA + DSS and 20
mg/kg DADS treatment groups using two-dimensional PCA,
PLS-DA, and OPLS-DA analysis (Figures 8B–D). Next, to
identify key metabolites, we visualized the top 50 metabolites
on a heatmap and identified nineteen metabolic pathways that
were significantly differentially expressed between the C.
albicans-infected mice and DADS-treated mice (P <0.05,
Figures 8E, F). Additionally, we identified seventeen important
metabolites for further analysis between the two groups
(Table 3). All differentially expressed metabolites related to
tryptophan metabolism were upregulated in the DADS group,
including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, kynurenic
acid, N-acetylisatin, 5-hydroxyindoleacetic acid, quinoline-4,8-
diol, 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoic acid, 3-
methyldioxyindole, and 2-formaminobenzoylacetate. The levels
of some metabolites, such as PGB2, PGD2, TXA2, and lipoxin
A4, were increased in DADS-treated mice compared with C.
albicans-infected mice. Moreover, some metabolites of bile
secretion pathways were at a higher level in DADS-treated
mice, including deoxycholic acid, l i thocholic acid,
chenodeoxycholic acid, and cholic acid.
DISCUSSION

Colonization and invasion of intestinal C. albicans are usually the
prerequisites for disseminated C. albicans infection. To date,
although many studies have reported that the gut microbiota,
metabolites, and intestinal C. albicans could interact with each
A B

DC

FIGURE 4 | DADS exhibited an anti-inflammatory effect in mice with C. albicans infection. (A, B) Spleen size and the spleen/body weight ratio. (C, D) The
concentrations of IL-6 and IFN-g in the colon and serum.
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other, comprehensive research has been lacking, as the specific
changes in bacteria and metabolites and regulatory mechanisms
vary among animal models of intestinal C. albicans infection due
to differences in intervention measures and other factors. This
study mainly explored the effects of DADS, commonly known as
allicin, on the gut microbiota, metabolites, and intestinal barrier
of DSS-induced mice infected with enterogenic C. albicans. The
results indicated that DADS could reduce the intestinal
destruction caused by DSS and enterogenic C. albicans by
increasing the expression of intestinal tight junction proteins,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
reducing intestinal inflammation (reflected by improvements in
survival rate, weight change, colon length change, DAI score, and
H&E scores) and reducing the expression of inflammatory
factors in the serum and colon. In addition, DADS improved
the gut microbiota and intestinal metabolite profiles of mice
infected with intestinal C. albicans and increased the expression
of beneficial bacteria and the expression of related bile acids and
amino acids.

With regard to intestinal mucosal damage, C. albicans
colonization of the gut could break through the intestinal
A B

D E

F G

C

FIGURE 5 | DADS protected the epithelial barrier of mice with C. albicans infection. (A, B) Colon length and relevant statistical analysis. (C, D) H&E staining of colon
pathological changes and relevant scores. (E) FITC levels in the serum. (F, G) The levels of tight junction proteins, including Clauding-1 and Occludin. *P < 0.05,
**P < 0.01, and ***P < 0.001.
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barrier to cause further gut tissue damage, disseminated C.
albicans infection, and even the death of the host. While it is
well recognized that C. albicans can induce inflammatory bowel
dystrophy, the content of C. albicans in the intestines of mice is
not as high as that in human intestines, and C. albicans cannot
colonize the intestines of mice by oral-gastric gavage alone
(Kumamoto, 2011; Koh, 2013; Hoarau et al., 2016). Therefore,
the oral administration of C. albicans in the DSS-induced colitis
mouse model may be a better model of the condition in humans.
Consistent with previous reports, we observed significant weight
loss, decreased survival, increased DAI scores, and greater
colonization of C. albicans in mice with DSS-induced intestinal
C. albicans infection (Medrano-Dıáz et al., 2018; Hirayama et al.,
2020). However, all of the above indicators were significantly
improved by 20 mg/kg DADS intervention compared with the
control treatment, which proved that DADS is effective in
the treatment of intestinal C. albicans infection. Meanwhile,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
the intestinal barrier is one of the target organs that is
destroyed by intestinal C. albicans and plays an important role
in preventing disseminated C. albicans disease. We quantified the
extent of intestinal destruction by testing the concentration of
FITC-dextran in the serum in our experimental groups. FITC-
dextran is a fluorescent molecule that can cross a damaged
intestinal barrier and be transepithelially transported into the
blood. Therefore, the higher the content of fluorescent
substances in the blood is, the more serious the destruction of
the intestinal tract (Gupta and Nebreda, 2014). The most serious
intestinal damage was observed in the CA + DSS group, which
showed a significant difference from the DSS group. Moreover,
these results indicated that C. albicans could aggravate intestinal
destruction induced by DSS. In the CA + DSS + DADS group, we
observed a significantly decreased concentration of FITC-
dextran, which showed that DADS ameliorated the effect of C.
albicans infection on intestinal permeability. We further
TABLE 1 | The alpha diversity in each group of mice.

Items Control DSS CA + DSS CA + DSS + DADS DSS + DADS

OTUs 598.83 ± 27.72 462.67 ± 41.47 484.5 ± 63.4 470.83 ± 33.09 572.57 ± 72.04
Chao1 771.81 ± 56.89 677.52 ± 42.86 687.99 ± 53.67 642.59 ± 43.3 808.85 ± 62.42
Goods_coverage 0.99502 ± 0.00066 0.9948 ± 0.00027 0.99486 ± 0.00028 0.99556 ± 0.00042 0.99445 ± 0.00034
Observed_species 598.8 ± 29.95 459.1 ± 38.36 478.87 ± 58.82 468.18 ± 29.91 593.93 ± 58.77
Shannon 5.43 ± 0.49 3.53 ± 0.6 4.8 ± 0.54 5.07 ± 0.96 5.9 ± 0.3
Simpson 0.93 ± 0.03 0.75 ± 0.12 0.92 ± 0.02 0.9 ± 0.07 0.96 ± 0.01
January 2022 | Volume
A B

DC

FIGURE 6 | DADS altered the gut microbiota community composition of mice with C. albicans infection. (A, B) Principal component analysis. (C, D) The relative
abundances of the top 15 bacteria at the genus level among groups. *P < 0.05, **P < 0.01.
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compared the intestinal barriers of each group based on
intestinal pathology and the expression of intestinal tight
junction proteins. In terms of intestinal pathology, colon
length can be shortened by DSS-induced intestinal
inflammation (Jawhara et al., 2012). We found that the CA +
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
DSS group had a shorter intestinal length and higher intestinal
H&E pathological score than the DSS group, indicating that C.
albicans further increased intestinal inflammation and
destruction of the intestinal mucosa. In addition, the
expression of intestinal tight junction proteins can reflect the
A B
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G

I

H

J K L

C

FIGURE 7 | Heatmaps of key bacteria at the (A) phylum and (B) genus levels. The relative abundances of (C) Proteobacteria, (D) Tenericutes, (E) Escherichia–
Shigella, (F) Faecalibacterium, (G) Parabacteroides, (H) Streptococcus, (I) Prevotellaceae_NK3B31_group, (J) Ruminiclostridium, (K) Ruminococcaceae_UCG-013,
and (L) Oscillibacter in the two groups.
TABLE 2 | Changes of gut microbiota at different levels among the two groups.

Phylum/class Family/genus Relative contributiona Fold changeb p-valuec

CA+DSS CA+DSS+DADS

Firmicutes – 23.20% 31.14% 1.342660362 0.392
Faecalibacterium 0.01% 0.0035% 0.304347826 0.027
Streptococcus 0.99% 0.08% 0.083713851 0.023
Ruminiclostridium 0.58% 2.46% 4.263660017 0.023
Ruminococcaceae_UCG-013 0.01% 0.06% 5.75 0.002
Oscillibacter 0.32% 0.90% 282.03% 0.038

Proteobacteria – 16.85% 3.46% 0.205146491 0.019
Escherichia–Shigella 1.82% 12.79% 7.018131868 0.014

Tenericutes – 0.06% 0.39% 6.89380531 0.002
Bacteroidetes – 59.62% 64.62% 1.083814932 0.694

Parabacteroides 6.93% 0.26% 0.03698086 0.001
Prevotellaceae_NK3B31_group 0.01% 0.0015% 0.136363636 0.002
Janua
ry 2022 | Volume 11 | Articl
aRelative contribution, bFold change, cp-value.
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integrity of the intestinal mucosa at the protein level (Buckley
and Turner, 2018; Shao et al., 2018). Claudin-1 and Occludin
were hardly expressed in the CA + DSS group and were
expressed at somewhat higher levels in the DSS group.
However, in the DADS group, the expression of tight junction
proteins was increased compared with that in the CA + DSS or
DSS group, which indicated that DADS could increase the
expression of colonic tight junction proteins and repair
the damage to the intestinal mucosa. We also explored the
condition of inflammation among groups by comparing the
spleen index and the levels of IL-6 and IFN-g in the serum,
spleen and colon. We found that the spleen index and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
expression of IL-6 and IFN-g was decreased in the DADS
group compared with the DSS and CA + DSS groups, but
there was no significant difference among the groups in the
expression of inflammatory factors in the spleen, which might be
related to differences in expression in various tissues or depletion
of these factors in the spleen. Compared with the DSS group, the
CA + DSS group expressed more serious intestinal damage and
inflammation, but DADS treatment alleviated gut damage and
inflammation symptoms, which indicated that DADS could
repair the intestinal damage caused by C. albicans by
protecting gut tissues, increasing the expression of tight
junction proteins, and reducing inflammation.
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C

FIGURE 8 | Effect of DADS on fecal metabolites in mice with C. albicans infection. The (A, B) PCA, (C) PLS-DA, and (D) OPLS-DA models in different groups.
(E) Heatmaps of differentially altered metabolites between the two groups. (F) Differential metabolic pathways visualized in bubble plots (P < 0.05); the bubble size
represents the number of metabolites, n = 6.
January 2022 | Volume 11 | Article 743454

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


TABLE 3 | Differential fecal metabolites and relevant pathways between two groups.

centration Model VS
Control

Metabolic pathway Classification

CA + DSS + DADS FCb P-valuec

5,814.92 ± 753.11 1.93 0.0001 Tryptophan metabolism Organooxygen
compounds

1,893.54 ± 202.69 2.18 0.0001 Tryptophan metabolism Quinolines and
derivatives

1,329.03 ± 149.9 1.74 0.0001 Tryptophan metabolism Unclassified
1,967.16 ± 388.89 2.33 0.0002 Tryptophan metabolism|Serotonergic synapse Indoles and derivatives
5,182.43 ± 587.04 1.71 0.0002 Tryptophan metabolism Quinolines and

derivatives
167.84 ± 91.38 8.78 0.0026 Tryptophan metabolism Organooxygen

compounds
389.78 ± 118.85 1.86 0.0126 Tryptophan metabolism Indoles and derivatives

1,8075.57 ± 1,919.96 1.75 0.0001 Tryptophan metabolism Unclassified
178.88 ± 37.47 5.82 0.0000 Serotonergic synapse Fatty Acyls
224.88 ± 70.48 3.44 0.0005 Serotonergic synapse Fatty Acyls
203.97 ± 210.74 32.87 0.0444 Serotonergic synapse Fatty Acyls
891.74 ± 97.67 1.71 0.0028 Serotonergic synapse Fatty Acyls

1,1702.38 ± 4,298.96 1.99 0.0361 Bile secretion Bile acids and
derivatives

1,650.66 ± 1,261.03 6.14 0.0234 Bile secretion Bile acids and
derivatives

426.1 ± 200.56 2.84 0.0120 Bile secretion|Pentose and glucuronate
interconversions

Steroidal glycosides

1,1744.1 ± 8,335.01 4.09 0.0347 Bile secretion|Primary bile acid biosynthesis Bile acids and
derivatives

3,691.59 ± 1,072.31 1.91 0.0148 Bile secretion|Primary bile acid biosynthesis Bile acids and
derivatives
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Number Metabolites KEGG
ID

VIPa Relative con

CA + DSS

1 4-(2-Aminophenyl)-2,4-dioxobutanoic acid C01252 5.11 3006.75 ± 774.77

2 Kynurenic acid C01717 3.09 869.16 ± 341.31

3 N-Acetylisatin C02172 2.27 764.47 ± 178.48
4 5-Hydroxyindoleacetic acid C05635 3.19 842.47 ± 275.36
5 Quinoline-4,8-diol C05637 4.42 3028.48 ± 694.56

6 4-(2-Amino-3-hydroxyphenyl)-2,4-
dioxobutanoic acid

C05645 1.13 19.13 ± 5.42

7 3-Methyldioxyindole C05834 1.16 209.32 ± 84.2
8 2-Formaminobenzoylacetate C05835 8.52 10312.75 ± 2153.38
9 TXA2 C02198 1.22 30.74 ± 9.6
10 PGB2 C05954 1.21 65.36 ± 29.6
11 PGD2 C00696 1.12 6.21 ± 4.59
12 Lipoxin A4 C06314 1.75 521.63 ± 208.05
13 Deoxycholic acid C04483 6.13 5,889.56 ± 4,018.49

14 Lithocholic acid C03990 3.09 269 ± 119.43

15 Lithocholate 3-O-glucuronide C03033 1.38 150.05 ± 92.62

16 Chenodeoxycholic Acid C02528 7.61 2,870.1 ± 3,115

17 Cholic acid C00695 3.65 1,932.38 ± 998.97

aRelative contribution, bFold change, cp-value.
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Nowadays, nosocomial bloodstream infections caused by C.
albicans rank third (Wisplinghoff et al., 2004). Moreover, the C.
albicans in the blood mainly comes from the intestine (Kullberg
and Arendrup, 2015). So the destruction of the intestines is
conducive to the colonization, invasion, and infection of C.
albicans. DADS, as a classic garlic active substance, its
antifungal and digestive system protection effects have been
confirmed, which is consistent with our above research (Shang
et al., 2019). Few people study the association between gut
protection and antifungal effect. The intestinal protective effect
of DADS may reduce the colonization of C. albicans, thereby
inhibiting the bloodstream entry of C. albicans from the
intestine. Secondly, the antifungal effect of DADS reduces the
destruction of C. albican to the intestine, which may also
improve the intestinal barrier. But the detailed interaction
mechanism needs further study. In addition, the role of DADS
on gut microbiota and metabolites is also important for intestinal
protection and anti-fungal.

The community of gut microbiota in the CA + DSS group was
also significantly different from that in the healthy control group
and the DSS group. Interestingly, similar to what was found in
previous research, the abundance of Bacteroides, Bacteroidaceae,
Proteobacteria, Escherichia–Shigella, Streptococcus, and other
pathogenic bacteria was increased in mice with DSS-induced
intestinal C. albicans infection. It is possible that the increased
mortality in the CA + DSS group was related to bacteremia
caused by pathogenic bacteria that selectively break through the
intestinal barrier (Hiengrach et al., 2019). Bacteremia may also
cause high levels of inflammation in the serum and intestines and
increased levels of inflammatory factors (IL-6, IFN-g) (Michielan
and D’incà, 2015). Proteobacteria are typically highly abundant
in certain intestinal and extraintestinal diseases with
inflammatory manifestations, so it is also considered to be a
possible microbial feature of these diseases (Rizzatti et al., 2017).
In this study, we found that the abundances of Proteobacteria (at
the phylum level) and Escherichia–Shigella (at the genus level)
were increased in the CA + DSS group. Studies have shown that
Proteobacteria could be a biomarker indicating the instability of
the gut microbiota, which can invade intestinal epithelial cells
and aggravate intestinal inflammation by releasing endotoxins
and lipopolysaccharide (LPS) (Boudeau et al., 1999; Lu and
Walker, 2001; Belotserkovsky and Sansonetti, 2018). Consistent
with previous experiments using similar mouse models with
oral-gastric gavage of C. albicans, the CA + DSS group exhibited
significant enrichment of Bacteroides, which is usually a
commensal bacterium in the host intestine but may become a
pathogen under certain conditions. Previous studies have
reported that Bacteroides can produce LPS and a variety of
enzymes, thereby enhancing the adhesion of bacteria to the
intestinal tissues of the host and protecting them from
immune attack, ultimately leading to the destruction of the
intestinal epithelium (Wexler, 2007; Sears, 2009). In addition,
Bacteroides can produce enterotoxin to cleave tight junction
proteins in the intestine, leading to cytoskeletal rearrangement
and loss of tight junctions in the intestinal epithelial cells, which
may explain the decreased expression of Claudin-1 and Occludin
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
(Wu et al., 1998). In the CA + DSS + DADS group, we observed
an increased abundance of Ruminococcaceae_UCG−013,
Ruminococcaceae_NK4A214_group, Ruminiclostridium, and
Oscillibacter, which are usually not abundant in patients with
ulcerative colitis. These results might indicate that DADS can
increase the abundance of beneficial bacteria such as
Ruminococcus to reduce intestinal inflammation (Hyams et al.,
2019). In addition, Ruminiclostridium has been reported to be
increased in healthy mice and to produce butyric acid, which can
nourish and protect the intestinal epithelium (Machiels et al.,
2014). Thus, these findings indicated that DADS treatment
might mitigate intestinal C. albicans infection by improving
the disordered gut microbiota.

Meanwhile, the intestinal metabolite homeostasis was
also altered among the groups. Gut metabolites are closely
related to some intestinal and extraintestinal diseases, such as
inflammatory bowel disease, irritable bowel syndrome,
depression, and autism (Duboc et al., 2012; Bjerrum et al.,
2015; Sharon et al., 2019; Keshteli et al., 2019). Moreover,
some gut metabolites could protect or destroy the gut barrier
(Li et al., 2019; Parada Venegas et al., 2019). In this study, the
intestinal metabolite profiles were significantly different between
the CA + DSS and CA + DSS + DADS groups. In addition,
through KEGG data analysis, we found 19 different metabolic
pathways. In terms of the bile acid secretion metabolism, the
content of bile acids, such as deoxycholic acid, chenodeoxycholic
acid, ursodeoxycholic acid, lithocholic acid, and cholic acid, was
significantly higher in the CA + DSS + DADS group than in the
CA + DSS group, similar to what has been found in patients with
inflammatory bowel disease (Jansson et al., 2009; Duboc et al.,
2013). Deoxycholic acid could inhibit the secretion of IL-1b and
IL-8 by intestinal epithelial Caco-2 cells in a dose-dependent
manner (Yao et al., 2019; Lavelle and Sokol, 2020). The
metabolites involved in arachidonic acid metabolism, such as
TXA2, PGD2, and PGB2, were significantly increased in the CA
+ DSS + DADS group. Studies have shown that arachidonic acid
metabolites could increase the sensitivity of C. albicans to
fluconazole (Kuloyo et al., 2020). All metabolites involved in
the tryptophan metabolic pathway were enriched in the CA +
DSS + DADS group and were significantly higher than in the CA
+ DSS group. Research has proven that tryptophan metabolism
plays a key role in regulating the immune response of the body
against C. albicans. Tryptophan could activate the microbial-
dependent AhR/IL-22 axis to inhibit fungal growth and infection
on the mucosal surface and thus prevent abnormal immune
stimulation by C. albicans (Romani et al., 2008). In addition, the
interaction between tryptophan metabolites and C. albicans may
reduce the toxicity of the fungus (Mayr et al., 2005). Activation of
the tryptophan metabolic pathway can produce bioactive
molecules to maintain the homeostasis of the intestinal
mucosa, which makes tryptophan metabolites the main players
in intestinal health (Renga et al., 2019). Therefore, these findings
indicated that DADS may inhibit the invasion of intestinal C.
albicans and ameliorate intestinal barrier damage by activating
specific metabolic pathways and increasing the levels of
related metabolites.
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CONCLUSION

In this study, we established DSS-induced intestinal C. albicans
mouse models to better simulate human intestinal fungal
infections. We found that C. albicans could enhance DSS
colitis severity and that DADS treatment could improve
intestinal dysbiosis (altered gut microbiota and metabolites),
gut permeability and systemic inflammatory responses. Insight
into the effects of DADS treatment may provide novel treatment
strategies for intestinal C. albicans infection.
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