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Abstract: In this study, we presented an AISID method extending AlphaFold-Multimer’s success in
structure prediction towards identifying specific protein interactions with an optimized AISIDscore.
The method was tested to identify the binding proteins in 18 human TNFSF (Tumor Necrosis Factor
superfamily) members for each of 27 human TNFRSF (TNF receptor superfamily) members. For each
TNFRSF member, we ranked the AISIDscore among the 18 TNFSF members. The correct pairing
resulted in the highest AISIDscore for 13 out of 24 TNFRSF members which have known interactions
with TNFSF members. Out of the 33 correct pairing between TNFSF and TNFRSF members, 28 pairs
could be found in the top five (including 25 pairs in the top three) seats in the AISIDscore ranking.
Surprisingly, the specific interactions between TNFSF10 (TNF-related apoptosis-inducing ligand,
TRAIL) and its decoy receptors DcR1 and DcR2 gave the highest AISIDscore in the list, while the
structures of DcR1 and DcR2 are unknown. The data strongly suggests that AlphaFold-Multimer
might be a useful computational screening tool to find novel specific protein bindings. This AISID
method may have broad applications in protein biochemistry, extending the application of AlphaFold
far beyond structure predictions.

Keywords: proteins binding; computer-aided screening; AlphaFold; AISID

1. Introduction

Over the last several decades, various algorithms have been developed to model un-
known structures based on the information deposited at the Protein Data Bank (PDB). The
AphaFold2 is an Artificial Intelligent (AI) program that utilizes deep learning to perform
protein structure prediction [1], which demonstrated an outstanding ability to predict the
single-chain protein structures during the 14th Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction (CASP14) competition [2]. Other
platforms have also been developed for protein structure modeling, either independently
or through exploiting the existing version of AlphaFold2 [3–8]. Lately, the AlphaFold2 team
have released AlphaFold-Multimer, which added the capability to model protein complexes
of multiple chains [9]. More recently, it has been shown that AlphaFold-Multimer can be
utilized to predict protein complex structure with accuracy for soluble protein complexes,
transmembrane ABC transporter complex, and protein complexes containing intrinsic
disordered proteins (IDP) [3,10–14].

While precise atomic structures of protein complexes could provide insight of the
detailed static interactions, identifying novel specific protein interactions may have a
broader interest in protein characterizations. To identify the possible binding partner
for a bait protein from a long list of protein candidates, it would be very helpful that a
computational screening method can quickly predict binding potentials and prioritize the
candidates for further biochemical assays. Such a method could revolutionize the protein
characterization process. In this study, we presented an AI-based protein interaction
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screening and identification (AISID) method extending AlphaFold-Multimer’s success in
structure prediction towards identifying specific protein interactions.

2. Results and Discussions

To predict a heterodimer protein complex structure, the AlphaFold-Multimer generates
25 (by default) complex structure models with a model confidence value for assessing the
quality of each model. We derive a metric score (denoted as AISIDscore hereafter) from the
model confidence values, and the AISIDscore is optimized for assessing binding potentials
between the protein pairs. We hypothesize that the AISIDscore can serve as a quality
indicator to evaluate the binding potential between the protein pair. In the computational
screening, a bait protein and a panel of protein ligand candidates can be input into the
AlphaFold-Multimer for calculations. A higher AISIDscore might indicate the higher
likelihood of specific binding between the bait and the protein ligand.

To test our method, 27 human TNFRSF members and 18 human TNFSF members
were utilized. In all, 24 TNFRSF members out of the 27 can specifically bind at least one of
the 18 TNFSF members as documented by the Uniprot database [15]. The specific binding
between a TNFRSF member and its ligand TNFSF member(s) leads to distinct signaling
pathways, including cell apoptosis, inflammation, and proliferations [16,17]. In each test,
two protein sequences, one from a TNFRSF member and the other from a TNFSF member,
were input into the AlphaFold-Multimer. The whole screening test generated a panel of
AISIDscores for 27 × 18 pairs of TNFRSF and TNFSF members. For each TNFRSF member
(as a bait protein), we ranked the AISIDscore among the 18 TNFSF members. The correct
pairing was revealed as the highest AISIDscore for 13 out of 24 TNFRSF members, which
have known specific interactions with TNFSF members. Out of the 33 correct pairings
between TNFRSF and TNFSF members, 28 pairs could be found in the top five (including
25 pairs in the top three) seats of the AISIDscore rankings (Figure 1). The AISIDscore ranges
from 0.02 to 0.85 with an average value of 0.46 for all pairs, and a much higher average
value of 0.74 for the correct pairs. As a negative control, the AISIDscores between Hsp40
Hdj1 and TNFSF members were also calculated, resulted in a much lower average value
of 0.15.

It is of great interest to examine the ability of AISID for specific interactions be-
tween proteins with unknown structures. The TNFRSF members TNFRSF10C and TN-
FRSF10D (TRAIL DcR1 and TRAIL DcR2) can interact specifically with their ligand TN-
FSF10 (TRAIL), while their structural information is missing. Surprisingly, the pairing
between the DcR1 and DcR2 and their ligand TRAIL gave the highest AISIDscore in the
list (Figures 1 and 2A,B). Biochemical studies have shown that both DcR1 and DcR2 could
specifically bind TRAIL with the KD of ~1nM. DcR1 and DcR2 do not interact with other
TNFSF members [18,19]. In another case of CD30/CD30L, both CD30 and its ligand CD30L
are with unknown structures. The prediction showed that the CD30/CD30L pair provided
the second highest AISIDscore in the list (Figure 2C). The studies using Surface Plasmon
Resonance(SPR) have indicated that CD30 specifically interacted with CD30L with the KD
of ~5 nM [20]. Therefore, the prediction results using the AISIDscore are consistent with the
previous biochemical studies. The data clearly indicated that the AISIDscore derived from
the AlphaFold-Multimer might be a useful indicator to identify the specific interactions.

As a positive control, we took advantage of a nanobody that can specifically bind
TNFα [21]. The protein complex structure of TNFα and this specific nanobody was de-
posited into PDB on 13 October 2016. We asked the AlphaFold-Multimer to perform the
complex structure prediction between the nanobody and 18 TNFSF members. To prevent
the AlphaFold-Multimer using the structure information in PDB, we also perform the
calculation with the cutoff date of 1 January 2016. In both cases, the calculations gave the
highest AISIDscore for the correct pairing of TNFα and the nanobody (Table 1). These data
strongly suggest that AISID may be utilized as a valid method for identifying novel specific
protein bindings.
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Table 1. AISIDscores of TNFα nanobody against TNFSF superfamily.

TNFSF/AISIDscore Default Cutoff Date 1 January 2016

TNFα 0.871 0.869

TRAIL 0.713 0.705

4-1BBL 0.699 0.392

LIGHT 0.590 0.709

TNFβ 0.563 0.515

TNFSF13 0.552 0.454

TNFSF4 0.484 0.118

TNFSF12 0.271 0.101

TNFγ 0.261 0.311

CD70 0.233 0.353

CD153 0.223 0.096

TNFSF11 0.215 0.265

TNFSF13B 0.204 0.253

TNFSF18 0.163 0.276

FASLG 0.161 0.155

EDA 0.150 0.158

TNFSF15 0.098 0.089

CD40LG 0.081 0.082
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Figure 1. Heatmap of AISIDscores from 29 bait proteins (27 TNFRSF members, TNFα nanobody for 
positive control, Hsp40Hdj1 for negative control) against 18 TNFSF members. The AISIDscore of 
correct pairings between bait protein and TNFSF members are underlined. For each TNFRSF mem-
ber, AISIDscores were ranked among 18 TNFSF members, with the ranking positions of the correct 
pairs are listed at the rightmost column. Three TNF receptor (NGFR, TROY, and DR6) do not have 
known ligands in TNFSF members and are labeled as “unknown”. The human Hsp40Hdj1 is labeled 
as “none”. 
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Figure 1. Heatmap of AISIDscores from 29 bait proteins (27 TNFRSF members, TNFα nanobody
for positive control, Hsp40Hdj1 for negative control) against 18 TNFSF members. The AISIDscore
of correct pairings between bait protein and TNFSF members are underlined. For each TNFRSF
member, AISIDscores were ranked among 18 TNFSF members, with the ranking positions of the
correct pairs are listed at the rightmost column. Three TNF receptor (NGFR, TROY, and DR6) do not
have known ligands in TNFSF members and are labeled as “unknown”. The human Hsp40Hdj1 is
labeled as “none”.
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Figure 2. Plot of AISIDscores from screening the TNFRSF members, which do not have solved com-
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in same order as Figure 1. The red circle indicates the correct pairing. 
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Figure 2. Plot of AISIDscores from screening the TNFRSF members, which do not have solved
complex structures. (A–C), represent DcR1, DcR2, and CD30, respectively, with the 18 TNFSF
members in same order as Figure 1. The red circle indicates the correct pairing.

It is worth noting that a relatively high sequence homology exists in TNFRSF and
TNFSF family members. For example, the TNFα and TRAIL share ~25% sequence identity
and ~60% sequence similarity. Our data indicate that the AISID method can reveal the
specific interactions even among the highly homologous TNFSF family members. It is
highly likely that the AISID may greatly speed up the screening for unknown specific
protein bindings by prioritizing a long list of potential binding partners. The AISID-guided
biochemical assay may follow to confirm the bindings.

Many protein interactions are mediated by intrinsic disordered proteins (IDP). Some
IDPs have been showed to undergo a disorder-to-order transition upon recognizing their
physiological partners [22]. Trying to postulate the binding partners for IDP by examining
its primary sequence would be extremely challenging. The AISID can put the IDP in the
context with its potential partners to predict the binding, which may mimic the fold-and-
bind scenario for IDP.

The detailed atomic structure of predicted complex model is not the focus of AISID
screening. It is structure-blind, and no other prior biological information, except only
a pair of protein sequences, are needed for calculating the AISIDscore. Users will not
need to examine the accuracy of the model complex structures, which makes the method
user-friendly for people working in wet lab.

The presented AISID method may have significant biological impact in general bio-
chemistry and cell biology. To characterize a protein with unknown functions, it is im-
portant to identify its binding partners. Using the traditional methods such as a yeast
two hybrid system has been shown to be problematic and time-consuming. The AISID
method may provide a fast alternative to identify the possible binding partner for a bait
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protein from a long list of protein candidates. Our method offers an AISIDscore which
quantitatively measures the likelihood for a particular protein-protein interaction. The
data showed that the AISIDscore was accurate in revealing specific protein interactions
even among highly homologous proteins. Such a method may revolutionize how protein
interactions are characterized.

3. Methods

In this presented AISID method for specific protein bindings screening, the AlphaFold-
Multimer [9] was used to calculate the ranking metric. The AlphaFold-Multimer is a
publicly available software package (https://github.com/deepmind/alphafold, accessed
on 18 March 2022) recently released by DeepMind which extends the AlphaFold2 to
multiple chains during both training and inference with native support for multiple-chain
featurization and symmetry handling, surpassing those of inference-only modifications to
the AlphaFold2.

When used in complex structure prediction, the AlphaFold-Multimer generates a
merit index, the model confidence, defined as a weighted combination of ipTM and pTM:

Model Confidence = 0.8 × ipTM + 0.2 × pTM (1)

which is used to assess the overall accuracy of a predicted complex structure model.
The two weighted factors ipTM and pTM are for evaluating inter-chain and intra-chain
quality, respectively. In cases when the predicted model with either one or both composite
proteins does not have high accuracy, the ‘Model Confidence’ thus defined could skew
the evaluation of specific bindings, especially when not all domains of the proteins folded
meaningfully. For identifying the potential specific binding between a bait protein and
a ligand protein, a metric using only the inter-chain part would be more appropriate. In
heterodimer complex structure predictions, the AlphaFold-Multimer generates 25 models
by default, each with a model confidence. Due to the reasons described above, we derive a
new metric (denoted as AISIDscore for simplicity) to assess binding potential between the
proteins pair:

AISIDscore = max{1.25 × (Model Confidence) − 0.25 × avp} (2)

Here, ‘avp’ is the averaged percentage pLDDT [1] score of all amino acid residues in
the predicted complex structure model, and ‘max{}’ runs through the 25 models to calculate
the maximum. The AISIDscore thus defined is intended to highlight binding potential
assessment by weighting down the impact of possible folding errors of individual chains.

The sequence of the bait protein to be investigated, and each sequence from the list of
candidate proteins to be screened, are used to create a composite sequence file as input to the
AlphaFold-Multimer for heterodimer complex structure predictions. As computing time of
a prediction job heavily depends on the size of sequence, the list of composite sequence
files is sorted by the number of amino acid residues from small to large. The sorting helps
optimize the project production cycle (not the machine time of a prediction job), especially
when carrying out a large screening project on a server with limited computing nodes
and/or the candidate proteins are quite different in sizes. Batch jobs with inputs from the
sorted list of composite sequence files are submitted through a load-balanced scheduler to
the computer server running the AlphaFold-Multimer. Each of the composite sequence file
will instruct the AlphaFold-Multimer to generate 25 (by default) predicted heterodimer
complex structure models. The AISIDscore is then derived for the pair from harvesting
and analyzing the outputs. Upon the finish of the screening project, a list of AISIDsocres
will be generated, each for one bait-ligand pair.

For proof of concept, we picked 29 bait proteins including 27 human TNFRSF (tumor
necrosis factor receptor superfamily) member proteins, a TNFα nanobody as positive
control, and protein Hsp40 Hdj1 as negative control. The 18 human TNFSF (tumor necrosis
factor superfamily) member proteins are used as the ligand proteins to be screened. Human

https://github.com/deepmind/alphafold
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TNFRSF and TNFSF are two of the well-studied protein superfamilies with many known
specific bindings, which is good for methods validation and evaluation. Figure 1 shows the
results from the 29 screening projects.

The AISID screening focuses on finding the potential specific binding proteins, not
the detailed atomic structure of the predicted complex models. The sequences of bait
and ligand proteins are the only inputs to the AlphaFold-Multimer for calculating the the
AISIDscores. No other prior biological information is needed. For routine uses, one simply
needs to examine the AISIDscore in search for the potential specific binding protein(s). The
workflow diagram of a typical screening project is summarized in Figure 3. A group of
in-house helper scripts have been created to facilitate executing the steps. From sequences
to the ranked list of final AISIDscores, a screening project could be carried out by wet-lab
scientists without special training in modeling, nor in interpreting details of an atomic
structure.
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Figure 3. Workflow diagram of specific protein binding screening: (1). Create a list of composite
sequence files of FASTA-format. Each file contains two separate sequences, one is that of the bait
protein, the other is from one of the ligand proteins against which to be screened. (2). Sort the
list by the number of amino acid residues in the composite sequence files from small to large.
(3). Through a load-balanced scheduler, submit the batch jobs onto the server running the AlphaFold-
multimer. (4). Once the project finishes, each job generates 25 predicted heterodimer complex
structure models. (5). Harvest outputs and calculate the AISIDscore for each bait-ligand pair,
resulting in a list of AISIDscores for the screening project. (6). Sort the list by AISIDscore from large
to small for evaluation.

4. Conclusions

In our test sets, 27 human TNFRSF members and 18 human TNFSF members were
utilized. The specific interactions between TNFRSF members and TNFSF members have
been extensively studied. Relatively high sequence homologues exist among TNFRSF
members and TNFSF member, while each TNFRSF member can specifically bind TNFSF
members to initiate distinct signaling pathways. The interaction network constituted by
TNFRSF and TNFSF members provide us with an excellent database to investigate the
AISID method for revealing specific protein bindings. We reason that this small but very
well-informed database may be ideal for testing our method. Our results showed that out
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of the 33 correct pairings between TNFRSF and TNFSF members, 25 pairs can be found in
the top three seats of the AISIDscore rankings (Figure 1).

The data in this study strongly suggest that the AISID method has the capability to
identify novel protein interactions. It may greatly speed up the screening for unknown
specific protein bindings by prioritizing a long list of potential binding partners. The AISID
method may have broad applications for protein characterizations in protein biochemistry,
extending the application of the AlphaFold far beyond structure predictions.
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