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Abstract: Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune
destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell
replacement through the transplantation of islets of Langerhans. However, donor shortage hinders
the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic
stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for
transplantation. Although major advances over the past two decades have led to the generation of
stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully
mature beta cells remains challenging. Here, we review the current status of beta cell differentiation
protocols and highlight specific challenges that are associated with producing mature beta cells. We
address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally,
we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status
of ongoing clinical trials.

Keywords: beta cells; cell therapy; stem cells

1. Introduction

Pancreatic beta cells are critical regulators of blood glucose homeostasis by their
unique ability to produce and secrete insulin in response to changing blood glucose levels.
Because insulin is the only hormone that is able to decrease blood glucose levels, its release
into the bloodstream must be strictly controlled in order to prevent blood glucose levels
from surpassing dangerously low or high levels. The loss of beta cell function results in
diabetes mellitus, a group of metabolic disorders that are characterized by chronically
elevated blood glucose levels. Diabetes mellitus has reached epidemic proportions globally
and it currently affects over 463-million people [1]. Although its two predominant forms
are type 1 (T1D) and type 2 diabetes (T2D), rare forms of diabetes, including monogenic
types that require specific attention, are increasingly diagnosed. T1D is marked by absolute
insulin deficiency following autoimmune-mediated beta cell loss [2], while T2D is caused
by relative insulin deficiency due to beta cell dysfunction, often in the context of peripheral
insulin resistance [3]. Monogenic forms of diabetes result from single gene mutations
and they are characterized by beta cell dysfunction, to varying degrees of severity [4].
Because no real cure exists for diabetes, daily insulin injections remain the standard of
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care for patients with T1D, late-stage T2D, and for a subset of patients with monogenic
diabetes. Although this treatment is lifesaving, it conveys a chronic and costly burden of
care, a persisting risk for acute and chronic complications, and it still results in an overall
decreased life expectancy.

Beta cell replacement holds the potential to truly cure T1D and also possibly T2D and
monogenic diabetes. Such cell therapy—through percutaneous infusion of pancreatic islets
into the portal vein—is currently applied in some patients with brittle T1D [5], providing
prolonged insulin independence. In selected patients, beta cell replacement proves to be
superior to insulin administration with regard to overall metabolic control, prevention of
severe hypoglycemia, and delaying the progression of micro- and macrovascular compli-
cations [6–9]. Despite this proof-of-principle for beta cell replacement as a genuine cure,
donor islet transplantation is unattainable for the vast majority of diabetic patients for sev-
eral reasons. First, donor islets are in short supply, which contrasts with the global disease
prevalence. Donor shortage is further aggravated by a loss of up to half of grafted cells in
the first few days after transplantation (reviewed in [10]). Delayed graft revascularization
is one of the leading causes for this loss, since, following transplantation, islets enter a
poorly vascularized and hypoxic microenvironment [11,12] that compromises islet cell
and, in particular, beta cell survival and function. Excessive numbers of beta cells must
be grafted to compensate for this early post-transplant cell loss, which further aggravates
donor scarcity. Second, the allogenic origin of donor islet grafts necessitates lifelong im-
munosuppression, thereby increasing the susceptibility to infections and tumorigenesis
(reviewed in [13]).

This donor islet shortage has fueled the search for alternative beta cell sources. Recent
advances in differentiation protocols have positioned human embryonic stem cells (ESCs)
and human induced pluripotent stem cells (iPSCs) as a promising and theoretically un-
limited beta cell source. Currently, encapsulated pancreatic endoderm cells, differentiated
from human ESCs, have already entered the first clinical trials (NCT03162926 (completed),
NCT03163511 (recruiting), NCT02239354 (active, not recruiting), and NCT02939118 (en-
rolling by invitation)) and some preliminary results have been disseminated [14]. In this
review, we define some key characteristics of adult beta cells and call attention to het-
erogeneity within the beta cell population. Next, we discuss the use of stem cells as an
alternative beta cell source for transplantation. We elaborate on the current status of stem
cell differentiation protocols in order to generate beta cells, the cues that are needed for
functional beta cell maturation, and a number of hurdles that still need to be overcome.
We address the following hurdles in detail: (i) the limited functional maturation of in vitro
generated beta cells, (ii) the difficulties of graft survival upon transplantation due to the
immune response and delay in graft revascularization, and (iii) safety concerns, especially
regarding residual immature cells that may give rise to teratoma formation. Finally, we
highlight the potential of gene-editing to generate patient- or disease-tailored beta(-like)
cells for personalized medicine, discuss ongoing clinical trials, and offer some perspectives
to the field.

2. Beta Cell Maturation and Heterogeneity
2.1. The Mature Beta Cell

Because the ultimate goal of stem cell differentiation protocols in diabetes research is
to generate mature, fully functional beta cells, it is important to define what constitutes a
functionally mature beta cell. The foremost fundamental characteristic of a beta cell lies
in its ability to secrete appropriate amounts of insulin in response to glucose. Beta cells
have a specialized machinery for fulfilling this role. In brief, glucose uptake by beta cells
is mediated by specialized low affinity glucose transporters (mainly GLUT1 in human).
Upon entry, glucose is phosphorylated by glucokinase (GCK) and is used to generate ATP
through oxidative phosphorylation. This rise in ATP increases the ATP/ADP ratio, which,
in turn, leads to the closure of ATP-sensitive potassium (KATP) channels and cell membrane
depolarization. The latter electric signal then triggers the opening of voltage-dependent
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calcium channels (VDCCs), leading to Ca2+ influx, resulting in the release of insulin
granules through exocytosis [15,16]. Subsequently, beta cells generate a second, even
larger, wave of insulin release (known as biphasic glucose-stimulated insulin secretion)
that is KATP-channel independent, but rather beta cell metabolism-dependent [17–19].
Mature beta cells can generate such responses—in a uniquely sensitive way—to minor
physiological variations in plasma glucose levels.

Testing the maturity of beta cells with functional assays that interrogate the spe-
cialized cellular machinery that is implicated in glucose sensing and insulin secretion
while using physiologically relevant variations in glucose concentrations is cumbersome,
time-consuming, and often difficult. Therefore, cell markers have been used as surro-
gate measures for beta cell maturation. Typical beta cell maturation markers include the
transcription factors GLIS3 [20], MAFA [21], NEUROD1 [22], NKX6.1 [23], PAX6 [24],
PDX1 [25], SIX2 [26], and UCN3 [27,28]. Notably, besides positive regulators, beta cell
maturity is equally determined by the absence of ‘disallowed’ or ‘forbidden’ genes that in-
terfere with beta cell function including Ldha, Mct1, SLC16A1, Hk1, Hk2, and Rest (reviewed
in [29]). The disallowed genes are upregulated under mild hyperglycemia as deduced from
scRNA-seq data of beta cells isolated from diabetic rats, pointing to beta cell dysfunction
occurring already in the early stages of diabetes [30]. In addition, one of the most important
aspects of adult beta cells is their post-mitotic nature. Beta cell mass expansion mainly
occurs shortly after birth by a process that rapidly declines with age [31,32], to reach an
extremely low proliferation rate of 0.1–0.4% in the adult human [33,34]. Mathematical
modeling of the accumulation of lipofuscin bodies in human beta cells suggests that, after
the age of 20 years, long-lived beta cells age with the body [35,36].

2.2. Heterogeneity in the Adult Beta Cell Population

A next level of complexity with regard to the adult beta cell population is its het-
erogenous nature. The concept of beta cell heterogeneity was developed in the 1990s
following metabolism-centered studies of dissociated cell populations, wherein some beta
cells showed differential glucose-responsiveness [37,38] based on differences in glucok-
inase activity [39]. Recent studies unveiled particular underlying molecular hallmarks
to provide compelling examples of beta cell heterogeneity. For example, Johnston et al.
identified two distinct beta cell populations, ‘hub’ or ‘leader’ cells (<10% of beta cells), with
pacemaker properties that orchestrate the electrophysiological responses of ‘follower’ cells
(>90% of beta cells) upon insulin secretion challenges. Leader cells display high-potential
mitochondria, high glucokinase expression, reduced insulin content, and lower expression
of the beta cell markers PDX1 and NKX6.1 [40]. Bader et al. identified two distinct beta
cell subpopulations that are based on the expression of Flattop (Fltp), a Wnt/planar cell
polarity (PCP) effector, and reporter gene. Fltp- beta cells are more proliferative and able
to expand under conditions of increased metabolic demand, such as pregnancy, whereas
Fltp+ beta cells are more mature, and they display higher insulin secretory capacity and
increased mitochondrial function [41]. van der Meulen et al. identified immature beta cells
in a neogenic niche at the adult islet periphery that lack UCN3 and are derived from transd-
ifferentiated alpha cells [42]. Because these UCN3-negative beta cells only constitute~1.5%
of the total beta cell population, they are likely distinct from the more abundant leader or
follower cells and from the Fltp+ and Fltp− beta cells, since the latter express UCN3 [41].

3. General Properties of Stem Cells

Stem cells are clonal cells with the potential to both self-renew and differentiate into
a variety of functional somatic cells [43]. Stem cells are classified into three main types,
according to their origin, potential, and developmental stage, as: (i) ESCs—which are
isolated from the early mammalian embryo, (ii) adult stem cells—which can be found in
various adult tissues (e.g., neural, hematopoietic, mesenchymal, and epidermal stem cells),
and (iii) iPSCs—which are derived from adult cells that are reprogrammed back to an
embryonic-like pluripotent state.
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ESCs are highly undifferentiated cells that are isolated from the inner cell mass of
mammalian blastocysts, i.e., early embryonic cells. ESCs can, on the one hand, proliferate
indefinitely while maintaining their pluripotency and on the other differentiate into cells
of all three germ layers [44]. In 1998, Thomson et al. established ESC lines from human
blastocysts [45]. Because human ESCs can be maintained in culture for extended periods of
time and can be differentiated into any desired target cell type, they represent a promising
cell source for regenerative medicine to treat a host of diseases, including Parkinson’s dis-
ease, spinal cord injury, and diabetes [45]. However, even if functional cells and organs can
be generated from ESCs, their transplantation remains subject to allograft rejection in the
same manner as conventional donor organ transplants. Because human ESCs are derived
from surplus human embryos, their application in regenerative medicine also raises ethical
concerns that can be addressed by the use of iPSCs that are generated by reprogramming
somatic cells, such as peripheral blood mononuclear cells or dermal fibroblasts, into the
pluripotent state through the overexpression of a defined set of transcription factors (Oct4,
Sox2, Klf4, and c-Myc) [46]. Such a straightforward method to produce human iPSCs
directly from patients’ own cells opens the possibility of studying disease and screening
drugs in vitro in a patient-specific manner. In addition, the inherent autologous nature of
iPSCs provides them with unique immunological advantages over other cell sources in the
context of cell therapy.

4. Current Status of Human ESC and iPSC Differentiation Protocols

The discovery of ESCs and iPSCs has opened the possibility to generate cells or tissues
in vitro that can be used for the study of disease mechanisms, drug screening, and cell
replacement. Regarding the latter, these cells promise an unlimited source of virtually any
cell type that can be transplanted into patients, including pancreatic beta cells for people
with diabetes.

4.1. Generation of Stem Cell-Derived Beta Cells

The main approach for differentiating stem cells into beta cells is by adherent cell
culture with progressive, stepwise lineage commitment while using combinations of cues
added to the culture medium. Using such an in vitro lineage differentiation approach,
D’Amour et al. were the first to succeed in robust induction of definitive endoderm differ-
entiation [47], with subsequent generation of pancreatic endocrine hormone-producing
cells [48]. However, the endocrine cells that were generated were mainly polyhormonal
(e.g., insulin and glucagon co-expressing cells) that are more akin to immature islet cells [49].
The resulting insulin-expressing cells also lacked the essential beta cell transcription fac-
tors NKX6.1 and PDX1 [50]. Over the ensuing years, strategies have been devised and
optimized in order to generate monohormonal insulin-expressing cells that co-express
NKX6.1 and PDX1 by modifying the composition and timing of growth factor and small
molecule addition [51–53]. In 2014, Rezania et al. [53] and Pagliuca et al. [52] reported the
successful generation of functional stem cell-derived beta-like cells that possessed many
beta cell-specific traits, including glucose-responsive insulin secretion. Importantly, the
transplantation of these cells was able to reverse diabetes in mice. However, the beta-like
cells that were generated by these protocols [52,53] and follow-up studies [51,54–56] still
displayed poor glucose-induced insulin secretion when compared to human islets.

More recently, Nair et al. [57] and Velazco-Cruz et al. [58] succeeded in generating
functional human stem cell-derived beta cells showing dynamic glucose-stimulated insulin
secretion that is similar to human islets. Nair et al. reaggregated immature human stem
cell-derived beta-like cells into enriched-beta cell clusters after fluorescence-activated
cell sorting (FACS) and demonstrated that the reaggregation/clustering is paramount to
the generation of functionally superior beta cells with robust dynamic insulin secretion
in vitro [57]. Mechanistically, the clustering of beta-like cells induced metabolic maturation
by driving mitochondrial oxidative respiration, which is central to stimulus–secretion
coupling in mature beta cells. This strategy not only increased the structural resemblance
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with native islets, but also the functional resemblance, both at the cellular (transcriptomic)
and cluster (functional) level [57]. Velazco-Cruz et al. mainly focused on permitting TGF-β
signaling during the final stage of differentiation (from endocrine progenitor to beta-like
cell) and, additionally, on controlling cellular cluster size [58]. Although the TGF-β pathway
is claimed to play a critical role during beta cell differentiation from stem cells [59], its
role in beta cell function and insulin secretion remains controversial, as TGF-β signaling
suppresses insulin transcription and reduces insulin protein levels and secretion [60],
while others posited that TGF-β signaling is required for maintaining beta cell mass and
regulating insulin secretion [61,62]. Further studies on TGF-β signaling in beta cells are
needed, but, with respect to the differentiation of highly functional beta cells from stem
cells, TGF-β fulfills a dual role, as its inhibition is required at early stages while its signaling
is beneficial at late stages. Recently, Yoshihara et al. demonstrated that non-canonical
WNT4 signaling drives the metabolic maturation of beta-like cells—essential for robust
insulin secretion—in large part through the induction of an ERRgamma gene network [63],
while Li et al. developed a beta cell differentiation protocol that is based on three previously
published protocols [52,53,64] to obtain beta cells with high glucose-responsiveness and
insulin production [65].

In addition to maturity, the purity of beta cells that are differentiated from human
pluripotent stem cells must be taken into account for in vitro differentiation protocols, since
a higher percentage of differentiated cells implies a lower percentage of contaminating
immature and therefore possibly teratogenic cells. Sorting strategies while using a GFP
reporter under the control of the insulin gene promoter or an antibody to the beta cell
surface marker CD49a enabled obtaining 80–90% pure beta cells [57,66]. Alternatively,
the cell-surface marker CD9 can be exploited for negative selection to enrich for glucose-
responsive human beta-like cells [65]. These strategies may also prove to be useful for
sorting other hormone-producing cells, such as alpha cells, which contribute to disease
etiology by elevating blood glucose levels [67–69]. See Table 1 for a summary of the
approaches for the generation and purification of stem cell-derived beta cells.

4.2. Generation of Non-Beta Pancreatic Endocrine Cell Types

Co-transplantation with other pancreatic endocrine cell types will likely benefit trans-
plantation outcomes, as the release of insulin is regulated via complex paracrine interactions
(discussed in more detail in the next chapter). To this end, efforts are ongoing for gen-
erating non-beta pancreatic endocrine cell types. In 2011, the directed differentiation of
human ESCs into glucagon-positive cells, expressing the key alpha cell transcription factor
ARX was reported [73]. Although these alpha-like cells secreted glucagon in vitro to some
extent, proper regulation was lacking, which is indicative of their immature state [73]. More
recently, Peterson et al. developed a differentiation protocol for the generation of alpha
cells that express and secrete glucagon in response to low glucose and some glucagon secre-
tagogues, and that elevate blood glucose levels upon transplantation in mice [74]. Efforts to
develop differentiation protocols for somatostatin-producing delta cells, ghrelin-producing
epsilon cells, and pancreatic polypeptide cells, and cell surface antibody-based sorting
strategies will further contribute to the generation of islet-like clusters that will provide
a unique resource for studying cell biology, disease modelling, drug screening, and cell
replacement therapy.
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Table 1. Overview of protocols for the generation of stem cell-derived beta cells.

Report Approach Outcome to Beta-Cell Function Reference

Pagliuca et al., 2014

Protocol for generation of
beta-like cells by modifying and

combining three previous
protocols [70–72]

Expression of key markers of mature
pancreatic beta-cells, glucose-induced Ca2+

influx, insulin secretion in response to
multiple sequential glucose challenges

[52]

Rezania et al., 2014
7-stage protocol for generation of
beta-like cells based on previous

own protocol [70]

Expression of key markers of mature
pancreatic beta-cells, insulin secretion in

response to high glucose
[53]

Russ et al., 2015

Protocol for generation of
beta-like cells based on two

previous protocols [70] by culture
without additional growth factors
after endocrine progenitor stage

Expression of key markers of mature
pancreatic beta-cells, insulin secretion in

response to high glucose
[51]

Millman et al., 2016
Addition of ROCK inhibitor and

Activin A based on [52] at
pancreatic progenitor stage

Similar to their previous studies [52],
beneficial effect on insulin expression and

secretion
[56]

Zhu et al., 2016 Addition of vitamin C and
BayK-8644 at final stage Increased insulin expression and secretion [55]

Ghazizadeh et al., 2017 ROCKII inhibition at pancreatic
progenitor stage

Generation and maturation of
glucose-responsive cells [54]

Nair et al., 2019 Reaggregation/clustering after
FACS at final stage

Robust dynamic insulin secretion, metabolic
maturation by driving mitochondrial

oxidative respiration
[57]

Velazco-Cruz et al., 2019
Allowing TGF-β signaling during

the final stage and
reaggregation/clustering

Pure populations of beta-like cells that
secrete high levels of insulin and express key

beta cell markers
[58]

Yoshihara et al., 2020 Allowing WNT4 signaling during
the final stage

Metabolic maturation with robust insulin
secretion and high mitochondrial oxidative

respiration
[63]

Li et al., 2020

Combination of three previous
protocols [52], and

reaggregation/clustering after
negative sorting by CD9

High glucose-responsiveness and insulin
production [65]

ROCK: Rho-associated protein kinase, TGF-β: transforming growth factor β, FACS: fluorescence-activated cell sorting, WNT4: wingless-
type murine-mammary-tumour virus integration site family member 4, CD9: cluster of differentiation 9.

5. Current Hurdles for Stem Cell Therapy and Possible Ways to Tackle Them
5.1. Functional Immaturity of Stem Cell-Derived Beta Cells

Beta cells reside within the pancreatic islets of Langerhans, being clustered together
along with alpha, delta, epsilon, and pancreatic polypeptide cells. Beta cells intensively
interact with a variety of cell types in their microenvironment, including the other en-
docrine and non-endocrine cells within the islet, but also with exocrine cells outside the
islet. The numerous signals that beta cells receive are crucial for their functionality, sur-
vival, differentiation, and proliferation. First, beta-to-beta cell interactions are of major
importance for a properly coordinated and synchronized insulin secretory response and for
insulin gene expression, storage, biosynthesis, and release [75–77]. Paracrine cell interac-
tions between different endocrine islet cell types are also paramount in fine-tuning the islet
secretory response. [78,79]. Indeed, glucagon is a well-known regulator of insulin secretion,
whereas somatostatin inhibits both insulin and glucagon secretion [27]. The importance
of inter-endocrine cell-to-cell contacts for beta cell maturation is demonstrated by the
enhanced maturation of human stem-cell-derived beta cells upon in vitro mimicking of
cell clustering [57]. Therefore, the transplantation of islet-like clusters, rather than just beta
cells alone, is likely to benefit glycemic control. Besides interactions with other endocrine
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cells, beta cells also receive signals from the extracellular matrix [80], endothelial cells [81],
pericytes [82], neurons [83,84], and immune cells [85].

All of these cues from the islet microenvironment are essential for beta cell maturation.
Notably, differentiation does not equal maturation, as Potten and Loeffler stated in 1990:
“Differentiation can be defined as a qualitative change in the cellular phenotype that is the conse-
quence of the onset of synthesis of new gene products, that lead ultimately to functional competence.
Maturation in contrast can be regarded as a quantitative change in the cellular phenotype or the
cellular constituent proteins leading to functional competence” [86]. This notion implies that,
even when stem cell-derived beta cells express all known adult beta cell markers and
produce high levels of insulin, they are not per se functionally mature, since the proof of
functionality should be sought in functional tests that dynamically interrogate the beta cell
glucose sensing and insulin secretory machinery.

It is very difficult, if not impossible, to provide all of the signals that beta cells receive
from their microenvironment through simplified in vitro differentiation protocols, which is
why current protocols rely on in vivo maturation for beta cells to become functional [52,53].
An alternative approach seeks not to generate mature cells, but uses early definitive endo-
derm or pancreatic progenitor cells and relies strongly on self-directed differentiation and
maturation in order to obtain a functional stem cell-derived beta cell mass in vivo [70,87,88].
This is the strategy that was also chosen in the ongoing clinical trials, as mentioned in
the introduction. However, while using this approach, it will take several months for the
beta cells to become functional and this black box of in vivo maturation does not allow for
an easy dissection of its mechanisms. Augsornworawat et al. performed single-cell RNA
sequencing on human iPSC- and ESC- islet grafts that were transplanted for six months
in diabetic mice and compared their gene expression profiles to stage 6 [89] ungrafted
hPSC- islets and cadaveric human islets. The analyses confirmed that transplanted stem
cell-derived beta cells possessed insulin secretory capacity and acquired expression of
the beta cell maturation markers INS, G6PC2, MAFA, MNX1, SIX2, and UCN3 [90]. Such
studies provide a comprehensive resource for understanding human beta cell maturation
and to improve differentiation strategies.

Ensuring quick islet revascularization following transplantation will likely benefit beta
cell survival and functionality. Endothelial cell-derived signals are crucial for embryonic
beta cell development [81,91] and for adult beta cell proliferation, survival, differentiation,
and function [81]. Hypovascularization is not only one of the factors contributing to islet
cell loss following transplantation, but it may also lead to beta cell dedifferentiation,
since intraportal implants of human primary beta cells lose their mature phenotype and
expression of key beta cell markers [92]. Strategies for improving graft revascularization
have focused on the delivery of pro-angiogenic factors, primarily vascular endothelial
growth factor A (VEGF-A), to islet cells. VEGF-A is a key angiogenic factor that is secreted
by beta cells to promote endothelial cell migration, proliferation, and survival, and to
regulate vascular permeability [81]. VEGF-A protein can be delivered in many ways, but
one particularly interesting approach is by the transfection of Vegfa mRNA. Not only is
this approach much safer when compared to viral-vector based gene delivery methods,
its inherent short-term expression is beneficial as compared to long-term expression [93],
which is detrimental for islet function and survival [94]. Recent work from our group
showed that liposome-mediated transfection of human and mouse islet cells with synthetic
modified Vegfa mRNA improves graft revascularization and increases beta cell mass [95].

Taken together, signals from the islet microenvironment are crucial in ensuring proper
beta cell maturation and functionality. The translation of these insights to stem cell differ-
entiation protocols is expected to improve transplantation outcomes.

5.2. Risk of Tumorigenesis

The therapeutic potential of pluripotent stem cells is vast, and it promises to transform
medicine. The capacity of stem cells to self-renew and differentiate into any desired cell
type underlies this promise, but these desirable features also bring along dangers, such as
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a risk of developing tumors. Therefore, several methods and tools have been developed for
guaranteeing safety in therapeutic applications of human ESCs and iPSCs. First, tumori-
genesis can be prevented by transplanting only differentiated cells. By using techniques,
such as endocrine cell clustering and targeting specific signaling, recent differentiation
protocols aim to generate higher percentages of mature functional beta cells and minimize
the number of undifferentiated progenitor cells, as discussed above. Thus, protocol opti-
mization in terms of improved differentiation minimizes the risk for tumorigenesis. Second,
approaches for eliminating or sorting out undifferentiated human pluripotent stem cells
in vitro have been developed, such as the use of chemical inhibitors [96], immunological
targeting of undesired cell types [97–99], or the introduction of suicide-genes in the stem
cell genome [100,101].

Chemical eradication of undifferentiated stem cells is possible by adding small
molecules to the culture medium to selectively kill pluripotent cells. A high-throughput
screen identified inhibitors of the key oleate biosynthesis enzyme stearoyl-CoA desaturase
(SCD1) as agents that specifically compromise stem cell viability [96]. Knowing that SCD1
is abundantly expressed in iPSC-beta cells and required for beta cell identity, the effect
of these SCD1 inhibitors on beta cell function warrants further investigation [102]. The
immunological targeting of undifferentiated stem cells relies on the use of (cytotoxic) anti-
bodies that are directed against specific stem cell markers to either kill them or separate
them from differentiated cells. SSEA-5 glycan, for example, is a human ESC surface marker
that has been used in order to selectively remove undifferentiated teratoma-forming cells
prior to transplantation [97]. Gene editing can also aid in the removal of undifferentiated
human pluripotent stem cells. In an innovative approach to selectively remove tumorigenic
cells, two suicide gene cassettes were introduced in ESC-derived beta cells. The first safety
cassette was a herpes simplex virus thymidine kinase (HSV-TK) that was driven by the
telomerase gene promoter that is selectively active in undifferentiated cells, the second a
nitroreductase (NTR) flanked by two loxP-sites, which is removed upon Cre-expression
that is driven by the human insulin gene promoter. HSV-TK and NTR are sensitive to,
respectively, ganciclovir and CB1954, which enables the elimination of tumorigenic undif-
ferentiated cells at any desired moment, both in vitro and in vivo [100]. Finally, engineered
human iPSCs with an inducible Caspase-9 suicide gene have been developed, in which
the small molecule chemical inducer of dimerization can effectively induce apoptosis in
>99% of the cells [101]. While these methods are innovative and promising, they are not a
validated approach for guaranteeing safety after clinical transplantation. See Table 2 for an
overview of the possible approaches to prevent teratoma formation.

5.3. Graft Immune Rejection

Another major hurdle for the clinical application of stem cell-derived beta cells is
immune rejection of the graft due to human leukocyte antigen (HLA)-mismatching. Pa-
tients currently depend on immune-suppressive drugs for preventing allograft immunity.
These drugs can have side-effects, some minor, such as mouth ulcers, diarrhea, and acne,
and some serious, including an increased risk for severe infection and malignancy (re-
viewed in [13]). Allograft rejection could be prevented if patient-specific iPSC derivates are
transplanted, which guarantee perfect HLA-matching. However, the production of such
personalized cells for individual patients would be very costly, time consuming, and is
unlikely to become the universal solution for diabetes in the short term. To this end, HLA
banks are currently being set up [103]. These banks contain a selected number of cell lines
with homozygous HLA haplotypes that have been carefully chosen to match the majority
of the population. The establishment of cell line banks decreases the number of cell lines
required for matching to allow transplantation between a genetically unrelated donor and
recipient and would thus make stem cell therapy more widely accessible [103–105].
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Table 2. Approaches to prevent teratoma formation of stem cell-derived grafts.

Approach Target Intervention Reference

Optimization of
differentiation

Oxygen supply 7-stage protocol including culture at
air-liquid interface [53]

Signaling pathways

Sequential modulation of signaling
pathways in a 3D cell culture system [52]

Removal of BMP inhibitors in combination
with retinoic acid and EGF/KGF addition [51]

Modulation of TGF-β signaling [58]

Cell clustering
Isolation and reaggregation of immature

beta-like cells to form islet-sized beta
cell-enriched clusters

[57]

Elimination of
remaining

undifferentiated cells

Chemical methods Addition of PluriSln1 [96]

Immunological methods

Antibodies against SSEA-5 glycan [97]

Antibodies against beta cell surface marker
CD49a followed by MACS [66]

Removal of Claudin-6-positive cells [99]

Separation of SSEA-4 and TRA-1-60
undifferentiated cells by MACS and FACS [98]

Genetic methods
Double suicide cassette: HSV-TK and NTR [100]

Inducible Caspase-9 suicide gene [101]

BMP: bone morphogenetic proteins, EGF: epidermal growth factor, FACS: fluorescence-activated cell sorting, HSV-TK: herpes simplex virus
thymidine kinase, KGF: keratinocyte growth factor, MACS: magnetic-activated cell sorting, NTR: nitroreductase, PluriSln1: pluripotent
cell-specific inhibitors, SSEA: stage-specific embryonic antigen, TGF-β: transforming growth factor β.

Alternatively, regulatory T-cell therapy represents an attractive approach to estab-
lish immune tolerance to allogeneic grafts and to bypass ongoing autoimmunity upon
transplantation. The administration of regulatory T-cells to new-onset diabetic mice can
delay autoimmune diabetes and it prolongs islet allograft survival [106]. Clinical trials
in T1D patients have already documented the therapeutic efficiency and safety of this
approach [107,108]. Human regulatory T-cells can be isolated, cultured, and expanded ex
vivo before transplantation; however, manufacturing the cells in therapeutically relevant
numbers while maintaining high purity remains challenging (reviewed in [109,110]). Regu-
latory T-cells secrete multiple anti-inflammatory cytokines, some of which are in clinical
use. Recently, beta cells have been engineered while using CRISPR/Cas9 to secrete the
anti-inflammatory cytokine interleukin-10 (IL-10). The IL-10 gene was knocked into the
C-peptide locus of the Ins1 gene, which results in its transcription, translation, and secre-
tion in a glucose-dependent manner [111]. IL-10, being delivered via an adeno-associated
viral vector, is also known to promote islet graft survival upon transplantation in diabetic
mice [112].

Another strategy for inducing immune tolerance involves the co-engraftment of
selected cell types, such as mesenchymal stem cells (MSCs), which possess beneficial char-
acteristics, including angiogenetic potential and the modulation of the immune response.
Therefore, it is not surprising that the co-transplantation of islets with MSCs improves
graft survival [113]. Studies that were performed in different experimental models, ranging
from mouse [114,115], rat [116], and even non-human primate [117], illustrated that the
co-engraftment of islets with MSCs prevents immune rejection through the inhibition of
effector T-cells, expansion of regulatory T-cells and decreased pro-inflammatory cytokine
production. In a clinical setting, islet transplantation is performed via the hepatic portal
vein. However, this strategy does not allow for co-engraftment with MSCs, since the
transplanted islets will lodge into the hepatic microcirculation, while the MSCs would
end up in the lungs due to their small size. Therefore, the clinical applicability of this
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approach remains limited. The pre-treatment of islets with a cell-free cocktail of MSC-
derived products has been demonstrated to suppress the immune response and promote
transplantation outcomes (reviewed in [118]). This strategy can be easily implemented in
transplantation protocols and it surpasses logistic and safety-related disadvantages of MSC
co-engraftment [118–120].

Alternatively, interference with HLA gene expression can render human pluripo-
tent stem cells hypoimmunogenic. By CRISPR/Cas9-mediated deletion of the accessory
chain beta-2-microglobulin, cells lacking HLA class I molecules can be generated [121]. In
addition, the inactivation of the CIITA gene, which encodes the ‘class II, major histocom-
patibility complex, transactivator’, can inhibit HLA class II expression [122]. Unfortunately,
the deletion of beta-2-microglobulin also prevents HLA-E and HLA-G surface expression,
which are essential in sustaining tolerance to natural killer cells. For this reason, Han et al.
only deleted HLA-A/B- and C-genes in order to prevent CD8+ T cell-mediated cytotoxicity
while maintaining natural killer cell tolerance [123]. Besides knocking out the HLA-A/-B/-
C and CIITA genes while using multiplex genome editing, they additionally introduced
the immunomodulatory factors PD-L1, HLA-G, and CD47. CD47 is a macrophage ‘do not
eat me’ signal that prevents cell engulfment by macrophages [123]. A selection of attractive
strategies to tackle immune rejection of stem cell-derived cellular grafts is compiled in
Table 3. Additionally, see Figure 1 for a schematic summary of the current hurdles for stem
cell therapy and their possible solutions.
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Table 3. Approaches to prevent immune rejection of stem cell-derived grafts.

Point of Action Approach Intervention Species
(Graft to Host) Outcome Reference

Graft

Hypo-immunity

Deletion of β2M
B2M knock-out ESCs

transplanted in NK-cell
depleted mice

(+) Prevents immune rejection, confers resistance to T-cell
mediated killing [124]

(−) Loss of NK-tolerance

Deletion of β2M and CIITA HLA-1/2 knock-out iPSCs
in vitro

(+) Eliminates immunogenicity, universal donor cell
therapy potential

[122]
(−) Loss of NK-tolerance

Deletion of HLA-A/-B/-C
and CIITA + PD-L1, HLA-G

and CD47 upregulation

Engineered human stem cells
transplanted in mice

(+) Less immune activation, decreases T–& NK-cell
mediated killing and macrophage engulfment [123]

(−) Complex genetic engineering, risk of off-target events

Immune-checkpoint
modulation

SA-PD-L1 engineered islet
grafts

SA-PDL1 mouse islets
transplanted in mice

(+) Sustains graft survival, prevents allograft immune
rejection, confers localized immunomodulation

[125]
(−) Short rapamycin treatment for long-term graft

survival

CTLA-4Ig and PD-L1
knock-in

Knock-in human ESCs
transplanted in humanized

mice

(+) Protects from allogeneic immune response
[126](−) Escape from immune surveillance (by grafted

tumorigenic cells and viral infections)

Graft supplementation

PD-L1 microgels

Allogeneic mouse islets
co-transplanted with PD-L1

microgels in mice

(+) Prevents graft rejection, promotes tolerance, confers
local immuno-protective response, off-the-shelf

immunomodulation strategy [127]
(−) Some recipients only partial benefit, short low-dose

rapamycin treatment to fully prevent rejection

MSCs

Allograft islets in
combination with MSCs

transplanted in mice, rats and
non-human primates

(+) Downregulates pro-inflammatory cytokines, prevents
allograft immune rejection, promotes graft survival

[114–117](−) Logistical and regulatory concerns–clinical
transplantation via hepatic portal vein limits

co-engraftment

MSC-derived cell-free
cocktail

Pre-treated mouse islets
transplanted in diabetic mice

(+) Protects from cytokine-mediated cell death in vitro,
improves functional graft survival in vivo [120]
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Table 3. Cont.

Point of Action Approach Intervention Species
(Graft to Host) Outcome Reference

Host

Treg therapy Ex vivo expanded polyclonal
or antigen-specific Tregs

Tregs injected systemically in
mice and T1D patients

(+) Prolongs islet allograft survival, inhibits alloimmune
response in mice, clinical trials demonstrated feasibility

and safety in human [106–108,128]
(−) Poor engraftment,

Treg manufacturing is challenging

Production of
anti-inflammatory

cytokines

IL-10 secretion by designer
beta cells

Glucose-dependent secretion
of IL-10 by murine beta cells

(+) Protects from pro-inflammatory cytokine-induced cell
death, minimal systemic effects on host immune system,

efficient engineering
[111]

Immune-checkpoint
modulation

Administration of CTLA-4Ig
and anti CD40L mAbs

ESC-PE transplanted in
(humanized) mice

(+) Prevents immune rejection, induces immune
tolerance, prolongs graft survival [129]

(−) Testing only possible in immunocompromised
animals (limited to rodents)

(+): advantages, (−) disadvantages. β2M: beta 2 microglobulin, CD: cluster of Differentiation, CIITA: class II Major Histocompatibility Complex Transactivator, CTLA: cytotoxic T Lymphocyte-Associated
antigen, hESCs: human embryonic stem cells, hESC-PE: human embryonic stem-cell-derived pancreatic endoderm, Hi-PSCs: human induced pluripotent stem cells, hPSCs: human pluripotent stem cells, HLA:
human leukocyte antigens, Ig: immunoglobulin, IL: interleukin, mAbs: monoclonal antibodies, MSCs: mesenchymal stem cells, NK: natural killer, PD-L: programmed death-ligand, SA: streptavidin, Treg:
regulatory T-cell.
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Figure 1. Roadblocks for a functional stem cell-based cure for diabetes. Stem cell-derived beta cells represent a promising
alternative beta cell source for transplantation with the potential to cure various forms of diabetes. Nonetheless, major
hurdles refrain stem cell-derived beta cells from providing a universal cure for diabetes. The functional maturation of
stem cell-derived beta cells remains inferior compared to genuine beta cells, most likely due to the discrepancy of the
simplified in vitro differentiation protocols with the complex, dynamic interactions that beta cells encounter in their natural
microenvironment throughout development. Generating islet-like clusters containing different endocrine cell types, rather
than clusters of only beta-like cells, will likely benefit the functionality of these clusters. Notably, following transplantation,
a major donor cell loss occurs mainly due to insufficient graft revascularization and allo–and (auto)immunity. These hurdles
can be tackled through delivery of pro-angiogenic factors that boost graft revascularization and by inducing immune
tolerance to the graft and countering the underlying autoimmunity. Finally, teratoma formation remains a concern for stem
cell therapy to become a therapeutic reality. Strategies to eliminate remaining undifferentiated stem cells need fine-tuning
as well as methods to ensure easy graft retrieval in order to warrant the safety of stem cell-derived beta cell grafts.



Cells 2021, 10, 191 14 of 24

5.4. The Emergence of Encapsulation Devices

The encapsulation devices have emerged as versatile methods to both enable the
removal of transplanted human pluripotent stem cell-derived beta cells and physically
shield grafted cells from immune attacks while still allowing for glucose sensing and insulin
secretion. In encapsulation strategies, islet cells are embedded in a semipermeable gel-like
structure that limits access to immune cells, but still allows for oxygen, nutrient, and
hormone transport. Microencapsulation devices are made of biomaterials, such as alginate,
while macroencapsulation devices are composed of polymers, such as polycaprolactone or
polytetrafluoroethylene [130]. Both of the methods have their advantages and limitations.
Microencapsulation devices allow for easier nutrient and oxygen exchange when compared
to macroencapsulation devices due to their higher surface area to volume ratio. Whereas
macroencapsulation devices are safer, as they are more readily retrievable, and, since a
single device can house more cells, membrane parameters, such as pore size and porosity,
can be better controlled. The downside here is that this comes at the expense of oxygen
and nutrient exchange with individual cells, especially in the core of the graft [131].

6. Towards a Cure
6.1. The Paradigm of Gene-Editing for Monogenic Diabetes

Gene editing technologies have been developed for almost four decades, since Smithies
et al., in 1985, used bacterial restriction endonucleases to create recombinant DNA [132].
Gene-editing endonucleases, such as zinc-finger nucleases, TAL effector nucleases, and
CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated
protein 9), are revolutionizing genetic engineering in vitro and in vivo and they reach the
efficiencies and precision required for clinical use. CRISPR/Cas9, in particular, is one of
the hottest technologies and the favorite designer nuclease, because it does not involve
producing target-specific proteins and only requires adjusting a short region of the single-
guide RNA to achieve target specificity. This technology provides an innovative resource
to generate various types of cells for disease modeling, drug screening, and new therapies
in combination with stem cell technology.

Monogenic forms of diabetes are caused by mutations in genes that are involved in
beta cell development, function, and survival [50,133]. Several groups have compared
monogenic diabetes patients’ and healthy controls’ iPSC-derived beta cells. iPSCs from
patients with an HNF4A mutation, causing autosomal dominant diabetes, differentiated
similarly to healthy control iPSCs, and the iPSC-beta cells showed no obvious quantitative
proteome differences [134]. Autosomal dominant HNF1B mutations result in diabetes
and pancreatic hypoplasia [135]. Teo et al. showed that the expression of the pancreatic
progenitor markers PDX1, FOXA2, and GATA4/6 is increased in HNF1B mutant cells,
while PAX6 is decreased [136]. The heterozygous or homozygous HNF1A knockout in
ESCs by CRISPR/Cas9 dose-dependently altered endocrine hormone expression, increased
alpha cell gene expression, and impacted beta cell metabolism and insulin secretion [137].
McGrath et al. used CRISPR/Cas9 in ESCs to disrupt NEUROG3, which is associated with
permanent neonatal diabetes mellitus [138–141], and showed that NEUROG3 is required
for human pancreatic endocrine cell development [142]. Interestingly, Saarimäki-Vire et al.
demonstrated that activating STAT3 mutations, a cause of neonatal diabetes associated
with beta cell autoimmunity [143], cause premature endocrine differentiation of patient’s
iPSCs through the direct premature induction of NEUROG3 expression. The differentiation
phenotype was reversed when the STAT3 mutation was corrected with CRISPR/Cas9 [144].
Activating mutations in KCNJ11, the pore-forming subunit of the KATP channel, also cause
neonatal diabetes [145–147]. The biallelic KCNJ11 mutation in human ESCs impairs insulin
secretion that is induced by various stimuli, such as glucose, KCl, and forskolin, because of
absent KATP channel activity [148]. Heterozygous mutations in GATA6 [149] and its sister
gene GATA4 [150] can cause neonatal diabetes through pancreatic agenesis. These transcrip-
tion factors were shown to be essential for pancreatic development while using patient’s
iPSCs and iPSCs that are corrected by CRISPR/Cas9 [151,152]. Dominant insulin gene mu-
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tations are a common cause of neonatal diabetes [153,154]. These mutations induce insulin
protein misfolding, endoplasmic reticulum (ER) stress, and activate the unfolded protein
response, which leads to beta cell failure [155,156]. Balboa et al. generated iPSCs from
patients with the Akita insulin gene mutation and corrected it using CRISPR/Cas9 [157].
The transplantation of insulin gene mutant beta-like cells into mice resulted in low insulin
secretion and the induction of ER stress markers when compared to transplanted corrected
beta-like cells. De Franco et al. discovered a neonatal type of diabetes caused by recessive
YIPF5 mutations [158]. They showed increased in vitro sensitivity of patients’ iPSC-derived
beta cells to ER stress, which is caused by impaired proinsulin trafficking from the ER to
the Golgi, and impaired in vivo function of ESCs edited to express the patients’ mutation.

Patients with Wolfram syndrome, an autosomal recessive disorder that is caused by
WFS1 mutations, develop childhood diabetes as a result of beta cell ER stress (reviewed
in [159,160]). Following CRISPR/Cas9 correction of WFS1 mutations in patients’ iPSCs,
iPSC-beta cells showed dynamic glucose-stimulated insulin secretion and reversed pre-
existing streptozotocin-induced diabetes after transplantation into mice [161]. Finally,
Friedreich ataxia is an autosomal recessive neurodegenerative disease that is associated
with a high risk of developing diabetes. It is caused by intronic GAA trinucleotide re-
peat expansions in the frataxin-encoding FXN gene that reduces frataxin transcription
and causes mitochondrial dysfunction [162–165]. GLP-1 analogs improve mitochondrial
function in frataxin-deficient cells and induce frataxin expression in Friedreich ataxia pa-
tients’ iPSC-derived neurons and beta-like cells [166]. Taken together, this growing body
of evidence shows that the gene editing of iPSCs from patients with monogenic diabetes
allows for generating functional beta cells with the potential to provide a personalized cell
source for cell replacement therapy (Figure 2).

6.2. Where Do the Clinical Trials in T1D Stand?

Hitherto four clinical trials in T1D with stem cell-derived pancreatic cells have been
registered, all being initiated by the company ViaCyte. In 2014, the first trial (NCT02239354)
was posted on the clinicaltrials.gov platform as a “Prospective, Multicenter, Open-Label,
First-in-Human Phase 1/2 Study With Two Cohorts to Evaluate the Safety, Tolerability, and
Efficacy of Various Doses of VC-01™ Combination Product in Subjects With Type 1 Diabetes
Mellitus”. This VC-01™ combination product consists of a biological product—i.e., pancre-
atic progenitor cells differentiated from human ESCs (PEC-01)—and a macroencapsulation
device. In 2016, a follow-up prospective trial “A One-Year, Multicenter, Observational,
Follow-up Safety Study in Subjects Previously Implanted With VC-01™ Combination
Product” was posted in order to document the incidence of adverse events that were
reported during the study with the VC-01 device. With the estimated final completion
dates of NCT02239354 (January 2021) and NCT02939118 (November 2021) approaching,
some preliminary results of 19 subjects that have been implanted and evaluated have
been reported [14]. These results indicate that the approach is safe and well tolerated with
relatively minor adverse events, but, while protection from immune rejection was reported,
inconsistent long term graft survival was observed, which is attributed to a foreign body
reaction to the device component for which further optimization was due. In 2017, the
company launched two more trials. First, NCT03162926 “A Safety and Tolerability Study
of VC-02™ Combination Product in Subjects With Type 1 Diabetes Mellitus”, in which their
combination product VC-02™ is tested of which the device component is changed from
a semi-permeable encapsulation device—that prevents immune cells and blood vessels
to enter the biological compartment—to an encapsulation device that does allow for the
entry of immune cells and blood vessels (final completion in February 2018). Second,
NCT03163511 “A Safety, Tolerability, and Efficacy Study of VC-02™ Combination Product
in Subjects With Type 1 Diabetes Mellitus and Hypoglycemia Unawareness”, in which
the same combination product is investigated, specifically in patients with hypoglycemia
unawareness or significant glycemic lability (estimated completion in March 2023).
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Figure 2. The curative promise of engineered human iPSC-derived beta cells for monogenic diabetes. Monogenic forms
of diabetes are caused by mutations in genes critical for beta cell development, function and survival. More specifically,
mutations within the HNF4A, HNF1A/1B, NEUROG3, GATA4/6, and STAT3 genes impair beta cell development or pancreatic
endocrine development and cause maturity-onset diabetes of the young and neonatal diabetes. Mutations within the
KCNJ11 gene result in dysfunctional KATP-channels, which results in impaired insulin secretion. Furthermore, mutations
within the YIPF5 gene are responsible for impaired proinsulin trafficking from the endoplasmic reticulum to the Golgi
apparatus, giving rise to endoplasmic reticulum stress. Interestingly, other rare disorders, such as Friedreich ataxia and
the Wolfram syndrome exist that are accompanied by diabetes. Friedreich ataxia is associated with a reduced expression
of the FXN gene, which causes mitochondrial dysfunction, while Wolfram syndrome is characterized by a dysfunctional
WFS1 gene, which leads to endoplasmic reticulum stress. Since these rare forms of diabetes are usually triggered by a single
genetic mutation, it becomes theoretically possible to correct them in patient-derived iPSCs while using CRISPR/Cas9
before their differentiation into healthy beta cells which can be transplanted back into the patient.

Although these trials pave the way for a future functional cure for diabetes, it remains
to be evaluated whether the use of pancreatic progenitor cells is the best path if our goal is
the full replacement of the functional beta cell mass in patients with diabetes. In order to
obtain a true cure and to eliminate the daily burden of diabetes care, the grafted cells will
have to reach—at least upon engraftment—full functional maturity in addition to being
sufficiently numerous to be able to tightly regulate glucose homeostasis.

7. Perspectives

Although current human pluripotent stem cell differentiation protocols succeed in
generating beta-like cells that share many phenotypical and functional properties with
bona fide beta cells, reaching full functional maturation remains challenging, as: (i) adult
beta cells are heterogenous and (ii) current differentiation protocols are based on simplified
mimicry of the dynamic and complex interactions of beta cells with other (non)endocrine
cells in their native microenvironment. This intercellular communication is likely key to
reach, or at least maintain, full beta cell maturity in all of its complexity and heterogeneity.
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