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Abstract
Gastric cancer (GC) is one of the deadliest cancers worldwide, and the progression 
of gastric carcinogenesis (GCG) covers multiple complicated pathological stages. 
Molecular mechanisms of GCG are still unclear. Here, we undertook NMR-based 
metabolomic analysis of aqueous metabolites extracted from gastric tissues in an 
established rat model of GCG. We showed that the metabolic profiles were clearly 
distinguished among 5 histologically classified groups: control, gastritis, low-grade 
gastric dysplasia, high-grade gastric dysplasia (HGD), and GC. Furthermore, we car-
ried out metabolic pathway analysis based on identified significant metabolites and 
revealed significantly disturbed metabolic pathways closely associated with the 4 
pathological stages, including oxidation stress, choline phosphorylation, amino acid 
metabolism, Krebs cycle, and glycolysis. Three metabolic pathways were continually 
disturbed during the progression of GCG, including taurine and hypotaurine metab-
olism, glutamine and glutamate metabolism, alanine, aspartate, and glutamate me-
tabolism. Both the Krebs cycle and glycine, serine, and threonine metabolism were 
profoundly impaired in both the HGD and GC stages, potentially due to abnormal en-
ergy supply for tumor cell proliferation and growth. Furthermore, valine, leucine, and 
isoleucine biosynthesis and glycolysis were significantly disturbed in the GC stage 
for higher energy requirement of the rapid growth of tumor cells. Additionally, we 
identified potential gastric tissue biomarkers for metabolically discriminating the 4 
pathological stages, which also showed good discriminant capabilities for their serum 
counterparts. This work sheds light on the molecular mechanisms of GCG and is of 
benefit to the exploration of potential biomarkers for clinically diagnosing and moni-
toring the progression of GCG.
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1  | INTRODUC TION

Gastric cancer (GC) is one of the most prevalent and deadly forms of 
cancers worldwide,1 and is especially prevalent in Asian countries. 
Gastric carcinogenesis (GCG) covers multiple pathological stages. 
Before progressing to GC, gastric mucosa goes through a series of 
pathological changes bringing gastritis, atrophy, intestinal metaplasia, 
and atypical hyperplasia.2 Until now, molecular mechanisms underly-
ing GC pathogenesis are not yet clear. As one of the most important 
features of gastric tumors, metabolic disorders are closely connected 
with the progression of GCG.3 Gastric tumors differ from their normal 
counterparts in several biochemical properties, such as increased cell 
proliferation, cell differentiation, and turnover of nutrients. The unique 
properties of gastric tumors are closely associated with profoundly im-
paired metabolism of tumor cells relative to normal cells.4,5 Therefore, 
a detailed understanding of changing metabolic profiles during the 
progression of GCG is essential for clarifying the molecular mecha-
nisms of GC pathogenesis.6 Such investigations would be beneficial to 
reduce the incidence and mortality of GC.

In our previous work, we established a rat model of GCG, and 
classified rats into the normal control group (CON) and 4 patholog-
ical groups, gastritis (GS), low-grade gastric dysplasia (LGD), high-
grade gastric dysplasia (HGD), and GC, based on the histological 
classification of gastric tissues.7 Using nuclear magnetic resonance 
(NMR)-based metabolomic analysis, we identified distinctly changed 
metabolic profiles and significantly disturbed metabolic pathways 
associated with the 4 pathological stages of GCG relative to the 
CON stage.7 Three metabolic pathways were continually disturbed 
during GCG, including oxidative stress, choline phosphorylation, and 
fatty acid degradation. Moreover, amino acid metabolism was pro-
foundly perturbed in gastric dysplasia and GC, and glycine, serine, 
and threonine metabolism and glycolysis were also dramatically im-
paired in GC.7

It is well known that metabolic profiles of tumor tissues are 
somewhat distinct from those of sera due to different distributions 
of metabolites in tumor-located tissues from those in sera. Sera usu-
ally reflect global pathological features of diseases. Compared with 
metabolic profiling of sera, metabolic profiling of tissues is more spe-
cifically and closely related to metabolic disorders and disturbed reg-
ulatory mechanisms in diseases.8,9 Moreover, significant metabolites 
identified from tumor tissues could be explored to determine novel 
potential biomarkers for clinical applications.10 Furthermore, met-
abolic differences between tumor cells and their surrounding host 
cells could provide a relatively accurate understanding of metabolic 
mechanisms underlying the invasion and metastasis of tumors.11

In recent years, metabolomics has been extensively used to me-
chanically understand disease development and progression. By the 
combination of NMR/LC-MS/GC-MS techniques with pattern rec-
ognition methods, metabolomic analysis can be applied to address 
metabolic changes of biological systems in multistep processes of 
cancer progression. Significantly, NMR spectroscopy is character-
ized by several unique advantages, such as noninvasive, nonsample 
destructive, high resolution, and high experimental repeatability.12 

Recently, NMR-based metabolomics has been applied for under-
taking metabolic profiling of GC tissues to both address molecular 
mechanisms of GC pathogenesis and identify potential biomark-
ers for the early diagnosis and prognostic prediction of GC. Wang 
et al carried out metabolic profiling of gastric tissues on a large 
cohort of GC patients and normal controls.13 They found that GC 
patients had distinguished metabolic profiles from normal controls, 
and also identified 13 differential metabolites between pathological 
stage-related tissue samples (stages I-IV) and normal counterparts.14 
Zhang et al undertook metabolic profiling of GC patients with lymph 
node metastasis (LNM) and identified branched-chain amino acids 
(BCAAs; leucine, isoleucine, and valine), glutathione, and betaine to 
be potential factors in the diagnosis and prognosis of GC patients 
with or without LNM.14 Furthermore, Jung et al compared metabolic 
profiles of matched tumor and normal stomach tissues, and reported 
that significantly altered metabolites in GC tissues were associated 
with amino acid metabolism and lipid metabolism.15

Gas chromatography-MS based metabolomics has also been 
used to undertake metabolic profiling of GC tissues, aiming to mech-
anistically understand molecular mechanisms of GC pathogenesis 
and exploit potential biomarkers for GC diagnosis. Wu et al showed 
the metabolic distinction between malignant and nonmalignant 
tissues of gastric mucosae in GC patients.16 They identified 18 sig-
nificant metabolites in malignant tissues compared with adjacent 
nonmalignant tissues, and also detected 5 significant metabolites in 
invasive gastric tumors relative to noninvasive gastric tumors.16 In 
addition, Chen et al revealed the metabolic difference between met-
astatic and nonmetastatic gastric tumors based on animal models of 
human GC.17 They identified 20 upregulated and 9 downregulated 
metabolites in metastatic gastric tumors compared to the nonmeta-
static gastric tumors.

Gastric carcinogenesis is a multistep process connected with sev-
eral pathological stages. However, few researches have specifically 
addressed the molecular mechanisms underlying the progression of 
GCG or exploit potential biomarkers for the early diagnosis of GC by 
using the gastric tissue. In the present work, we undertook NMR-
based metabolomic analyses of aqueous metabolites extracted 
from gastric tissues based on the rat model of GCG established 
previously.7 We addressed profoundly changed metabolic profiles, 
identified significant metabolites with markedly altered levels, and 
significantly disturbed metabolic pathways as well as potential bio-
markers, which were associated with the 4 pathological stages of 
GCG. This work could be beneficial to understanding the molecular 
mechanisms underlying the progression of GCG.

2  | MATERIAL S AND METHODS

2.1 | Chemicals and animal diets

All used chemicals were the analytical grade. N-methyl-N′-nitro-
N-nitrosoguanidine (MNNG) was purchased from TCI (Shanghai) 
Development Co. Sodium azide (NaN3) was obtained from Sangon 
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Biotech (Shanghai) Co. NaH2PO4.2H2O and K2HPO4.3H2O 
were purchased from Sinopharm Chemical Reagent Co. Sodium 
3-(trimethylsilyl)-propionate-2,2,3,3-d4 (TSP) (99.8% D) was pur-
chased from Cambridge Isotope Laboratories. The custom 8% NaCl 
chow pellets were obtained from Suzhou ShuangShi Laboratory 
Animal Feed Science Co. The MNNG was dissolved in water (1 mg/
mL) and kept at 4°C. The stock solution of MNNG was diluted to 
100 μg/mL by tap water just before use.

2.2 | Animal experiments and histopathology

The rat model of GCG was established in accordance with proto-
cols approved by Xiamen University Animal Ethics Committee, 
and documented in our previous work.7 A total of 128 Wistar rats 
(age 3 weeks, male) were randomly divided into the MODEL group 
(n = 96) and CON group (n = 32). The stomach tissues from MODEL 
and CON rats were fixed in 10% formalin. After dehydrating, the 
biopsies embedded in wax were sectioned at 5 μm and stained with 
H&E for histopathological examination by light microscopy.

2.3 | Tissue pretreatments and NMR samples

Pieces of gastric tissues (~100  mg/sample) were disrupted in sol-
vents with an electric homogenizer. Aqueous metabolites were ex-
tracted from gastric tissues using the methanol/chloroform/water 
system.18 Before NMR experiments, solvents were completely 
removed using a nitrogen blowing concentrator. Each sample of 
aqueous extracts was then reconstituted in 450 μL H2O and 50 μL 
phosphate buffer (1.5  M K2HPO4/NaH2PO4 and 10  mmol/L TSP), 
mixed uniformly, and centrifuged at 12 000 g for 10 minutes at 4°C 
to remove any insoluble components. Finally, 500 μL of the resulting 
supernatant was transferred into a 5 mm NMR tube and analyzed by 
NMR spectroscopy.19

2.4 | Nuclear magnetic resonance experiments and 
metabolite assignments

One-dimensional (1D) 1H-NMR experiments were carried out on 
a Bruker AVANCE III 600  MHz spectrometer (Bruker BioSpin) 
equipped with a BBFO CryoProbe at 298 K. The spectra of aque-
ous extracts of gastric tissues were recorded on BRUKER NMR 
Spectrometer by using the pulse sequence NOESYGPPR1D (RD-
90°-t1-90°-τm-90°-ACQ) with water suppression during the relaxa-
tion delay (RD) and mixing time (τm).19 The RD was 4 s, t1 was a short 
delay (4 μs), and τm was 10 ms. A total of 32 transients were collected 
into 64K data points using a spectral width of 12 kHz with an acqui-
sition time (ACQ) of 2.73 s.

Furthermore, 2D 1H-1H total correlation spectroscopy (TOCSY) 
was acquired for selected NMR samples on a Bruker AVANCE 
III 850  MHz spectrometer with a TCI CryoProbe at 298K. The 

experimental parameters were detailed in previous reports.20-22 
Resonance assignments of metabolites were carried out based on 
the 1D 1H-spectra using a combination of Chenomx NMR Suite (ver-
sion 7.1) and the Human Metabolome Data Base (https://hmdb.ca/), 
referring to relevant published references. The assigned metabolites 
were confirmed by 2D TOCSY spectrum.

2.5 | Data processing

The NMR spectral data processing was undertaken using the 
MestReNova software (version 9.0; Mestrelab Research). The 
free induction delay signals were processed by applying an expo-
nential function with a line-broadening factor of 0.3  Hz prior to 
Fourier transformation, and then manually phased and baseline-
corrected. The NMR spectra were referenced to the methyl group 
of TSP (δ 0.00). The spectral regions of δ 9.00-0.00 were binned by 
0.001 ppm. Each 1D 1H-NMR spectrum was segmented into regions 
of 0.001 ppm. The region of water resonance δ 5.70-4.60 was re-
moved from the spectra to eliminate distorted baseline from imper-
fect water saturation. The icoshift algorithm was executed to align 
NMR peaks.23 Both the open source of icoshift and MATLAB scripts 
can be downloaded from the website (www.models.life.ku.dk). To 
reduce concentration differences among samples, we normalized 
the NMR spectral integrals of metabolites by dividing the total spec-
tral integrals.

2.6 | Multivariate statistics

Multivariate statistics were carried out using SIMCA-P+ software 
(version 13.0.1; Umetrics). To compensate for differences in tissue 
sizes, the spectral integrals were normalized by the weight of the 
tissue sample. Thereafter, pareto scaling was applied to the normal-
ized integrals for increasing the importance of low-level metabolites 
without significant amplification of noise.

The pareto-scaled data were analyzed by unsupervised prin-
cipal component analysis (PCA) to reveal trends, highlight outli-
ers, and show clusters among the tissue samples.24 Supervised 
partial least squares to latent structure with discriminant analysis 
(PLS-DA) was applied to improve the metabolic classification be-
tween the groups of samples,25 and response permutation test-
ing (RPT) with 600 cycles was utilized to assess the reliability of 
the sample classification.26 Furthermore, OPLS-DA was used to 
maximize the metabolic separation between the groups of sam-
ples, which removed uncorrelated variables within the classes 
using the orthogonal signal correction filter. Variables that par-
ticipate in the classification was described on the first predictive 
principal component in the OPLS-DA model.27,28 In scores plots 
of PLS-DA and OPLS-DA, we surrounded each class with a 95% 
confidence ellipse, using the MATLAB function provided by the 
website (https://stack​overf​low.com/quest​ions/34170​28/ellip​se-
aroun​d-the-data-in-matlab).

https://hmdb.ca/
http://www.models.life.ku.dk
https://stackoverflow.com/questions/3417028/ellipse-around-the-data-in-matlab
https://stackoverflow.com/questions/3417028/ellipse-around-the-data-in-matlab
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2.7 | Identification of significant metabolites

The loading plot of the successfully validated OPLS-DA model was 
used to identify significant metabolites with 2 criteria. One was the 
variable importance value (VIP) in the projection,29 and the other 
was the correlation coefficients (r) of the variables corresponding to 
the statistical significance P, relative to the first predictive compo-
nent (tp1) in the OPLS-DA model.30 In the reconstituted OPLS-DA 
loading plots, red, orange, and blue colors represent the metabolites 
with highly significant statistical difference (P < .01 and VIP > 1), sig-
nificant statistical difference (0.01 ≤  P <  .05 and VIP > 1), and no 
significant statistical difference (P ≥ .05 or VIP < 1), respectively.

2.8 | Identification of significantly disturbed 
metabolic pathways

Based on relative integrals of the significant metabolites, metabolic 
pathway analysis was carried out to identify significantly disturbed 
pathways associated with the 4 pathological stages of GCG. The 
metabolic pathway analysis was carried out by using the Pathway 
Analysis module of MetaboAnalyst 4.0 (www.metab​oanal​yst.ca/).31 
Two parameters, statistical P value and pathway impact value (PIV), 
were used to evaluate the importance of the metabolic pathway. 
The P values were obtained from the quantitative enrichment 
analysis,32 and the PIV values were calculated from the topological 
analysis with the out-degree centrality arithmetic. According to the 
approaches described in our previous work,7 we identified signifi-
cantly disturbed metabolic pathways associated with the pathologi-
cal stages relative to the normal CON stage with P less than 10−5 and 
PIV greater than 0.3.

2.9 | Identification of potential biomarkers based on 
disturbed metabolic pathways

Metabolomic analysis has been extensively used to exploit potential 
biomarkers for early diagnosis of tumors.13 In our work, we randomly 
selected 66.7% tissue samples to undertake multivariate receiver 
operating characteristic (ROC) curve analysis33 for assessing discri-
minant capabilities of the significant metabolites involved in the sig-
nificantly disturbed metabolic pathways which were identified from 
the metabolic pathway analysis. The logistic regression algorithm 
was applied in the multivariate ROC curve analysis for classification. 
The area under the ROC curve (AUC) value was used to evaluate the 
prediction performance of a given biomarker model. The important 
metabolites with AUC greater than 0.7 were identified to be poten-
tial biomarkers for diagnosing a given pathological state. Then we 
undertook multivariate ROC analyses using the other 33.3% tissue 
samples to confirm the validities of the identified potential biomark-
ers. We also evaluated the capabilities of these potential gastric tis-
sue biomarkers for metabolically discriminating the 4 pathological 
groups of sera derived from the same established rat model of GCG 

from the CON group using the multivariate ROC curves. The NMR-
based metabonomic analyses of sera derived from the rat model of 
GCG have been documented in our previous article.7

3  | RESULTS

3.1 | Rat model of GCG

In total, 84 rats were used for metabolomic analysis, including 52 
MODEL rats and 32 CON rats. Unluckily, the other 44 MODEL rats 
were lost due to accidental death. None of the CON rats died ac-
cidentally. According to histologic examination, the MODEL rats 
were classified into 4 pathologic groups: GS, LGD, HGD, and GC. 
The detailed information of the rat model has been described in our 
previous work.7

3.2 | Metabolic profiles of gastric tissues

Figure S1 shows typical 1D 1H-spectra of aqueous extracts of gastric 
tissues derived from the 5 groups of rats. Assigned resonances of 
metabolites were identified in the spectra and confirmed with 2D 
1H-1H TOCSY spectra of a gastric tissue sample derived from a GC 
rat (Figure S2).

We used PCA for the NMR data obtained from the 5 groups of 
rats to obtain a comprehensive comparison of metabolic profiles 
among the groups. Figure 1 illustrates the PCA score plots with the 
first 3 principal components (PC1, PC2, and PC3). The scores plot 
of all rats (Figure 1A) shows that the 5 groups were distinguished 
from each other. The metabolic profiles of GC and HGD displayed 
clear separations from those of other 3 groups (CON, GS, and LGD) 
which were not distinctly distinguishable from one another, with 
partial overlap (Figure 1A). Moreover, we undertook pairwise PCA 
for the 5 groups (Figure 1B-E) to address the changes of metabolic 
profiles associated with the 4 pathological stages. Overall, the GS 
group was distinguished from the CON group except for a few sam-
ples (Figure 1B). Interestingly, clear separations of metabolic profiles 
were observed between LGD and GS groups (Figure 1C), HGD and 
LGD groups (Figure 1D), and GC and HGD groups (Figure 1E). Rats in 
the GC group showed a metabolic profile remarkably different from 
HGD rats without any overlap.

Furthermore, we applied pairwise PLS-DA to improve metabolic 
separations between the 5 groups of rats. The scores plots of the 
PLS-DA models illustrate that the 5 groups are discriminated from 
each other (Figure  S3). The validation plots of the corresponding 
RPTs indicate that the 5 PLS-DA models were reliable (Figure S4).

3.3 | Significant metabolites in gastric tissues

We undertook pairwise OPLS-DA for the NMR data of the 5 
groups of rats to maximize intergroup metabolic separation, and to 

http://www.metaboanalyst.ca/)
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identify significant metabolites primarily responsible for the meta-
bolic separation based on the first component (tp1). The OPLS-DA 
scores plots show distinct separations between GS and CON groups 
(Figure S5A), LGD and GS groups (Figure S5B), HGD and LGD groups 
(Figure S5C), and GC and HGD groups (Figure S5D). We identified 
significant metabolites based on the loading plots of the OPLS-DA 
models with 2 criteria (correlation coefficient r corresponding to 
P < .05 and VIP > 1) as shown in Figure 2. Detailed information of the 
identified significant metabolites is shown in Tables S1-S4. In total, 
12, 9, 9, and 12 metabolites were identified from the OPLS-DA anal-
yses of GS rats vs CON rats (Table S1, 10 increased and 2 decreased 
metabolites), LGD rats vs GS rats (Table S2, 1 increased and 8 de-
creased metabolites), HGD rats vs LGD rats (Table S3, 4 increased 
and 5 decreased metabolites), and GC rats vs HGD rats (Table S4, 10 
increased and 2 decreased metabolites).;

3.4 | Relative levels of differential metabolites in 
gastric tissues

To quantitatively compare metabolite levels among the 5 groups of 
rats, we calculated the relative integrals of the identified metabo-
lites based on 1D 1H-NMR spectra of aqueous extracts derived from 
gastric tissues (Figure S1). The mean and SEM were calculated for 
each group of rats (Table 1). Then we applied one-way ANOVA fol-
lowed by Tukey’s multiple comparisons test, aiming to identify dif-
ferential metabolites with P less than .05 (Table 1). The differential 
metabolites identified from one-way ANOVA were consistent with 
the significant metabolites identified from the OPLS-DA loading 
plots. These remarkably changed metabolites were mostly involved 

in the following 5 crucial metabolisms: amino acid metabolism, car-
bohydrate metabolism, fatty acid metabolism, energy metabolism, 
and quaternary ammonium metabolism.

3.5 | Amino acid metabolism

Branched-chain amino acids (leucine, isoleucine, and valine) and ly-
sine were only changed in GC rats with significantly upregulated lev-
els. Aspartate was profoundly enhanced in MODEL rats relative to 
CON rats; GS rats showed an aspartate level a little higher than LGD 
and HGD rats, but remarkably lower than GC rats. Glycine showed 
the highest level in GC rats, and a slightly higher level compared to 
LGD, GS, and CON rats. Glutamate was gradually increased dur-
ing GCG and showed almost the same levels in LGD and HGD rats. 
Glutamine was only changed in GS rats with a distinctly increased 
level. Taurine showed the highest level in GS rats, and lower levels in 
HGD and GC rats relative to CON and LGD rats. Phenylalanine and 
tyrosine were only changed in GC rats with slightly enhanced levels. 
Alanine and glutathione kept relative stable levels during GCG.

3.6 | Carbohydrate metabolism

Lactate was gradually increased during GCG and showed slightly 
enhanced levels in HGD and GC rats. Succinate was only altered in 
GS rats with a markedly decreased level. Glucose was only changed 
with a slightly declined level in GC rats. Acetate was not signifi-
cantly changed during GCG with gently increased levels in HGD and 
GC rats. Creatine showed the highest level in GS rats and slightly 

F I G U R E  1   Principal component (PC) analysis scores plots of 1H nuclear magnetic resonance spectral data of aqueous metabolites 
extracted from gastric tissues. A, All rats. B, Gastritis (GS) rats vs control (CON) rats. C, Low-grade gastric dysplasia (LGD) rats vs GS rats. D, 
High-grade gastric dysplasia (HGD) rats vs LGD rats. E, gastric cancer (GC) rats vs HGD rats
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decreased levels in HD and GC rats relative to CON and LGD rats. 
Pyruvate, formate, and fumarate were not obviously changed during 
GCG.

3.7 | Fatty acid metabolism

3-Hydroxybutyrate was only altered in GC rats with a greatly en-
hanced level. Myo-inositol was decreased in GS, LGD, and HGD rats 
relative to CON rats; GC rats showed an increase in myo-inositol 
level roughly identical to CON rats. Glycerol did not show distinctly 
changed levels in the 5 pathological stages of GCG.

3.8 | Energy metabolism

Adenosine 5′-monophosphate was markedly increased in GS rats, 
thereafter gradually decreased in LGD, HGD, and GC rats; GC rats 

showed the lowest AMP level. Regarding NAD+, GS rats did not show 
a significantly changed level compared with CON rats, but showed 
a significantly higher level than LGD, HGD, and GC rats, which had 
almost identical levels. Notably, NAD+ in GC rats was profoundly 
decreased relative to CON rats. Both ATP and nicotinurate kept rela-
tively stable levels during GCG.

3.9 | Quaternary ammonium metabolism

Choline and phosphocholine (PC) were dramatically increased in GS 
rats, and then gradually decreased remarkably in LGD, HGD, and GC 
rats. Rats with GC showed almost the same PC level as HGD rats. 
Glycerophosphocholine (GPC) was profoundly increased in GS rats, 
and significantly decreased in LGD rats, and then increased again 
in HGD and GC rats. Rats with GC showed the highest GPC level. 
Betaine, dimethylamine, and trimethylamine N-oxide were not dis-
tinctly changed in MODEL rats relative to CON rats.

F I G U R E  2   Orthogonal partial least squares discriminant analysis loading plots used to identify significant metabolites primarily 
responsible for distinguishing gastritis (GS) rats from control (CON) rats (A), low-grade gastric dysplasia (LGD) rats from GS rats (B), high-
grade gastric dysplasia (HGD) rats from LGD rats (C), and gastric cancer (GC) rats from HGD rats (D). The gradient red color indicates that 
the variables are very significant (|r|> 0.389 in A, |r| > 0.496 in B, |r| > 0.463 in C, and |r| > 0.496 in D; variable importance value [VIP] > 1). 
Gradient orange indicates that the variables are significant (0.301 ≤ |r| < 0.389 in A, 0.388 ≤ |r| < 0.496 in B, 0.361 ≤ |r| <0.463 in C, 
and 0.388 ≤ |r| < 0.496 in D; VIP > 1). Gradient blue indicates that the variables are insignificant (NS). GPC, glycerophosphocholine; PC, 
phosphocholine
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3.10 | Significantly disturbed metabolic pathways in 
gastric tissues

Based on the significant metabolites, we identified significantly 
disturbed metabolic pathways associated with the 4 pathological 
stages of GCG relative to the CON stage (Figure 3). Both the GS and 
LGD stages showed 3 significantly disturbed metabolic pathways, 
including taurine and hypotaurine metabolism, glutamine and gluta-
mate metabolism, and alanine, aspartate, and glutamate metabolism 
(Figure  3A,B). The HGD stage displayed 5 significantly disturbed 
metabolic pathways, including the 3 pathways identified in the LGD 
stage and 2 extra pathways (glycine, serine, and threonine metabo-
lism; Krebs cycle) (Figure 3C). The GC stage showed 7 significantly 
disturbed metabolic pathways, including the 5 pathways identified in 
the HGD stage and 2 extra pathways (glycolysis; valine, leucine, and 
isoleucine biosynthesis) (Figure 3D).

3.11 | Potential biomarkers in gastric tissues

Based on the discriminant capabilities of the significant metabo-
lites predicted from the multivariate ROC analysis (Figures  4-7), 
we identified potential gastric tissue biomarkers that could meta-
bolically discriminate the 4 pathological stages from the CON 
stage. In the GS stage, 3 significant pathways displayed good dis-
criminant capabilities with larger AUC values of 0.9405 for taurine 
and hypotaurine metabolism, 0.8839 for glutamine and glutamate 
metabolism, and 0.9077 for alanine, aspartate, and glutamate me-
tabolism (Figure 4). More significantly, taurine and glutamine had 
the top 2 AUC values (0.8839 and 0.8423) in these pathways. We 
then applied the multivariate ROC analysis based on the 2 me-
tabolites, obtaining high AUC values: all, 0.9700; taurine, 0.9300; 
and glutamine, 0.8500 (Figure  S6A). This result suggests that 
taurine and glutamine could be exploited to be potential gastric 
tissue biomarkers for GS diagnosis. Significantly, the combination 
of the 2 metabolites also showed a good capability for metaboli-
cally discriminating the GS sera from the CON sera with higher 
AUC values: all, 0.8655; taurine, 0.8082; and glutamine, 0.7933 
(Figure S7A).

In the LGD stage, the 3 significant pathways showed also good 
discriminant capabilities with larger AUC values of 0.8997 for tau-
rine and hypotaurine metabolism, 0.7333 for glutamine and gluta-
mate metabolism, and 0.9077 for alanine, aspartate, and glutamate 
metabolism (Figure 5). Notably, glutamate showed the largest AUC 
value of 0.7178 in these pathways. The high AUC value of 0.8833 
calculated from the multivariate ROC analysis was only based on 
glutamate, suggesting that glutamate could be also exploited to be 
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lism, 0.9881 for glycine, serine, and threonine metabolism, 0.7984 
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thesis, and 0.9256 for glycolysis (Figure  7). Three metabolic path-
ways (alanine, aspartate, and glutamate metabolism, glycine, serine, 
and threonine metabolism, and glycolysis) had excellent discriminant 
capabilities with the top 3 AUC values (0.9881, 0.9881, and 0.9256). 
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More significantly, the combination of the 3 metabolites had an ex-
cellent capability for metabolically discriminating the GC sera from 
the CON sera with high AUC values: all, 0.9552; glycine, 0.9437; lac-
tate, 0.8369; and choline, 0.8182 (Figure S7D).

Additionally, the multivariate ROC analyses based on the 
above-described potential gastric tissue biomarkers also showed 
good capabilities for metabolic discrimination among the 4 patho-
logical groups of sera. The biomarker model established on taurine 
and glutamine gave AUC values of 0.6364 for GS sera vs LGD sera, 
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TA B L E  1   Comparison of metabolite levels among 4 pathological groups and normal control (CON) group based on relative integrals  
calculated from 1D 1H-nuclear magnetic resonance spectra of aqueous extracts of gastric tissues

Mean and SEM One-way ANOVA Tukey’s multiple comparisons test

CON GS LGD HGD GC P F

GS vs LGD vs HGD vs GC vs LGD vs HGD vs GC vs HGD vs GC vs GC vs

CON CON CON CON GS GS GS LGD LGD HGD

Amino acid metabolism

Leucine 0.734 ± 0.064 0.802 ± 0.090 0.824 ± 0.092 0.755 ± 0.101 1.005 ± 0.109 .009 3.675 NS NS NS *** NS NS ** NS *** ***

Isoleucine 0.166 ± 0.013 0.176 ± 0.015 0.179 ± 0.019 0.179 ± 0.022 0.243 ± 0.021 .002 4.607 NS NS NS *** NS NS *** NS ** **

Valine 0.244 ± 0.018 0.220 ± 0.023 0.236 ± 0.023 0.240 ± 0.0296 0.356 ± 0.035 .000 6.201 NS NS NS *** NS * *** NS *** ***

Lysine 1.313 ± 0.089 1.327 ± 0.119 1.325 ± 0.131 1.312 ± 0.137 1.696 ± 0.160 .000 5.736 NS NS NS *** NS NS *** NS *** ***

Aspartate 0.353 ± 0.032 0.466 ± 0.070 0.411 ± 0.040 0.414 ± 0.061 0.539 ± 0.091 .000 9.836 ** ** ** *** * * *** NS *** ***

Glycine 1.112 ± 0.037 1.213 ± 0.088 1.205 ± 0.061 1.373 ± 0.083 1.620 ± 0.093 .000 24.252 NS NS *** *** NS * *** * *** ***

Alanine 1.846 ± 0.108 1.862 ± 0.185 1.895 ± 0.130 1.771 ± 0.127 1.998 ± 0.158 .561 0.750 NS NS NS NS NS NS NS NS NS NS

Phenylalanine 0.192 ± 0.023 0.191 ± 0.034 0.216 ± 0.035 0.207 ± 0.035 0.244 ± 0.031 .024 2.989 NS NS NS * NS NS * NS NS NS

Tyrosine 0.085 ± 0.011 0.088 ± 0.017 0.094 ± 0.015 0.092 ± 0.016 0.093 ± 0.019 .030 3.595 NS NS NS * NS NS NS NS * NS

Glutamate 1.786 ± 0.065 2.112 ± 0.173 2.553 ± 0.119 2.447 ± 0.150 2.764 ± 0.184 .000 21.186 *** *** *** *** *** ** *** NS ** **

Glutamine 1.382 ± 0.046 1.562 ± 0.085 1.364 ± 0.060 1.353 ± 0.070 1.326 ± 0.065 .008 3.738 *** NS NS NS *** *** *** NS NS NS

Glutathione 1.343 ± 0.051 1.345 ± 0.100 1.279 ± 0.059 1.327 ± 0.077 1.265 ± 0.081 .144 1.764 NS NS NS NS NS NS NS NS NS NS

Taurine 7.436 ± 0.204 8.517 ± 0.374 7.259 ± 0.221 6.239 ± 0.305 6.607 ± 0.362 .000 9.885 *** NS *** *** *** *** *** *** *** NS

Carbohydrate metabolism

Lactate 7.891 ± 0.423 8.852 ± 0.576 8.960 ± 0.716 9.999 ± 1.302 11.274 ± 1.066 .000 15.724 * * *** *** NS ** *** * *** **

Succinate 0.669 ± 0.032 0.529 ± 0.058 0.678 ± 0.033 0.687 ± 0.050 0.682 ± 0.045 .000 6.307 *** NS NS NS *** *** *** NS NS NS

Pyruvate 0.123 ± 0.008 0.123 ± 0.011 0.136 ± 0.010 0.127 ± 0.012 0.133 ± 0.015 .134 1.814 NS NS NS NS NS NS NS NS NS NS

Glucose 0.094 ± 0.012 0.080 ± 0.020 0.101 ± 0.021 0.081 ± 0.005 0.074 ± 0.017 .040 3.015 NS NS NS * NS NS NS NS * NS

Formate 0.046 ± 0.006 0.045 ± 0.007 0.037 ± 0.007 0.040 ± 0.0088 0.037 ± 0.004 .353 1.120 NS NS NS NS NS NS NS NS NS NS

Fumarate 0.006 ± 0.001 0.004 ± 0.002 0.004 ± 0.001 0.004 ± 0.002 0.004 ± 0.001 .360 1.105 NS NS NS NS NS NS NS NS NS NS

Acetate 0.621 ± 0.062 0.692 ± 0.137 0.658 ± 0.101 0.699 ± 0.126 0.699 ± 0.174 .042 2.194 NS NS * * NS NS NS * * NS

Creatine 2.878 ± 0.088 3.352 ± 0.162 2.829 ± 0.118 2.231 ± 0.134 2.254 ± 0.163 .000 15.128 *** NS *** *** *** *** *** *** *** NS

Fatty acid metabolism

Glycerol 2.040 ± 0.078 2.191 ± 0.138 2.160 ± 0.129 2.09 ± 0.131 2.055 ± 0.148 .332 1.167 NS NS NS NS NS NS NS NS NS NS

Myo-inositol 1.511 ± 0.079 1.210 ± 0.147 1.337 ± 0.080 1.261 ± 0.104 1.598 ± 0.129 .000 7.961 *** * *** NS NS NS *** NS *** ***

3-Hydroxybutyrate 0.367 ± 0.036 0.387 ± 0.068 0.374 ± 0.047 0.403 ± 0.040 0.706 ± 0.090 .007 3.764 NS NS NS *** NS NS *** NS *** ***

Energy metabolism

AMP 0.240 ± 0.019 0.333 ± 0.051 0.250 ± 0.028 0.166 ± 0.022 0.083 ± 0.007 .000 22.730 *** NS *** *** *** *** *** *** *** ***

NAD+ 0.094 ± 0.008 0.105 ± 0.018 0.086 ± 0.014 0.081 ± 0.013 0.073 ± 0.010 .000 6.287 NS NS NS *** ** ** *** NS NS NS

ATP 0.105 ± 0.019 0.096 ± 0.040 0.123 ± 0.031 0.099 ± 0.012 0.097 ± 0.020 .102 2.005 NS NS NS NS NS NS NS NS NS NS

Nicotinurate 0.017 ± 0.003 0.018 ± 0.007 0.018 ± 0.005 0.019 ± 0.005 0.018 ± 0.004 .628 0.650 NS NS NS NS NS NS NS NS NS NS

Quaternary ammonium group metabolism

Choline 1.946 ± 0.237 2.507 ± 0.640 1.756 ± 0.270 1.044 ± 0.129 1.078 ± 0.054 .000 23.725 * NS *** *** ** *** *** *** *** NS

Phosphocholine 3.968 ± 0.224 4.854 ± 0.362 3.628 ± 0.221 2.874 ± 0.260 2.125 ± 0.203 .000 32.205 *** NS *** *** *** *** *** *** *** ***

Glycerophosphocholine 6.443 ± 0.482 10.044 ± 1.153 7.000 ± 0.609 9.427 ± 1.533 12.973 ± 1.389 .000 50.923 *** NS ** *** *** NS *** *** *** ***

Betaine 0.622 ± 0.027 0.611 ± 0.063 0.590 ± 0.028 0.570 ± 0.036 0.610 ± 0.047 .181 1.605 NS NS NS NS NS NS NS NS NS NS

Dimethylamine 0.126 ± 0.022 0.099 ± 0.024 0.123 ± 0.025 0.099 ± 0.022 0.118 ± 0.036 .530 0.798 NS NS NS NS NS NS NS NS NS NS

TMAO 0.490 ± 0.015 0.480 ± 0.032 0.501 ± 0.020 0.491 ± 0.023 0.494 ± 0.025 .912 0.244 NS NS NS NS NS NS NS NS NS NS

Note: Red and blue colors denote that the difference is positive (ie leucine was increased in gastric cancer [GC] relative to CON) and negative,  
respectively.
Abbreviations: GS, gastritis; HGD, high-grade gastric dysplasia; LGD, low-grade gastric dysplasia; TMAO, trimethylamine N-oxide.
Differences between 2 groups: ***P < .001, highly significant; **P < .01, very significant; *P < .05, significant; NS, P > .05, insignificant.
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TA B L E  1   Comparison of metabolite levels among 4 pathological groups and normal control (CON) group based on relative integrals  
calculated from 1D 1H-nuclear magnetic resonance spectra of aqueous extracts of gastric tissues

Mean and SEM One-way ANOVA Tukey’s multiple comparisons test
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not be used as a potential marker for the LGD state, because these 
AUC values were mostly low than 0.7 (Figure S8B).

4  | DISCUSSION

Gastric carcinogenesis is a multistep process related to several 
pathological stages, involving distinctly changed metabolic pro-
files and significantly disturbed metabolic pathways. Molecular 
mechanisms of GCG remain elusive. Previously, we established 
a rat model of GCG and carried out NMR-based metabolomic 
analyses of sera derived from the rat model.7 Until now, no 

metabolomic analyses of gastric tissues have been undertaken 
to address the underlying molecular mechanisms during the pro-
gression of GCG. Given that the physiological state of a complex 
tissue is reflected in the full complement of various metabolites 
from its constituent cells, metabolic profiling of gastric tissues 
would be beneficial to comprehensively understand molecular 
mechanisms underlying GCG. Here, we undertook the NMR-
based metabolomic analysis of gastric tissues derived from the 
same rat model of GCG.7 We compared distinctly altered meta-
bolic profiles, dramatically changed metabolite levels, and sig-
nificantly disturbed metabolic pathways associated with the 4 
pathological stages of GCG.

F I G U R E  3   Significantly disturbed 
metabolic pathways associated with 
the 4 pathological stages of gastric 
carcinogenesis relative to the normal 
control (CON) stage. A, Gastritis vs CON. 
B, Low-grade gastric dysplasia vs CON. 
C, High-grade gastric dysplasia vs CON. 
D, Gastric cancer vs CON. Based on the 
significant metabolites, significantly 
disturbed metabolic pathways were 
identified with pathway impact 
values > 0.3 and P values < 10−5, using 
the Pathway Analysis module provided by 
MetaboAnalyst 4.0

F I G U R E  4   Multivariate receiver operating characteristic (ROC) curves assessing capabilities of significantly disturbed metabolic 
pathways in gastric tissues for metabolically discriminating the gastritis stage from the control stage. The area under the ROC curve values, 
shown in brackets, were used to evaluate prediction performances of the biomarker models. A, Taurine and hypotaurine metabolism. B, 
Glutamine and glutamate metabolism. C, Alanine, aspartate, and glutamate metabolism
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4.1 | Glutamate-related metabolism is disordered 
during GCG

We found that 2 metabolic pathways were continually disordered in 
the multistage process of GCG (glutamine and glutamate metabo-
lism, and alanine, aspartate, and glutamate metabolism). Our pre-
vious metabolomic analysis of sera derived from the rat model of 
GCG also revealed the 2 identical disordered pathways.7 Compared 
with the CON rats, the serum levels of aspartate, glutamate and 

glutamine were increased in the MODEL rats.7 Previously, Sharma 
et al also got a consistent result by studying the gastrointestinal 
mucosa in celiac disease with inflammation.34 It is well known that 
glutamate, glutamine, and aspartate are major sources of energy for 
small intestinal mucosa.35 Once undergoing deamination in their car-
bon skeleton, these changed amino acids are converted into inter-
mediate metabolites of anaplerotic reactions of the Krebs cycle.36 
In addition, glutamate and glutamine metabolism also participate in 
oxidation stress.37 It has been suggested that significantly altered 

F I G U R E  5   Multivariate receiver operating characteristic (ROC) curves assessing capabilities of significantly disturbed metabolic 
pathways in gastric tissues for metabolically discriminating the low-grade gastric dysplasia stage from the control stage. The area under the 
ROC curve values, shown in brackets, were used to evaluate prediction performances of the biomarker models. A, Taurine and hypotaurine 
metabolism. B, Glutamine and glutamate metabolism. C, Alanine, aspartate and glutamate metabolism

F I G U R E  6   Multivariate receiver operating characteristic (ROC) curves assessing capabilities of significantly disturbed metabolic 
pathways in gastric tissues for metabolically discriminating the high-grade gastric dysplasia stage from the control stage. The area under the 
ROC curve values, shown in brackets, were used to evaluate prediction performances of the biomarker models. A, Taurine and hypotaurine 
metabolism. B, Glutamine and glutamate metabolism. C, Alanine, aspartate, and glutamate metabolism. D, Glycine, serine, and threonine 
metabolism. E, Krebs cycle
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metabolic pathways related to glutamate might respond to oxidation 
stress, which are probably associated with chronic inflammation and 
malignant transformation during GCG.38

Our work indicated that oxidation stress continuously influenced 
gastric tissues in the 4 typical pathological stages of GCG. Moreover, 
glutamine was identified as a potential biomarker in the GS stage, 
and glutamate was identified as a potential biomarker in the LGD 
stage. Thus, these results suggest that oxidative stress is the main 
disordered metabolic pathway in the GS and LGD stages of GCG.

Several metabolites in amino acid metabolism, such as BCAAs, 
lysine, phenylalanine, and tyrosine, were identified only in the malig-
nant stage, but not in other pathological stages. These results sug-
gest that these metabolites could be involved in malignancy, rather 
than in inflammation or antioxidative defense. It has been reported 

previously that reprogrammed BCAA metabolism can directly regu-
late cancer development and drive cancer progression.39

4.2 | Antioxidant metabolic pathway is abnormal 
during GCG

Taurine and hypotaurine metabolism was continually disturbed 
during GCG. Taurine has been well recognized as an antioxidant 
both in vitro and in vivo. Previous works showed that taurine 
could elevate the activities of the antioxidant enzymes superox-
ide dismutase40 and glutathione peroxidase.41 Compared to the 
CON rats, the level of taurine was profoundly increased in GS 
rats. The high concentration of taurine probably contribute to the 

F I G U R E  7   Multivariate receiver operating characteristic (ROC) curves assessing capabilities of significantly disturbed metabolic 
pathways in gastric tissues for metabolically discriminating the gastric cancer stage from the control stage. The area under the ROC curve 
values, shown in brackets, were used to evaluate prediction performances of the biomarker models. A, Taurine and hypotaurine metabolism. 
B, Glutamine and glutamate metabolism. C, Alanine, aspartate, and glutamate metabolism. D, Glycine, serine, and threonine metabolism. E, 
Krebs cycle. F, Valine, leucine, and isoleucine biosynthesis. G, Glycolysis
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protection of gastric mucosa from oxidation stress. In LGD rats, 
taurine fell back to the normal control level. With the development 
of GCG, taurine was decreased in HGD and GC rats. This result 
indicated that the activity of antioxidation was reduced during the 
progression of GCG. It is expected that biochemical experiments 
for testing oxidative stress will provide strong evidence to support 
the correlation between these metabolites and oxidative stress. 
Such experiments should be undertaken in the future.

Notably, the metabolic profiling of gastric tissues derived from 
the rat model of GCG revealed abnormal taurine and hypotaurine 
metabolism, whereas that of sera derived from the same rat model 
did not identify this metabolic pathway as a significantly disturbed 
pathway.7 This work is indicative of the metabolic distinction be-
tween gastric tissues and sera.

Furthermore, the creatine level also displayed an interesting 
tendency during GCG. Creatine was significantly increased in the 
gastritis stage, but profoundly decreased in high dysplasia and can-
cer stages. As is known, creatine is an antiinflammatory metabolite. 
Such antiinflammatory, antioxidative defense by metabolites might 
be involved in homeostatic mechanisms in localized tissues. In addi-
tion, creatine also displayed potential anticancer effects.42 Thus, the 
reduced level of creatine detected in our work might further accel-
erate tumor progression.

4.3 | Energy-related metabolic pathways are 
disturbed in HGD and GC stages

Our work showed that several energy-related metabolic pathways 
were significantly disturbed in HGD and GC stages, including gly-
cine, serine, and threonine metabolism and Krebs cycle. Obviously, 
glycine was increased in the 2 stages and identified as a potential 
biomarker in the GC stage (AUC  =  0.9345). These results showed 
that cancer cell proliferation was promoted by glycine in HGD and 
GC stages. Both the impaired Krebs cycle and glycine, serine, and 
threonine metabolism suggest that the anaplerosis of Krebs cycle is 
activated through the pyruvate metabolism from amino acids, and 
thus promotes cell proliferation and growth by using Krebs cycle for 
biosynthesis.43

Furthermore, the levels of choline, PC, and GPC fluctuated in 
the 4 pathological stages of GCG. Choline and PC were upregu-
lated in the GS stage but downregulated in HGD and GC stages. 
Glycerophosphocholine was increased in the GS, HGD, and GC 
stages. These fluctuations might result from impaired choline 
phosphorylation, which was previously reported as a common fea-
ture of cancer.44 The enhanced GPC level could promote the bio-
synthesis of rapidly growing tumor cells with high invasion ability 
in the HGD stage.45 More significantly, choline also participated 
in the glycine, serine, and threonine metabolism in HGD and GC 
stages, and played important roles in this metabolic pathway, as 
indicated by its high AUC values (0.8733 and 0.9191). Notably, as 
described above, choline could be exploited to be a potential bio-
marker for GC diagnosis.

During the progression of GCG, the changes of creatine and 
3-hydroxybutyrate levels are also worth attention. Creatine was 
decreased in HGD and GC stages, indicative of reduced creatine 
biosynthesis. Similar results were previously reported by Manju 
Ray et al.46 They found that arginine, glycine, and related metabo-
lites were regulated to support polyamine and methionine synthe-
sis in cancer cells, rather than supporting creatine biosynthesis. 
Furthermore, our work also identified creatine to be a potential 
biomarker in the HGD stage. Compared to the other 4 pathologi-
cal stages, the GC state showed significantly increased 3-hydroxy-
butyrate, which was a metabolite in ketone bodies’ metabolism, 
implying that the fatty acid metabolism was regulated to meet 
the body’s energy needs. Previously, Yeh et al showed that fatty 
acid metabolism had high rates of overexpression in colorectal 
carcinogenesis.47

In the GC stage, the metabolic pathway of valine, leucine, and 
isoleucine biosynthesis was also significantly disturbed, and the re-
lated metabolites were profoundly upregulated. This result showed 
that the metabolism of amino acids was promoted in this stage for 
tumor cell proliferation. Furthermore, the GC stage showed mark-
edly disturbed glycolysis, together with the highest level of lactate 
and the lowest level of glucose. In addition, lactate was identified as 
a potential biomarker in the GC stage (AUC = 0.9226). These results 
indicate that glycolysis is the main disordered metabolic pathway in 
the GC stage, which requires more energy for the rapid growth of 
tumor cells. Similar phenomena have been observed in tumor cells.48

We undertook NMR-based metabolomic analyses of gastric tis-
sues derived from a rat model of GCG. We characterized distinctly 
changed metabolic profiles, identified significant metabolites with 
dramatically altered levels, and identified significantly disturbed 
metabolic pathways associated with the 4 pathological stages of 
GCG. The progression of GCG shows 3 continually disturbed met-
abolic pathways (taurine and hypotaurine metabolism, glutamine 
and glutamate metabolism, and alanine, aspartate, and glutamate 
metabolism). Moreover, both the HGD and GC stages show 2 extra 
impaired metabolic pathways (glycine, serine, and threonine me-
tabolism, and Krebs cycle), which might contribute to the supply of 
more energy for tumor cell proliferation and growth. Furthermore, 
the GC stage displays 2 unique impaired pathways (glycolysis, and 
valine, leucine, and isoleucine biosynthesis) due to increased energy 
requirements for the rapid growth of tumor cells. More significantly, 
the GC stage also shows more remarkably altered metabolite levels 
relative to the precancerous stages, indicative of severe metabolic 
disorder. In this work, we have not measured expression levels or ac-
tivities of regulatory enzymes involved in the identified significantly 
disturbed metabolic pathways. Such work should be carried out in 
the future to confirm these significant pathways associated with the 
progression of GCG. In addition, we identified potential gastric tis-
sue biomarkers for metabolically discriminating the 4 pathological 
stages of GCG from the normal CON stage: taurine and glutamine 
for GS; glutamate for LGD; creatine, taurine, and acetate for HGD; 
and glycine, lactate, and choline for GC. These potential biomark-
ers, identified for pathological gastric tissues, also showed good 
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discriminant capabilities for their serum counterparts. Further works 
are required to comprehensively evaluate the potencies of these po-
tential biomarkers for clinical diagnoses based on large-scale gastric 
tissue and serum samples. Our results provide new insights into the 
metabolic mechanisms underlying the 4 pathological stages of GCG 
and could be beneficial to exploit potential biomarkers for clinically 
diagnosing and monitoring GC progression.
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