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The discovery of immune checkpoints (ICs) and the develop-
ment of specific blockers to relieve immune effector cells from
this inhibiting mechanism has changed the view of anti-cancer
therapy. In addition to cytotoxic T lymphocyte antigen 4
(CTLA4) and programmed death 1 (PD1), classical ICs of T lym-
phocytes and recently described also on a fraction of natural
killer (NK) cells, several NK cell receptors, including
killer immunoglobulin-like inhibitory receptors (KIRs) and
NGK2A, have been recognized as checkpoint members typical
of the NK cell population. This offers the opportunity of a
dual-checkpoint inhibition approach, targeting classical and
non-classical ICs and leading to a synergistic therapeutic effect.
In this review, we will overview and discuss this new perspective,
focusing on the most relevant candidates for this role among the
variety of potential NK ICs. Beside listing and defining classical
ICs expressed also by NK cells, or non-classical ICs either on T
or on NK cells, we will address their role in NK cell survival,
chronic stimulation or functional exhaustion, and the potential
relevance of this phenomenon on anti-tumor immune response.
Furthermore, NK ICs will be proposed as possible new targets
for the development of efficient combined immunotherapy,
not forgetting the relevant concerns that may be raised on NK
IC blockade. Finally, the impact of epigenetic drugs in such a
complex therapeutic picture will be briefly addressed.
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INTRODUCTION
The discovery of immune checkpoints (ICs) and their role in the regu-
lation of anti-tumor immune responses has determined the develop-
ment of pharmacological tools, namely monoclonal antibodies
(mAbs), able to release immune effector cells from this blocking
mechanism. The two most relevant ICs reported so far are the PD
(programmed death)-1 receptor expressed on immunocompetent
cells, which binds the programmed death-ligand (PDL) 1 on cancer
cells (Figure 1), and cytotoxic T lymphocyte antigen 4 (CTLA4),
which competes with the CD28 costimulatory receptor for the ligands
B7-1 (CD80) or B7-2 (CD86) on tumor cells (Figure 1).

In recent years, the use of IC blockers led to considerable successes in
the treatment of several neoplasias.1–6 James P. Allison and Tasuku
Honjo, the two scientists whose work mostly contributed to gaining
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crucial knowledge for the development of checkpoint inhibitor ther-
apies, were awarded with the Nobel Prize in Physiology or Medicine
in 2018.7,8 The anti-CTLA4 ipilimumab was the first IC blocker
approved as anti-cancer drug in 2011 in the United States for the
treatment of metastatic melanoma.9,10 In the following years, several
PD1/PDL blockers, after the first anti-PD1 nivolumab, have been
approved for the treatment of solid tumors and hematological malig-
nancies, including non-small cell lung cancer (NSCLC), melanoma,
renal cell carcinoma, and high-grade Hodgkin lymphoma (HL)1,11

(Table 1). The theoretical basis of the numerous encouraging clinical
results relies on the re-activation of CD8+ T cell activity, consequent
to IC blockade with specific mAbs, to allow the assembly and trigger
of an anti-tumor immune response, avoiding or limiting tumor
escape (Figure 1).12,13

However, a great variability of response among patients has been
documented in several clinical trials, with a large fraction of non-re-
sponders, suggesting that the complexity of the IC network is not fully
reealed.14

Recent evidence for the involvement of natural killer (NK) cells in the
picture sheds new light on this topic, also widening the possible tar-
gets of pharmacological intervention.14,15 That PD1 or CTLA4 are ex-
pressed at least by a fraction of NK cells is commonly accepted: of
note, PD1/PDL1 blockade in NK cells turned out to be essential to
guarantee the effectiveness of IC-based immunotherapy in animal
models.15,16

In addition to the classical ICs, which remain typical of the T cell pop-
ulation, an increasing number of NK cell receptors are now consid-
ered as ICs, including killer immunoglobulin-like inhibitory receptors
(KIRs); C-type lectin-like inhibitory receptors, such as natural killer
group 2 (NKG2)A/CD94 complex; and leukocyte immunoglobulin-
like receptors (LILRs). NGK2A is recognized as a checkpoint member
ors.
//creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.omto.2021.11.016
mailto:alessandro.poggi@hsanmartino.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omto.2021.11.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

Figure 1. Schematic representation of IC network

(A) IC ligands (IC-L) expressed on tumor cells (TCs) bind to

ICs on NK cells and deliver an inhibiting signal that impairs

cytotoxicity or anti-tumor cytokine production, allowing

tumor cell growth. (B) IC-negative TCs cannot inhibit NK

cell function and TC growth and expansion is limited by NK

cell activity. IC blockers can prevent IC/IC-L interaction and

the consequent inhibiting signal delivery.
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typical of the NK cell population. The coexistence of ICs typical of T
lymphocytes and other ICs peculiar to NK cells has led to the proposal
of a dual-checkpoint inhibition approach, to obtain a synergistic ther-
apeutic effect, already proposed to overcome the problem of non-
responder patients to PD1/PDL1 and/or CTLA4 blockade.14,15,17

Extending the combination to NK-specific ICs, to restore a peculiar
anti-tumor cytotoxic function, could strengthen the efficacy of IC-
based immunotherapy.

In this review, we will deal with this new perspective, discussing the
most relevant candidates for this role among the variety of potential
NK ICs. In particular, we will describe the presence of NK cells at the
site of lesion under IC-based therapy and the modifications in their
function possibly due to the treatment; then, we will list and define
classical and non-classical ICs expressed by NK cells, and, finally,
we will address this last point as a possible source of new IC targets
to be proposed for the development of efficient immunotherapy.
NK cell fate under IC therapy

The actual role of NK cells as anti-cancer effectors has been a contro-
versial issue for many years due to the paucity of clinical studies re-
porting their presence in the immune infiltrate in the tumor microen-
vironment (TME). Nevertheless, the importance of this effector
lymphocyte subset in anti-cancer immunosurveillance is now
accepted, due to the huge number of reports supporting the contribu-
tion of NK cells in the spontaneous or antibody-induced killing of
tumor cells.18–21 Indeed, NK cells can respond to solid and hemato-
poietic cancers by releasing anti-tumor cytokines and chemokines;
in addition, they can identify tumor cells lacking self-related mole-
cules, including the major histocompatibility complex (MHC) class
I molecular pattern, or recognize antigen expressed by stressed cells
(induced stress-related recognition).22–26 Finally, Fc-mediated
effector functions of NK cells can be triggered by therapeutic
mAbs, resulting in antibody-dependent cellular cytotoxicity
Molecu
(ADCC).18–21 Thereby, NK cells are able to
mediate strong antileukemia effects,24,27,28 and
now their presence in solid tumors is not only
documented but also represents a good prog-
nostic factor.20,21

Recent evidence, derived from clinical studies in
solid tumors, revealed that the degree of effector
lymphocytes, including NK cell infiltration, in-
fluences the outcome of immunotherapy, notably that of IC-based
therapy (ICT), becoming a proposed marker for the eligibility of pa-
tients potentially susceptible to such treatment.29 In particular, the
differential immune cell infiltrate within the tumor or in the stromal
area of the TME was shown to affect the response to ICT in mela-
nomas and pancreatic cancer.30 In turn, ICT itself can produce
TMEmodifications, some affecting NK cell distribution and function,
that may change the picture of the suitable ICT targets.29,30

NK cell localization during tumor progression and ICT

At variance with hematological malignancies, where NK cell contri-
bution tomAb-based immunotherapy is documented, in solid tumors
the efficiency of natural cytotoxicity or ADCCmediated by NK cells is
variable and questionable. Despite the reported correlation between
NK cell infiltration and tumor progression, inhibitory signals arising
from TME and cancer cells seem to impair NK cell localization to the
site of the lesion.31 Strategies to increase infiltration of NK lympho-
cytes into tumors have been adopted to enhance the efficacy of
anti-tumormAbs that elicit NK cell-based ADCC, including trastuzu-
mab in breast cancer or cetuximab in colorectal carcinoma; however,
NK cell infiltration does not always lead to desirable results due to
downregulation of cytotoxic T cell function.29,32 Transfer of NK cells
has been introduced to improve persistence in the tumor, as reported
in a recent phase I trial showing stable disease in lymphoma and solid
tumor patients following three infusions of allogenic NK cells.33 How-
ever, this approach produced only partial and temporary results, so
the trial failed to reach definitive clinical results. This could be depen-
dent on the fact that, after infiltration into a tumor mass, NK cells un-
dergo phenotypic and metabolic changes ultimately leading to defects
of transient localization in the tumor and to decreased or limited
effector function.34,35 The discovery of IC expression on NK cells
has revealed an important mechanism whereby such functional
impairment takes place. While, on one hand, administration of
mAbs targeting ICs can block these pathways and rescue the
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Table 1. ICT: IC blockers approved or in active phase II/III clinical trials

Receptor mAb Type Disease

CTLA4
(CD152)

Ipilimumab human

melanoma, NSCLCtremelimumab
(ticilizumab)

human

PD1
(CD279)

Nivolumab Human metastatic melanoma, lung
cancer, renal cell carcinoma,
lymphomasPembrolizumab humanized

PDL1 (B7-
H1/CD274)

Avelumab Human Merkel cell carcinoma,
metastatic urothelial cancer,
NSCLC, TNBC, HCCatezolizumab humanized

B7-H3
(CD276)

enoblituzumab humanized neuroblastoma,
rhabdomyosarcoma, Ewing
sarcoma, Wilms tumor,
melanoma

orlotamab
humanized
bispecific
(CD3)

TIM3
(CD366)

cobolimaba

LY3321367a

BGB-A425a
Human

liver cancer, metastatic
melanoma, NSCLC,
refractory solid tumors

LAG3
(CD223)

Sym022a Human advanced solid and
hematological tumors,
melanomarelatlimabb Human

TIGIT
(CD226)

tiragolumaba Human advanced solid and
hematological tumors,
melanomaetigilimaba Human

KIR
(CD158)

IPH2101a

(KIR2DL1)
Human

MM, AML, relapsed/
refractory lymphomas

lirilumab
(IPH2102-
KIR2DL1/2/3)a

Human

IPH4102
(KIR3DL2)a

Human

NKG2A
(CD159a)

monalizumaba humanized

oral squamous cell
carcinoma, gynecological
malignancies, relapsed
hematological malignancies

HCC, hepatocellular carcinoma; TNBC: triple negative breast cancer: MM:multiple
myeloma; AML:acute myeloid leukemia.
aPhase I/II clinical trials.
bPhase III clinical trials.
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anti-tumor activity of NK cells,31,36 on the other hand, a distinction
between ICT responders and non-responders has become evident.17

As we discuss later, NK cells express not only classical ICs delivering
negative signals but also a variety of non-classical molecules, mainly
inhibitory receptors distinguished into conventional and non-con-
ventional, that are able to negatively modulate their ability to reach
cancer cells and destroy them. More and more scientists agree on
the hypothesis that these non-classical ICs on NK cells can affect
the fate of ICT and mAb-based immunotherapy.

Direct/indirect effects of ICT on NK cell function

Reciprocal effects of anti-cancer therapies and immune cell functions
have been reported involving not only T lymphocytes or antigen-pre-
senting cells but also NK cells.37 In this context, the ultimate result of
this interplay would be directed by the modulation of the IC network.
In murine models, engagement of PD1 on activated NK cells by
28 Molecular Therapy: Oncolytics Vol. 24 March 2022
PDL1-expressing tumor cells reduces anti-tumor cytotoxicity, allow-
ing tumor growth.16 The blockade of PD1/PDL1 interaction leads to a
rescue of NK cell activity (direct effect), indispensable for the control
of neoplasia development, as treatment after depletion of NK cells was
ineffective. Evidence for NK cell activity rescue upon IC blockade led
to good clinical results in human cancers as well, including gastric
cancers, lung tumors, and melanomas, acting both on the PD1/
PDL1 axis and on CTLA4, another classical IC.36 Restored NK cells
recover not only their cytolytic potential but also the ability to pro-
duce interferon (IFN)g or other cytokines or chemokines.29,36 In
any case, blocking of inhibiting signals may be insufficient to obtain
an effective anti-cancer response, as NK cell activity is strictly related
to the good and complete function of activating receptors.18,20,37,38 In
the next section, we will complete this complex picture by describing
how the modulation of other important ICs, classical or non-classical,
involving activatory or inhibitory receptors on NK cells, is needed to
reach a reliable and stable rescue of complete anti-tumor effector cell
function.

Classical IC surface receptors of T lymphocytes expressed on

NK cells

A necessary requirement for an inhibiting receptor to give a negative
signal to effector cells is its expression at the cell surface. Herein, we
will summarize some evidence on the expression and function of the
two classical T cell inhibitory receptors PD1 and CTLA4 on NK cells.

NK cell expression and function of PD1 and CTLA4

Recently, a growing interest has been raised on the molecular mech-
anisms involved in NK cell exhaustion and/or anergic state39–41; this
is related to the better-characterized mechanisms, which involve T
lymphocytes response to the chronic exposure to a specific antigen,
in particular during immune response against tumor cells.42–44 It
has been reported that PD1 antigen is minimally expressed on both
human and mouse NK cells.45 Nevertheless, applying different meth-
odological approaches, such as cytofluorimetry, quantitative reverse
transcriptase reaction, and RNA sequencing for PD1 antigen, it has
been shown that PD1 is expressed on a minor fraction of peripheral
and tumor-associated NK cells. Furthermore, PD1 is not upregulated
on NK cells upon activation, unlike CD69 antigen and other inhibi-
tory receptors, such as T cell immunoreceptor with Ig and immunor-
eceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT).45

The finding that PD1 is only minimally expressed on tumor-infil-
trating lymphocytes would suggest that the use of anti-PD1 human-
ized antibodies in clinical trials to relieve the inhibition of NK cell-
mediated anti-tumor activity is premature and a greater knowledge
of the biological relevance of NK cells with low expression of PD1
should be acquired.45 However, some reports are in contrast with
these findings and claim that PD1 can be expressed at high levels
on a fraction of NK cells and PD1-mediated inhibition of NK cells
is relevant, at least in some specific instances.14,46–55 Indeed, it has
been shown that immune evasion through the engagement of PD1
on NK cells by PDL1 on tumor cells is marked in HLs, more
than in diffuse large B cell lymphomas (DLBCLs).56 The PD1
expressed on NK cells of HL patients, interacting with PDL1 on
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tumor-associated macrophages (TAMs), can deliver an inhibiting
signal on NK cells evaluated by impaired CD137 antigen upregulation
and tumor cell killing.56 Restoration of NK cell activation and killing
was obtained by using an anti-PD1 antibody.56 It is of note that the
increment in NK cells expressing PD1, compared with healthy do-
nors, was reverted by the specific therapy of HL and DLBCL.56 The
finding that the role of PD1 on NK cells was more evident in HL
compared with DLBCL could be dependent on the strong upregula-
tion of PDL1 expression in the TME found in HL and related to
the gene amplification at the chromosome 9p24.1 locus that involves
the PDL1 and PDL2 genes and consequent upregulation at the cell
surface of HL.57

Furthermore, it has been reported that PD1 is strongly upregulated
on NK cells of patients with esophageal, liver, colorectal, gastric,
and biliary cancer.58 Importantly, a poor survival was observed
in esophageal and liver cancers. Interestingly, the percentage of
PD1+CD56+ NK cells was markedly increased in patients’ periph-
eral blood within the CD56bright and CD56dull NK cell subsets.58

The blockade of PD1 with a specific anti-PD1 antibody could in-
crease the production of IFNg and CD107a expression at the cell
surface, indicating a role of PD1 in regulating cytokine release
and NK cell degranulation.58 Also, the engagement of PD1 with
surface-bound anti-PD1 mAbs could induce the apoptosis of
PD1+ NK cells. In nude mice, blocking of PD1 led to increased
phosphorylation of Akt and tumor growth inhibition enhancing
NK cell activity.58 Altogether these findings would indicate a key
role of PD1 on NK cells in digestive tract cancers; this hypothesis
was further confirmed by the increase of PD1+ NK cells infiltrating
these tumors.58

It has been reported that PD1 is specifically expressed at high levels on
serologically human cytomegalovirus (HCMV)-positive donors and
in about one-fourth of peripheral NK cells from healthy donors.14

These PD1+ NK cells are fully mature and terminally differentiated,
bearing KIR and CD57 antigen but not natural kilelr group 2 member
A (NKG2A) and with a low expression of CD56.14 It is of note that
PD1+ NK cells expressed low levels of activating receptors, such as
NKp30 and NKp46, while NKG2D and DNAM1 receptors did not
show remarkable differences between PD1+ and PD1� NK cell sub-
sets.14 Functional experiments have demonstrated that PD1+ NK cells
showed a lower ability than PD1�NK cells to mobilize CD107a at the
cell surface; the mobilization of CD107a was partially restored using
blocking anti-PD1 and anti-PDL1 mAbs.57 Also, it appeared that
anti-human leukocyte antigen (HLA) class I and anti-PDL1/2
mAbs used in combination further increased the mobilization of
CD107a, suggesting that both PD1 and HLA-I NK cell receptors
can deliver independent inhibiting signals to NK cells.14 PD1+ NK
cells produced lower amounts of pro-inflammatory cytokines, such
as IFNg and tumor necrosis factor alpha (TNFa), and display a lower
proliferation rate than PD1� NK cells in response to low doses of
interleukin (IL) 2 or IL15.14 Finally, PD1+ NK cells with an impaired
functional behavior were enriched in peritoneal effusion associated
with seropapillary ovarian carcinoma, indicating that TME can
trigger the expression of PD1 on NK cells or favor the selection of
PD1+ NK cells.14

An increment of peripheral blood and tumor-infiltrating PD1+ NK
cells have been reported not only in ovarian cancer but also in
multiple myeloma, sarcoma, and head and neck cancers
(HNCs).14,52,54,55 Of note, a better overall survival was associated
with high frequency of peripheral blood circulating PD1+ NK cells
over the mean value of expression of this receptor in HNC.55 The
expression of PD1 on NK cells was upregulated upon activation
with the anti-epidermal growth factor receptor (EGFR) humanized
antibody cetuximab and PD1 blockade increased cetuximab-medi-
ated activation of ADCC of HNCs expressing high amounts of
PDL1.55 These findings suggest that PD1+ NK cells are activated
and the increase in NK tumor-infiltrating cells would indicate that
PDL1-bearing tumor targets can impair NK cell-mediated cytolysis.
Furthermore, the contemporary blocking of PD1 with the specific
mAb and triggering ADCC with cetuximab can enhance anti-tumor
activity against HNC.55

The expression of CTLA4 on NK cells in HNC was very low both in
peripheral blood and tumor-infiltrating NK cells but more homoge-
neous among the different donors55; furthermore, The Cancer
Genome Atlas (TCGA) data for the expression of the CTLA4 gene
did not correlate with the expression of NCR1 (NKp46) NK cell-spe-
cific markers by contrast to PDCD1. The very low expression of
CTLA4 in HNC is consistent with the finding that peripheral NK cells
do not express surface or intracytoplasmic CTLA4.59,60 In addition, it
has recently been reported that innate lymphoid cells (ILC)s can ex-
press CTLA4.61 Indeed, CTLA4 appeared to be expressed by less than
10% of ILC1 but more than 10% of ILC2 and ILC3 cell subsets.61 Of
note, an increment of CTLA4 expression on ILC1 cells and a decre-
ment of ILC3 cells was detected inmelanoma patients upon treatment
with the anti-CTLA4 antibody ipilimumab; this suggests that, during
ipilimumab therapy, some ILC subsets can be selected. It has not been
defined yet which role these selected cells may have in melanoma
patients.61

Based on these findings, it is evident that there are conflicting results
reported in the literature on the expression and function of PD1 on
NK cells, and the reports on CTLA4 are scanty. It is clear that the
reactivity of mAbs with PD1 at the NK cell surface is generally low
and evident in a minor fraction of NK cells.14,50,52,61 However, there
is some evidence on the relevance of PD1 mainly on infiltrating NK
cells. This would support the idea that the classical IC molecules of
T lymphocytes can influence NK cell behavior, although this effect
can target a small subset of NK cells and/or ILC cells.14,50,52,61

Other T cell inhibitory receptors expressed on NK cells

The T cell immunoglobulin and mucin-domain-containing-3
(TIM3), also known as hepatitis A virus cellular receptor 2
(HAVCR2), and the lymphocyte-activation gene 3 (LAG3) have
been described as relevant ICs for T cells, but they are shared by
NK cells during activation on specific subsets62,63 (Table 1).
Molecular Therapy: Oncolytics Vol. 24 March 2022 29
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TIM3 is expressed by both CD4+ and CD8+ T cells and can interact
with several ligands, such as galectin 9, carcinoembryonic antigen-
related cell adhesion molecule (CEACAM) 1, phosphatidyl serine
(PtdSer), and the high-mobility group box (HMGB) 1, and influences
intracellular signaling.64,65 Of note, TIM3 does not bear intracyto-
plasmic ITIM domains but, on the contrary, several aminoacidic res-
idues can be phosphorylated by Src-related kinases, such as Fyn and
Lck.66,67 This finding, together with the reversion of NK cell exhaus-
tion by engagement of TIM3 in some tumor models, would suggest
that TIM3 can be a costimulatory molecule instead of an IC recep-
tor.40,68 Overall, the functional significance of TIM3 upregulation
on several tumor-infiltrating T and innate cells, such as NK cells
and dendritic cells (DCs), within tumors is still to be completely
defined.69–80

LAG3 was discovered in 1990 as a novel activation gene expressed by
both CD4+ and CD3� NK cells.81 Also, LAG3 is similar to the CD4
molecule in its extracellular portion; for this reason, it can interact
with stable peptide-major histocompatibility class II antigens.82,83

Furthermore, LAG3 can bind other ligands such as Galectin-3, liver
sinusoidal endothelial cell lectin, and fibrinogen-like protein 1.84–91

Of note LAG3 can be induced on NK cells by the NK stimulating fac-
tor IL12, and this induction increases along the incubation time with
this cytokine.92 Furthermore, the molecular mechanism of inhibition
is not related to ITIM, and it is still to be defined how LAG3 can
deliver inhibiting signals. The effect of LAG3 engagement on NK
cell surface with specific mAbs does not affect NK cell-mediated cyto-
toxicity, suggesting that this receptor is involved in the regulation of
other NK cell functions. The finding that LAG3 can be coexpressed
with PD1 on the NKG2C+ NK cell subset would suggest its involve-
ment in the generation of memory-like NK cells.93

An additional IC receptor is the T cell immunoreceptor with Ig and
ITIM domains (TIGIT), also named Washington University Cell
Adhesion Molecule (WUCAM)94 or Vstm3.95 TIGIT96–98 is ex-
pressed on some T, NK, and dendritic cells99,100 (Table 1).

Two main ligands for TIGIT have been reported: CD155 (PVR) and
CD112 (PVRL2, nectin-2), which can be expressed on APCs, T cells,
and non-hematopoietic cells such as tumor cells.95,96,98 Of note, PVR
and PVRL2 are the ligands of the DNAX adhesion molecule (DNAM)
1 (CD226) and of the T cell activation increase late expression mole-
cule (TACTILE; also named CD96), which may deliver either a pos-
itive or a negative signal respectively.101,102

Of note, TIGIT contains an ITIM and an immunoglobulin tail tyrosine
(ITT)-likemotif, both relevant tomediate inhibition of TIGIT-express-
ing cells by the recruitment of the SH2-domain-containing inositol-5-
phosphatase 1 (SHIP1). This recruitment leads to the reduction of
granule polarization, cytotoxicity, and cytokine production in NK
cells.103,104 A role has not been reported so far for TIGIT in NK cells,
with regard to the induction of Bcl-xl anti-apoptotic molecule and re-
ceptors for pro-survival factor such as IL15, IL7, and IL2, as described
in T lymphocytes. Thus, its role is still to be defined in NK cell survival.
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TIGIT is strongly expressed in tumor-infiltrating lymphocytes in
several tumors; the blockade of TIGIT, LAG3, and TIM3 can syner-
gize with the blockade of PD1 in relieving the CD8+ T cell exhaustion
in several different tumor models.98,100,105–110 This indicates that, at
least for T cells, the co-blockade of different IC receptors can promote
anti-tumor immunity, leading to tumor regression.99,100

Old and new concepts on NK cell IC

Herein, we will analyze the biological role of other inhibitory recep-
tors that have been described first on discrete subsets of innate cells,
such as NK cells, and afterward on T lymphocytes.101–118 These
molecules (from now on conventional inhibitory receptors) are
represented by KIRs, C-lectin type inhibitory receptors (CLIRs),
and the leukocyte immunoglobulin-like receptor subfamily B
member (LILRB) 1, which recognize specific MHC class I alleles
(Table 2).111–121 Then, we will focus on other (non-conventional)
inhibitory receptors identified in NK cells but expressed on several
types of cells of lymphoid and, in some instances, non-lymphoid
origin, such as the leukocyte-associated immunoglobulin-like recep-
tor (LAIR) 1, sialic acid-binding Ig-like lectin (Siglec) 7 and 9, inhib-
itory receptor protein (Irp) 60, immune receptor expressed on
myeloid cells (IREM) 1, the killer cell lectin-like receptor subfamily
B member (KLRB) 1, and the killer cell lectin-like receptor subfamily
G member (KLRG) 1 (Table 2).122–125

Conventional inhibitory receptors as potential ICs

It is well known that NK cells express at the cell surface clonally
distributed receptors that recognize self-MHC class I alleles. KIR,
CD94 associated with NKG2A, and LILRB1 are the main inhibitory
receptors involved in the recognition of self-HLA class I alleles (Table
2).111–114 The interaction between these receptors and discrete groups
of self-HLA class I alleles delivers in NK cells an inhibitory signal
through the recruitment of tyrosine phosphatases (Figure 2) and im-
pedes the NK cell-mediated killing of autologous cells.111–114

It has been demonstrated that the use of anti-NKG2A antibodies can
efficiently trigger anti-tumor cell elimination, leading to a strong anti-
tumor effect in combination with anti-PD1 or anti-EGFR anti-
bodies.126 Indeed, the binding of NKG2A/CD94 to the non-classical
MHC class I molecule HLA-E in humans, and Qa-1b in mice, leads
to the engagement of Src homology region 2 domain-containing
phosphatase (SHP)-1 tyrosine phosphatase to the ITIM phosphory-
lated tyrosines of NKG2A,127–129 and this binding induces the inhibi-
tion of effector cell functions of NKG2A-expressing NK and T cells.
The development of a humanized anti-NKG2A blocking mAb,
termed monalizumab (Figure 2), has demonstrated, in different
mouse models, that the combination of anti-NKG2A antibody and
anti-PDL1 (or anti-PD1) antibodies can result in a therapeutic anti-
tumor effect.126 The finding that solid tumors of lung, head, and
neck (SCCHN), gastrointestinal tract, and female genital tract ex-
pressing HLA-E are infiltrated by NKG2A+ NK and CD8+ T cells
would suggest that the NKG2A blockade, alone or in combination
with PD1/PDL1 blockade, can increase the anti-tumor effect of tu-
mor-infiltrating lymphocytes.126 Also, the humanized anti-NKG2A
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Table 2. Some examples of inhibiting receptors and their activating

counterpart on NK cells

Receptor Ligand Function

KIR2DL1a HLA-Cw2, w4, w5, w6

inhibition

KIR2DL2 HLA-Cw1, w3, w7, w8

KIR2DL3 HLA-Cw1, w3, w7, w8

KIR3DL1 HLA-Bw4

KIR3DL2 HLA-A3, A11

KIR2DS1a HLA-Cw2, w4, w5, w6

activationKIR2DS2 HLA-Cw1, w3, w7, w8

KIR2DL4 HLA-G

CLIR/CD94/NKG2A/
Bb

HLA-E inhibition

CLIR/CD94/NKG2Cb HLA-E activation

LILRB1/ILT2/CD85J HLA-G inhibition

NKRP-1A/CD161/
KLRB1

Clr-g (NKR-P1F) activation

Clr-b (NKR-P1D) inhibition

LAIR-1/CD305 collagens, SP-D, C1q inhibition

Siglec 7 and 9
a2-6-linked sialic acids and to a2,8-disialic
acid

inhibition

KLRG1 E-, N-, R-cadherin inhibition

aKIRs are composed of either two or three Ig-like domains (2D or 3D) with a long (L) or
a short (S) cytoplasmic tail. This portion of the KIR molecule can be associated with
SHIP-1 phosphatase or DAP12 transducing molecules leading to inhibition or activa-
tion of NK cell-mediated functional activities (e.g., cytolysis and cytokine production).
bCLIRs are composed of a molecular complex between CD94 and NKG2 (A or B for in-
hibiting forms, C for activating isoforms), and their cytoplasmic tail is associated with
SHIP-1 phosphatase or DAP12 molecule to transduce inhibiting or activating signals
respectively.
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antibody monalizumab can enhance the expression of the CD137
activation marker on NK cells, when these cells are co-cultured
with the Cal27 SCCHN cell line and incubated with the anti-EGFR
antibody cetuximab.126 More importantly, the combination of mon-
alizumab and cetuximab was used to define its safety and efficacy in a
phase II clinical trial (NCT02643550) for the treatment of SCCHN.
This study confirmed RECIST (response evaluation criteria in solid
tumours) partial response in 31% of patients (8 of 26) and a stable dis-
ease in 54% (14 of 26) when the two antibodies were used together,
without additional side effects in patients treated with either monali-
zumab or cetuximab.126

The relevance of KIR for the recognition of tumor cells was pointed
out by Ruggeri and coworkers almost 20 years ago.130 Indeed, it has
been shown that donor-versus-recipient NK cell alloreactivity could
eliminate leukemia relapse and graft rejection and protect patients
against the graft-versus-host disease (GVHD). A major determinant
of NK cell alloreactivity is linked to the expression, on donor NK cells,
of KIRs that do not recognize the HLA-C allele on recipient tissues.130

Haploidentical hematopoietic stem cell transplantation (HSCT) is
characterized by the mismatch of HLA-C between the stem cell donor
and the recipient. Of note, donor NK cells that differentiate in the
recipient can efficiently kill acute myeloid leukemia cells because
the recipient HLA-C does not interact with the donor KIR, thus
avoiding NK cell inhibition.130 Also, donor NK cells can eliminate re-
sidual recipient T and dendritic cells, leading to a better engraftment
and reduced GVHD.130 In addition, it has been shown that KIR-
ligand incompatibility can trigger anti-tumor cytotoxicity against
melanoma and renal cell carcinoma: this killing is stronger than
that exerted by autologous or allogeneic KIR-matched NK cells.131

Similarly, a role for KIR mismatch has been proposed to promote
the killing of glioblastoma cells.132,133 Altogether these findings sug-
gest that KIRs are a suitable target to relieve NK cells fromMHC class
I engagement and consequent inhibiting signals, using specific block-
ing antibodies (Figure 2). Of note, the humanized anti-KIR antibody
IPH2101 (lirilumab; Table 1), recognizing a wide range of KIR mem-
bers, has been proposed for the treatment of multiple myeloma (MM)
or acute myeloid leukemia (AML).134–138 Indeed, IPH2101 antibody
was administered to 32 MM patients and was safe and well tolerated
in patients suffering from advanced MM. Furthermore, the NK cells
of these patients increased the expression of CD69 and CD25 at the
cell surface, beside triggering NK cell-mediated cytotoxicity of MM
cell lines in vitro.134,136 Similar results have been obtained in AML pa-
tients with limited side effects dependent on the administration of
IPH2101.135 Importantly, in both studies, the dose administered
can easily reach the almost complete occupancy of KIR on NK
cells.134–136 After these promising findings, which indicate a possible
use of IPH2101 antibody as a therapeutic agent, it was reported that
nine patients with smoldering myeloma treated with IPH2101
showed a clear contraction of KIR2D+ circulating NK cells, accompa-
nied by an evident reduction of their cytolytic activity against K562
target cells.139 Indeed, KIR2D receptor was reduced on the surface
of NK cells because FcgRI+ monocytes, or IFNg-stimulated granulo-
cytes, could take up by trogocytosis the KIR2D receptors expressed on
NK cells after the binding to IPH2101 antibody.139 This suggests that,
during administration of IPH2101, trogocytosis mediated by mono-
cytes and/or macrophages either in peripheral blood or spleen and
liver can reduce the number of KIR2D molecules on NK cells; in
turn, this reduction detunes and anergizes the NK cell function of
the KIR2D+ NK cell subset instead of leading to an increase of the
cytolysis of HLA-C+ autologous tumor cells.139,140 Based on these
findings, anti-KIR antibody therapy might have a limited therapeutic
effect, at least when used as a single agent.

LILRB1, also called ILT2/CD85J, belongs to the leukocyte immuno-
globulin-like receptor subfamily B together with several other inhibi-
tory receptors.119–121 LILRB1 is expressed on both innate cells and
adaptive immune cells and can bindHLA-Gwith strong affinity, inhib-
iting cell proliferation, cytotoxicity, cytokine production, and phagocy-
tosis.119–121,140,141 The humanized anti-LILRB1 antibody BND-22 can
induce a macrophage and lymphocyte-mediated anti-neoplastic
response in several in vitro and in vivomodels.142–144 Its safety profile,
as well as the tolerability and immune effects, are under investigation,
in a clinical trial, in cancer patients expressing the immunoregulatory
ligand HLA-G (NCT04717375).142–144 In the near future, results of
this clinical trial will provide the basis to use this antibody, which blocks
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the activity of an inhibitory receptor mainly expressed on monocyte/
macrophages involved in delivering a “don’t eat me signal” to these
cells. Of note, the presence of high numbers of tumor-infiltrating
type 2 macrophages, expressing very high levels of LILRB1 receptors,
in gastric cancer is associated with a poor prognosis and a pro-tumor
microenvironment. Thus, it is conceivable that the interaction of
LILRB1 with HLA-G on tumor cells leads to the impairment of macro-
phage-mediated anti-tumor activity; it is possible that impairing the
immunosuppressive effect of this population of tumor macrophages
could be a useful tool to relieve and reawake both innate and adaptive
anti-tumor immune responses.145–147

Non-conventional inhibitory receptors as ICs

We can consider the receptors mentioned below as non-conventional
NK cell inhibitory receptors because they do not recognize HLA class
I alleles; nevertheless, their inhibiting signal is usually mediated, upon
their engagement by the corresponding ligand, by the recruitment of
tyrosine phosphatases to the intracytoplasmic ITIM, like KIR, CLIR,
and LILRB members122,148–154 (Table 2).

Siglec7, Siglec9, LAIR1, Irp60 (CD300a), and IREM1 (CD300f) are
widely expressed not only on lymphoid but also myeloid cells, and
the known ligands are widely distributed components of cell mem-
branes, such as phosphatidylserine (PS) and phosphatidylethanol-
amine (PE) for Irp60,154-157 extracellular matrix proteins such as
collagen for LAIR1,155 or a2-6-linked sialic acids and a2,8-disialic
acid, which are present in ganglioside GD3 for Siglec7 and Siglec9.156

This would indicate that the inhibitory signal delivered by these re-
ceptors can be evoked in several different microenvironments where
innate leukocytes may interact with apoptotic cells, collagens of
epithelia, basal membranes and parenchymal tissues, or widely
distributed sialic acid residues.

Conceivably, the blockade of one of these inhibitory receptors can
have a strong effect within the TME; indeed, tumor apoptotic cells
32 Molecular Therapy: Oncolytics Vol. 24 March 2022
and mesenchymal stromal cells producing colla-
gens may deliver negative signals to immune
effector cells, and the impairment of these signals
may wake the immune response up. However,
the blockade of these receptors could also trigger
reactions against several tissues different from
the tumor itself, and it is not clear whether the
undesired effects of this therapy can be limited.
To date, no humanized antibody to these molecules have been used
in phase I/II clinical trials, thus it is not easy to predict whether their
blockade is not toxic and well tolerated.

Focusing on the LAIR1 receptor, it can interact with the surfac-
tant protein D (SP-D) and the C1q complement component, be-
sides different types of collagen.157–160 The interaction with C1q
is related to the presence of collagen-like motifs, as happens
with SP-D.157–160 It is well known that C1q, as well as other com-
plement components, has been associated with inhibition of anti-
tumor T cell responses by recruitment of myeloid-derived sup-
pressor cells (MDSCs), regulatory T cells (Tregs), or TAM of
type 2.161 It has not been demonstrated, so far, that this immuno-
suppressive effect is dependent on the C1q interaction with
LAIR1. Of note, LAIR1 can be associated with the leukocyte com-
mon antigen (CD45, previously called T200) at the NK cell sur-
face.162 Indeed, capping caused by an anti-CD45 antibody
induced the co-capping of LAIR1 and immunoprecipitation of
CD45 led to co-precipitation of LAIR1.162 A similar association
has not been shown for the other LAIR1+ leukocyte populations.
This finding would suggest that the LAIR1-mediated inhibition of
some leukocyte functions can be related to the involvement of
CD45 and vice versa.

Irp60 and IREM1 belong to the same CD300 family of receptors and
display ITIM intracytoplasmic domain responsible for the downregu-
lation of NK cell-mediated killing and cytokine production (for
Irp60) or macrophage activation and induction of inflammatory re-
sponses (for IREM1).163–165 Of note, IREM1 may regulate the
myeloid differentiation factor 88 (MyD88) and toll-IL1 receptor-
domain-containing adapter-inducing IFNb in monocytes, while
Irp60 exerts its activity just on MyD88.165 This is dependent on the
differential activation of SHP-1 and SHP-2 by these two receptors,
indicating that inhibitory receptors with strong similarities may
show different effects.165 Irp60 and IREM1 ligands have not been
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identified yet, and the use of their blockade is still to be assessed in
clinical trials.

The relevance of Siglec7 and Siglec9 as myeloid IC166–171 has
recently been shown by using a humanized immunocompetent mu-
rine model where these receptors, together with the murine homo-
log Siglec-E, can impair the anti-tumor immune response.171 Of
note, the generation of a Siglec7/9/Siglec-E knockout mouse model
has allowed evaluation of the therapeutic potential of anti-Siglec7
and anti-Siglec9 antibodies. This effect is mediated by the preven-
tion of macrophage polarization to immunosuppressive TAM. Of
note, the binding of Siglec9 to cancer-specific mucin can determine
the generation of macrophages with immunosuppressive features
that are lost by the blockade of Siglec-9.171 These finding suggest
that the blockade of Siglec7 and Siglec9 can reprogram TME, mainly
influencing the myeloid arm of innate immune response. The role of
NK cells in these experimental models has not been defined, but it is
evident that Siglec7 and Siglec9 can be inhibited by either antibodies
or sialoglycans such as lipid-conjugated glycopolypeptides171–174; it
is conceivable that a role for NK cells in triggering anti-tumor im-
munity will be discovered in the near future, based on the previous
demonstration of the key role of Siglecs in regulating NK cell
activities.166

The KLRB1, also called NKRP1A/CD161,175–180 can recognize the
lectin-like transcript (LLT) 1 or C-type lectin domain family 2
member (CLEC2) D.181,182 This receptor can apparently inhibit
NK cell-mediated killing, and it regulates the transendothelial
migration of at least CD4+ T cells. More recently, it has been
claimed that the interaction between KLRB1/CD161 and LLT1/
CLEC2D in glioblastoma (GBM) may play a key role in the immune
evasion of GBM cells from T lymphocytes.183,184 Its role regarding
infiltrating NK cells has not been defined yet. However, using spe-
cific anti-LLT1 antibodies, alone or in combination with anti-PD1/
PDL1 antibodies, an evident reduction of androgen-independent
growth of the cell line PC3 in a murine model has been detected.185

This suggests that the impairment of KLRB1 interaction with LLT1
can be a suitable target to trigger an anti-tumor immune response in
several kinds of cancers as LLT1 is widely expressed among
tissues.186

KLRG1 is expressed on both NK and CD8+ T lymphocytes interact-
ing with E-, N-, and R-cadherin, present on epithelial and/or
mesenchymal stromal cells.187–197 This interaction leads to the inhi-
bition of lymphocyte activities such as IFNg production and prolif-
eration, increasing NK cell apoptosis.188 Of note, the engagement of
cadherin by KLRG1 induces cadherin phosphorylation, influencing
the adhesive properties of cadherin-positive cells.187 Also, this inhib-
itory receptor can identify subsets of innate lymphoid cells193,196

and it can be considered as a marker of some memory NK or
T cells.192–194 Also in this case, the combination of PD1 and
KLRG1 blockade induced a sharp decrease of tumor size and in-
crease of activation and frequency of tumor-infiltrating CD8+ and
NK cells.125
Relevant concerns on the blockade of IC receptors on NK cells

At least three additional main points should be taken into consider-
ation when planning the blockade of IC on NK cells: (1) the presence
on NK cells of activating isoforms of conventional IC, such as KIR
with short-intracytoplasmic tail (Figure 2); (2) the role of soluble or
exosome-associated IC or IC ligands within the host TME or biolog-
ical fluids such as peripheral blood; (3) the functional significance of
IC receptors on NK cells as potential anti-apoptotic regulators or their
role in conserving memory NK cells.

It is well known that engagement of KIR isoforms on NK cells by the
corresponding HLA-C allele ligand can deliver an activating signal
(Table 2; Figure 2). These receptors can be clonally expressed, either
together with their inhibiting counterparts or alone.198–202 For some
activating receptors, an inhibitory form has not been found; this is the
case of the so-called p50.198 Of note, some antibodies that recognize
the inhibitory form of KIR can interact with the same antigenic epi-
topes present on the activating forms as well. Physiologically, it has
been claimed that, although inhibiting and activating isoforms share
the natural ligands, the inhibiting forms prevail in the binding
because of a different affinity.198–202 The anti-KIR antibody
IPH2101 does not distinguish between inhibiting and activating iso-
forms, thus the conflicting effects observed (see above) may be depen-
dent on the relative presence of different NK cell subsets displaying
functionally different isoforms.134–136

A second point is the presence of IC receptors not only at the NK
cell surface but also as soluble forms or exosome-associated mole-
cules.203–209 Indeed, IC receptors, including CTLA4, PD1, and their
ligands, have been detected in the serum of cancer patients and su-
pernatants of tumor cell cultures.203–209 Of note, the magnitude of
the increase in exosomal PDL1 in peripheral blood can be an indi-
cator of the adaptive response due to T cell anti-tumor activity, and
this parameter can stratify responder and non-responder pa-
tients.209 Furthermore, soluble PDL1 can influence T cell response.
No data regarding the effects of soluble or exosomal-associated IC
receptors on NK cells have been shown to date in the literature,
but it is conceivable that the efficiency of the blockade by specific
antibodies can be altered by these IC soluble forms present in pe-
ripheral blood.

The functional significance of some NK inhibitory receptors is not
fully understood. Indeed, it has been reported that the inhibitory
signal mediated by KIR can downregulate the apoptosis that follows
the engagement of soluble HLA class I antigens by CD8 on NK cells;
also, the engagement of activating KIR with discrete soluble HLA
class I alleles can induce NK cell apoptosis.210,211 This would imply
that KIR can play a role in regulating NK cell survival, and this
function has not been tested for the other IC receptors herein
reviewed.

Based on all these considerations, the net effect of IC receptor
blockade is the triggering of NK cell activity as a consequence of
relieving the brake that impedes the self-killing; in turn, the same
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mechanism can lead to a reduced persistence of anti-tumor effects
due to a shortage of NK cell survival.

Mouse cytomegalovirus (MCMV) memory NK cells have been identi-
fied with a unique pattern of transcriptional signatures and functional
properties similar to those ascribed to memory T cells.212–224 In hu-
mans, anti-HCMV NK cells have been found, expressing NKG2C,
CD57, and CD56low antigens.219,220 Besides viral infection-induced
memory NK cells, it appears that cytokines are relevant to generating
NK cell memory.219,220 Of note, cytokine-induced memory NK cells
expressing KIR can produce higher amounts of IFNg interacting
with primary self-MHC class I, compared with control or naive NK
cells.219–221 This would suggest that the KIR-mediated inhibitory signal
is essential to NK cell memory; on the other hand, the blockade of KIR
inhibitory signal may be detrimental for NK cell-mediated anti-tumor
immune response.

Novel approaches for IC blockade: The role of epigenetics

It has been reported that in vitro chronic stimulation of CD3–

CD56dimCD57+NKG2C+ NK cells with anti-NKG2C antibodies and
IL15 can drive strong activation and proliferation, accompanied by
the high expression of LAG3 and PD1.224 These chronically activated
adaptive NK cells were altered in their response to tumor target cells
and showed genome-wide alterations in DNAmethylation, indicating
a strong epigenetic effect of chronic stimulation.224 If the goal of
immunotherapy and IC blockade is to reverse the immune exhaustion
and stimulate cytotoxic activity of effector cells against tumors, these
findings can have relevant implications for this therapy.224 Indeed, it
appears that NK cell exhaustion is not a temporary state but is epige-
netically imprinted, involving several genomic regions with a differ-
ential patterns of methylation.224 The analysis of epigenetic pattern
34 Molecular Therapy: Oncolytics Vol. 24 March 2022
in tumor-infiltrating NK cells would help to un-
derstand whether these cells are dysfunctional
because of exhaustion, as in chronic viral
infections.225,226

It is conceivable that epigenetic drugs can influ-
ence the functional activity of NK cell subsets,
such as cell migration and anti-tumor cytotox-
icity.227–232 As a consequence, NK cell anti-tu-
mor effect could be maximized using both
epigenetic drugs and IC blockade, thus affecting
the insurgence of drug resistance or triggering
immune response in the worst neoplasias, such as glioblastomas,
pancreatic adenocarcinomas, and sarcomas.233–239

CONCLUSIONS
Targeting ICs has considerably improved cancer therapies. How-
ever, many patients have become non-responders to this therapy.
To overcome this inconvenience, the recent focus on innate im-
munity, in particular NK cells, has brought some advancements
in tumor treatment, providing the persistence of activated NK
cells within a TME that is immunosuppressive. In this perspective,
IC inhibitors are mostly effective in releasing NK cell activity, tun-
ing the balance between activation and rescue from inhibition,
and allowing the maintenance of anti-cancer natural immunity.
This concept can also open the intriguing field of combinatory
therapy, based on the dual blockade of classical T ICs and con-
ventional NK ICs, with or without the addition of epigenetic
drugs (Figure 3).

The most intriguing recent approach, however, is based on non-clas-
sical/non-conventional ICs preferentially expressed by NK cells;
indeed, the huge number of these molecules enriches the panel of po-
tential targets for antibodies designed to sustain such therapy,
although they are still under investigation.

Furthermore, a selection among the plethora of inhibitory receptors
and the different kinds of drugs available to date would be performed
using three-dimensional culture systems, such as patient-derived tu-
mor spheroids or organoids and self-NK cells, to evaluate the actual
role of NK cells displaying inhibiting and activating isoforms of
IC.240,241 The association of these patient-derived models can help
to select the appropriate combinations among blockade of
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conventional and unconventional ICs together with the use of epige-
netic drugs and/or targeted therapy.242–244
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