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Abstract: Engineered nanomaterials (ENMs) are of significant relevance due to their unique proper-
ties, which have been exploited for widespread applications. Cerium oxide nanoparticles (CeO2-NPs)
are one of most exploited ENM in the industry due to their excellent catalytic and multi-enzyme
mimetic properties. Thus, the toxicological effects of these ENMs should be further studied. In this
study, the acute and subchronic toxicity of CeO2-NPs were assessed. First, an in vitro multi-dose
short-term (24 h) toxicological assessment was performed in three different cell lines: A549 and
Calu3 were used to represented lung tissue and 3T3 was used as an interstitial tissue model. After
that, a sub-chronic toxicity assessment (90 days) of these NPs was carried out on a realistic and
well-established reconstituted primary human airway epithelial model (MucilAir™), cultured at the
Air–Liquid Interface (ALI), to study the long-term effects of these particles. Results showed minor
toxicity of CeO2-NPs in acute exposures. However, in subchronic exposures, cytotoxic and inflam-
matory responses were observed in the human airway epithelial model after 60 days of exposure to
CeO2-NPs. These results suggest that acute toxicity approaches may underestimate the toxicological
effect of some ENMs, highlighting the need for subchronic toxicological studies in order to accurately
assess the toxicity of ENM and their cumulative effects in organisms.

Keywords: Cerium oxide NPs; acute and subchronic toxicity; in vitro; pulmonary and interstitial cell
lines; human airway epithelial model; air–liquid interface; aerosolized NPs

1. Introduction

In the last decades, the use of nanotechnology has revolutionized many biotechno-
logical sectors [1]. Engineered nanomaterials (ENMs) possess unique physical, electrical,
and chemical properties [2], which have been exploited for widespread applications in
electronics, aerospace, medicinal drug delivery, medical devices, biosensors, engineering,
bioengineering, food, and cosmetics [1–8]. The increasing use of ENMs and their conse-
quent release into the environment [9–11] has raised concerns about their safety and their
potential risks to human health [12–16].

Among these ENMs, cerium oxide nanoparticles (CeO2-NPs) are one of the most
exploited ENMs. For instance, due to their autoregenerative cycle between two oxidation
states, Ce+3 and Ce+4 [17,18], CeO2-NPs have been used as promising antioxidant and
anti-UV agents [19]. CeO2-NPs have also been used as fuel catalyst additives [20], in polish
surface treatment, and in cosmetics and sunscreens [21]. More recently, CeO2-NPs have
been used as therapeutic agents to prevent blindness caused by light overexposure [22], to
prevent age-related macular degeneration [23], and as anti-microbial agents by disrupting
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bacterial electron transport chain [24,25] and reducing the infectivity of certain viruses
in vitro [26]. Despite their excellent catalytic and multi-enzyme mimetic properties [27],
the potential toxicity of CeO2-NPs to different organisms raises concerns [28–30]. Thus, the
toxic mechanisms of CeO2-NPs should be carefully and systematically investigated [27].

It has been reported that the main route of exposure to CeO2-NPs is through inhalation,
e.g., during occupational exposure when manufacturing CeO2-NP-based products [31,32]. Thus,
the lung is the main target organ for toxic effects after airborne CeO2-NPs [31–35] exposure.

Although animal models have been traditionally used in inhalation toxicology re-
search, animal welfare concerns and 3R directrices encourage the use of alternative in vitro
models for toxicological research [36–38]. In vitro models based on pulmonary cells repre-
sent excellent tools to study lung toxicity induced by exposure to ENMs. Immortalized
or tumorigenic cell lines (A549, BEAS-2B, and Calu-3) are routinely used as monolayer
models [39] or in co-culture with immune cells (e.g., differentiated THP-1) to study in-
flammatory responses induced by ENM exposure [40,41]. These in vitro models can be
used both in submerged conditions or at the Air–Liquid Interface (ALI), which has been
demonstrated to favor a better interaction between NPs and cells and has been considered
physiologically more relevant for inhaled NPs research [32,40,42]. These models are con-
sidered useful tools for acute high-throughput screening of different air pollutants [42].
However, they are quite simplistic and do not represent an in vivo condition, since they
are based on tumorigenic cells that lack inherent primary cell characteristics and do not
reproduce the architecture of the lung tissue [42].

To overcome these limitations, 3D human airway epithelial models based on primary
cells have already been used, as they better mimic the lung architecture and primary cells
conserve original characteristics [43,44]. Currently, there are few commercially available
human airway epithelial 3D models, EpiAirwayTM from MatTek and MucilAirTM from
Epithelix. MucilAirTM is a reconstituted primary human airway epithelial (PHAE) model
from human nasal or bronchial biopsies [45] that can be maintained in culture conditions for
up to a year, allowing long-term and repeated exposures [45]. Baxter et al. [46] have demon-
strated the suitability of this model for long-term exposures to toxicants. Meldrum et al. [47]
used the PHAE model to assess the mid-term (up to three weeks) cytotoxicity of CeO2-NPs,
showing that this 3D model may represent a more realistic model to predict the toxicity of
inhaled particles than cell line monolayers, (which may overestimate particles’ toxicity). To
the best of our knowledge, subchronic (over two months) effects of repeated exposures to
CeO2-NPs have not yet been assessed in 3D PHAE models.

Currently, different systems have been developed to allow subchronic repeated expo-
sure to toxicants in vitro. One of the most commonly used devices is the Vitrocell Cloud
(VITROCELL Systems GmbH, Waldkirch, Germany). This device was specifically designed
for exposure in ALI through the nebulization of the toxicant in a controlled atmosphere,
allowing high deposition rates of the toxicant as well as robustness of results and high
reproducibility [48]. This device offers the possibility of performing in vitro exposures to
NPs in a much more realistic scenario.

In this context, the aim of this study was to assess acute toxicity (24 h) of CeO2-NPs
on monocultured pulmonary (A548 and Calu-3) and non-pulmonary (3T3) cell lines and
subchronic toxicity (up to 90 days) of the same nanoparticles on the physiologically relevant
PHAE model exposed at the ALI through Vitrocell Cloud nebulization. This study aims to
contribute to a better understanding of the cascade of acute to subchronic cellular responses
in cells exposed to CeO2-NPs.

2. Materials and Methods
2.1. Synthesis and Characterization of CeO2 Nanoparticles (NPs)

CeO2-NPs were synthesized following the conventional gel–sol process. Briefly,
commercial cerium chloride (Sigma-Aldrich, 228931, St. Louis, MO, USA) was dissolved
in deionized water (0.5 M) and stirred at 400 rpm for 1 h at 60 ◦C in a thermostatic bath.
Then, ammonium hydroxide (0.5 M) (Sigma-Aldrich, 221228, St. Louis, MO, USA) was
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added to the cerium chloride solution and stirred at the same conditions mentioned before
for 120 min to allow NPs formation. After that, the mixture was left for 22 h at room
temperature and then centrifuged, washed with deionized water, and finally heated at
110 ◦C to evaporate the aqueous solvent and obtain NPs as powder.

The shape and size of CeO2-NPs were determined by Transmission Electron Mi-
croscopy (TEM–JEM–2100F UHR, JEOL Ltd., Akishima, Tokyo, Japan). Dry powdered
CeO2-NPs (25 µg/mL) were placed onto conducting carbon-coated copper grids for exami-
nation at the TEM. X-ray photoelectron spectroscopy (XPS–SAGE HR 100, SPECS, Berlin,
Germany) was used to confirm the elemental composition and chemical state of CeO2-NPs.

A Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK) was used to determine zeta
potential and hydrodynamic size distribution through DLS analysis. The average size and
polydispersity index (PDI) were determined according to ISO22412. The PDI scale was 0–1,
with 0 representing a monodisperse state and 1 representing a polydisperse state. For the
DLS analysis, CeO2-NPs (100 µg/mL) were suspended in distilled water since, due to the
presence of particulate materials, no reliable measurements could be done in NP samples
suspended in cell culture media.

2.2. Cell Culture

For the acute experiments, the murine fibroblast 3T3 cell line (CRL-1658), the lung
adenocarcinoma Calu-3 cell line (HTB-55), and the alveolar epithelial adenocarcinoma
A549 cell line (CCL-185) were obtained from ATCC (Wesel, Germany). The cell lines were
cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% penicillin
and streptomycin (P/S) solution (Life Technologies, Carlsbad, CA, USA), according to the
manufacturer’s instructions. The culture medium was renewed every 2–3 days and the
cells were subcultured when they reached 70–90% confluency.

For the subchronic experiments, fully differentiated PHAE models (MucilAirTM) were
obtained from Epithelix Sárl (Geneva, Switzerland). The PHAE models were maintained
on 24-well Transwell® inserts with its own culture medium (Epithelix Sárl, Geneva, Switzer-
land; supplemented with 1% Amphotericin, 1% P/S, and 0.5% gentamicin). Inserts had
a diameter of 6.5 mm, a growth area of 0.33 cm2, and a 0.4 µm pore size. Upon receipt,
the PHAE models were maintained in the culture medium for at least one week prior to
performing the experiments. The culture medium was renewed every 2–3 days.

2.3. Acute Exposures to CeO2-NPs

For acute exposures, 3T3, Calu-3, and A549 cell lines were seeded at 104 cells/well
in 96-well plates (3 × 104 cell/cm2) and incubated for 24 h to allow confluence. Then, the
culture medium was replaced by a fresh medium containing different doses of CeO2-NPs
(10, 100 and 500 µg/mL) and cells were exposed for 24 h prior to assess CeO2-NPs cytotoxic
effects. Before conducting the in vitro exposures, cell-free assays were carried out in order
to evaluate the potential interference of CeO2-NPs with the toxicity assays.

2.4. Subchronic Exposures to CeO2-NPs

For subchronic exposures in ALI, 24-well Transwell® inserts (Corning, 3470, Kennebunk,
ME, USA) containing the PHAE model were placed into a Vitrocell® Cloud exposure system
(VITROCELL Systems, Waldkirch, Germany). This device is specifically designed for ALI
exposure assays and consists of a 12-well chamber (8 for exposure, 1 integrated Quartz Crystal
Microbalance (QCM) and 3 for control) coupled to a heating block to allow constant 37 ◦C
temperature, and a nebulizer (Aeroneb Lab®, Kent Scientific, Torrington, CT, USA) on the top of
the chamber. This device generates an aerosolized cloud of nanoparticles that homogeneously
precipitate onto the cells due to the generated flow dynamics (vortices) after single droplet
sedimentation [49]. Airway epithelia were exposed every 2 weeks during 3 months to three
sublethal concentrations of CeO2-NPs (100 µg/cm2, 10 µg/cm2 and 1 µg/cm2) in order to
assess their subchronic effects. After each exposure, the Transwell® inserts were placed in a new
24-well plate and incubated with the culture medium.
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2.5. Acute Cytotoxicity

Briefly, after exposures, cell viability was assessed by incubating cells with a MTT
solution (0.4 mg/mL, Sigma-Aldrich, M2003-1G, St. Louis, MO, USA) for 2 h at 37 ◦C, 5%
CO2. After the incubation, the insoluble formazan crystals were extracted from the cells by
adding DMSO (PanReac AppliChem, A3672, Barcelona, Spain) into the wells. Absorbance
was quantified at a 540 nm wavelength in a spectrophotometer reader (Varioskan™ Lux,
ThermoScientific, Waltham, MA, USA). Cell viability was expressed as percentage of
viability respect to untreated control cells. CdSO4 (Sigma-Aldrich, 383082, St. Louis, MO,
USA) was used as positive control.

Apoptosis and necrosis were evaluated in exposed and unexposed cells using the
Annexin-V/PI assay through flow cytometry. During the early stages of apoptosis, phos-
phatidylserine (PS) present on the inner leaflet of the plasma membrane is translocated
to the outer layer. During apoptosis the cell membrane remains intact, whereas during
necrosis the cell becomes leaky and loses its integrity. Annexin-V (Invitrogen™, A13201,
Waltham, MA, USA) is a sensitive probe to detect PS on the plasma membrane of apoptotic
cells. Propidium iodide (PI, Sigma-Aldrich, P4170, St. Louis, MO, USA) is a probe for
discriminating necrotic cells. After NP treatment, cells were harvested and washed with an
Annexin-V Binding Buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2
and 1.8 mM CaCl2, Sigma-Aldrich, St. Louis, MO, USA) and incubated with Annexin-V
(5 µL/100 µL of cell suspension), in darkness for 30 min at room temperature. Then, the
cells were washed and incubated with PI (1 µL/100 µL of cell suspension). After that, the
cells were immediately analyzed in a FC-500 two laser flow cytometer (Beckman Coulter,
Brea, CA, USA). Doxorubicin treated cells were used as positive control for Annexin-V or
PI and non-treated cells as negative control.

ROS production was detected using the DCFH–DA dye (Sigma-Aldrich, D6883, St.
Louis, MO, USA). DCFH–DA is a stable non-fluorescent, cell permeable compound that is
converted to DCFH by intracellular esterases and trapped inside the cells. DCFH is then
converted into the highly fluorescent 2′, 7′ dichlorofluorescein (DCF) by intracellular ROS
and, upon excitation at 488 nm, emits green fluorescence proportional to the intracellular
ROS levels. After treatment, the cells were harvested, washed with PBS, and incubated with
DCFH–DA (5 µM) at 37 ◦C for 30 min in darkness. Cells were then washed, centrifuged,
resuspended in PBS, and kept on ice for an immediate detection by flow cytometry using
the same flow cytometer mentioned before. Doxorubicin (Sigma-Aldrich, D-1515, St. Louis,
MO, USA) was used as the positive control.

2.6. Suchronic Effects

The effects of CeO2-NPs treatment on the pulmonary barrier integrity were evaluated
by measuring the transepithelial electrical resistance (TEER) of the reconstituted 3D human
airway epithelia according to the manufacturer’s instructions. Resistance was measured
using an Epithelial Voltohmmeter (EVOM2) coupled to a STX2 chopstick electrode (World
precision instruments, Sarasota, FL, USA). TEER readings were determined by subtracting
the mean resistance of three inserts without cells (blank) from the recorded resistance of
the airway epithelium, and subsequently multiplying the resulting value by the effective
membrane surface area of the insert and expressing the results as Ω*cm2. As airway
epithelia were cultured in ALI, 200 µL of saline solution (0.9% NaCl, 1.25 mM CaCl2 and
10 mM HEPES, Sigma-Aldrich, St. Louis, MO, USA) was apically added on the monolayers
right before TEER measurements and then discarded at the end of the readings. TEER
readings were determined every 2 days for 6 months.

The subchronic effects of CeO2-NP treatment on the cell viability of reconstituted 3D
human airway epithelia were measured by employing the resazurin reduction method [50].
Briefly, inserts containing airway epithelia were washed with PBS and incubated with
resazurin (6 µM, Sigma-Aldrich, R-7017, St. Louis, MO, USA) for 1 h at 37 ◦C. After
incubation, samples were taken from each insert and fluorescence was read at λex = 530 nm
and λem = 590 nm in a microplate reader (Varioskan Lux, ThermoFisher Scientific, Waltham,



Nanomaterials 2021, 11, 1577 5 of 17

MA, USA). Viability was expressed as percentage of viability with respect to untreated
control cells. Resazurin assay was determined every 10 days for 3 months.

The effect of CeO2-NP treatment on the plasma membrane integrity was measured
employing the LDH test CytoTox 96® Non-Radioactive Cytotoxicity Assay kit, according
to the manufacturer’s instructions (Promega, G1780, Madison, WI, USA). Results were
expressed as percentage of damaged cells with respect to untreated control cells. LDH
release was measured every 2 weeks for 3 months. Absorbance was read at λ = 490 nm in a
microplate reader (Varioskan Lux, ThermoFisher Scientific, Waltham, MA, USA).

The effects of CeO2-NP treatment on the extra-cellular release of two inflammatory cy-
tokines (IL-1β and TNF-α) was measured using commercially available ELISA kits (Invitrogen™
KHC3013 and KHC0012, respectively, Waltham, MA, USA), according to the manufacturer’s
instructions. IL-1β y TNF-α expression were assessed in the conditioned medium after NP
exposure. Results were expressed as pg/mL. Absorbance was read at λ = 450 nm in a microplate
reader (Varioskan Lux, ThermoFisher Scientific, Waltham, MA, USA).

2.7. Statistical Analysis

In all assays, data were presented as means ± standard deviation. Normality of the
data was confirmed by the Kolmogorov–Smirnoff test and the homogeneity of the variances
by Levene’s test. Differences among groups were assessed by ANOVA test followed by a
Bonferroni–Dunn post-hoc test. A p-value ≤ 0.05 was considered statistically significant.
All analysis were performed using the Minitab version 16 statistic software (State Collage,
PA, USA).

3. Results
3.1. Physicochemical Characterization of CeO2-NPs

CeO2 particles morphology and size distribution were determined by TEM. According
to the TEM analysis, CeO2-NPs showed irregular shape with particles ranging from 4 to
64 nm (Figure 1) and a mean size of 13.04 nm± 12.13 (Figure 2). Element analysis confirmed
that particles were constituted by 21.5% Cerium and 78.5% Oxygen. No contaminants
(>0.1–0.5%) were found (Figure 3).

According to the DLS analysis, CeO2-NPs showed a monomodal dispersion in water
(Figure 4), suggesting a homogeneous distribution. The retrieved size of particles in
suspension was 44.13 nm, higher than the value obtained by TEM, indicating a possible
particles aggregation. The zeta potential value of suspended particles was +36.16 mV,
indicating a stable dispersion.

3.2. Acute Cytotoxicty

According to the MTT assay, CeO2-NPs were not cytotoxic to A549, Calu-3, and 3T3
cell lines at the tested concentrations (Figure 5). CdSO4 (used as the positive control)
significantly decreased cell viability (p < 0.05, Figure 5).

The percentage of positive cells for Annexin-V and PI markers in untreated and
CeO2-NPs treated cells are shown in Figures 6 and 7, respectively. According to the
results, a significant increment in the percentage of apoptotic cells (Annexin-V positive/PI
negative) with respect to control cells was found in 3T3 cells treated with 0.5 mg/mL
of CeO2-NPs (p < 0.05). A significant increase was also observed in the percentage of PI
positive cells (necrotic cells) in all treated cell lines at 500 µg/mL (p < 0.05). The positive
control Doxorubicin induced a significant increase of apoptosis and necrosis with respect
to untreated cells in the three cell lines (p < 0.05).
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independent assays (n = 18). Asterisks indicate significant differences with respect to the untreated control cells (p < 0.05).

At tested concentrations, CeO2-NPs did not induce ROS production in Calu-3 cells
(Figure 8). On the other hand, there was a significant increment in ROS production in
A549 and 3T3 cells exposed to the highest dose assayed (500 µg/mL) with respect to
untreated control cells (p < 0.05) (24.48 ± 4.64% in A549 cells and 28.85 ± 6.06% in 3T3
cells) (Figure 8). A significant increase in ROS production was also observed in the three
cell lines treated with the positive control Doxorubicin (p < 0.005) (49.41 ± 6.35% in A459
cells; 51.08 ± 15.34% in Calu-3 cells and 99.71 ± 0.22% in 3T3 cells) (Figure 8).
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3.3. Subchronic Effects

According to the results, TEER values ranged from 985± 148.79 to 2319.4± 292.95 Ω*cm2,
in all treated groups and for control cells between the day 0 and the day 90 of culture. No
significant differences were observed among the different groups (Figure 9).
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According to the results obtained in the resazurin assay, CeO2-NPs did not decrease
the cell viability of airway epithelia during the first weeks (70 days) of exposure (Figure 10).
However, after 80 days of treatment, CeO2-NPs significantly decreased the viability of
airway epithelia exposed to the highest dose (100 µg/cm2) (day 80: 62.70 ± 8.32% and day
90: 75.5 ± 13.31%). There was no effect in cells exposed to lower doses throughout the
study (Figure 10).
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Figure 10. Viability (resazurin assay) of control airway epithelia and airway epithelia exposed for 90 days to different
concentrations of CeO2-NPs (1, 10, and 100 µg/cm2). Exposures were performed every two weeks for three months. Results
are expressed as means ± SD of five replicates per tested condition and one assay (n = 5). Asterisks indicate significant
differences with respect to the untreated control cells (p < 0.05).

Based on the LDH test, CeO2-NPs did not affect the plasma membrane integrity of
reconstituted 3D PHAE model during the first weeks (75 days) of exposure (Figure 11). At
day 90 of culture, a significant increase in the LDH released was observed in airway ep-
ithelia exposed to 100 µg/cm2 of CeO2-NPs (121.65 ± 2.10%) with respect to the untreated
control group (Figure 11).
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Figure 11. Cell membrane integrity (LDH test) of control airway epithelia and airway epithelia exposed for 90 days to
different concentrations of CeO2-NPs (1, 10, and 100 µg/cm2). Exposures were performed every two weeks for three
months. Results are expressed as means ± SD of five replicates per tested condition and one assay (n = 5). The asterisk
indicates significant differences with respect to the untreated control cells (p < 0.05).

A significant increase in TNF-α production was observed in airway epithelia af-
ter 60 and 75 days of exposure to 100 µg/cm2 of CeO2-NPs (28 ± 0.39 pg/mL and
58.68 ± 9.36 pg/mL respectively) (Figure 12). This increase was not observed at day 90
of exposure. Lower concentrations of CeO2-NPs did not induce TNF-α production in
airway epithelia for the 90 days of exposure (Figure 12). Similarly, a significant increase
in IL-1β secretion was observed in airway epithelia exposed for 75 days to 100 µg/cm2

of CeO2-NPs (43.11 ± 9.27 pg/mL) and this increase was not observed at the day 90 of
exposure (Figure 13). As for TNF-α production, lower concentrations of CeO2-NPs did not
induce IL-1β secretion for the 90 days of exposure (Figure 13)
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Figure 12. TNF-α release in control airway epithelia and in airway epithelia exposed for 90 days to different concentrations
of CeO2-NPs (1, 10, and 100 µg/cm2). Exposures were performed every two weeks for three months. Results are expressed
as means ± SD of five replicates per tested condition and one assay (n = 5). Asterisks indicate significant differences with
respect to the untreated control cells (p < 0.05).
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4. Discussion

As biological responses of lung cells exposed to nanoparticles depend not only on the
exposure dose but also on the intrinsic properties of the NPs (e.g., size, shape, chemical
composition, surface reactivity, and degree of aggregation), NPs must always be character-
ized before performing the toxicity assays [51–53] and, whenever possible the homogeneity
of different batches must be ensured [54].

According to the characterization of our in-house manufactured CeO2-NPs, TEM
analysis showed that particles ranged from 4 to 64 nm (mean size = 13.04 nm) and displayed
an irregular shape. Once suspended in distilled water, DLS analysis showed particles with
a hydrodynamic size of about 44 nm, with a monomodal and homogeneous distribution
and high stability in the medium. The higher mean size obtained by DLS may be due to an
overestimation of particle size, caused by a slight aggregation of the particles in distilled
water by shear forces, as reported by other authors [55,56]. In complex media, such as a
cell culture medium, aggregation might be higher due to the presence of organic molecules
(e.g., amino acids). This aggregation is expected to affect the uptake and consequent toxicity
of CeO2-NPs.

In the present study CeO2-NPs were not highly cytotoxic at tested concentrations
but did induce cellular responses in both acute and subchronic exposures. In the acute
approach, despite the absence of cytotoxicity in the MTT assay, results obtained in the more
sensitive Annexin V—PI assay showed a significantly higher percentage of PI and Annexin
V positive cells in the 3T3 cell line exposed to 500 µg/mL of CeO2-NPs, indicating that
these NPs induce apoptotic and necrotic processes. Furthermore, a significant increase
in ROS production was observed in both the A549 and 3T3 cell lines exposed to CeO2-
NPs at the same concentration. Although CeO2-NPs are known to possess excellent
antioxidant properties by scavenging free radicals, it has already been reported that they
can also induce ROS production [24]. The exact mechanism by which they exhibit this
oxidizing/antioxidant activity is not clearly understood, but it seems that the reason for
this dual activity lies on the fact that if CeO2-NPs are strongly affected by the pH of the
solution, then these particles can act as oxidizing or antioxidants agents [24,57]. Similar
mechanisms of toxicity were reported by other authors, albeit at lower concentrations [58].
For instance, Mittal and Pandey [58] reported a concentration and time-dependent decrease
of A549 viability exposed to CeO2-NPs at concentrations starting at 10 µg/mL. At the
same concentrations, CeO2-NPs caused a concentration and time-dependent decrease in
mitochondrial membrane potential and an increase in ROS production in the same cell
model. At a lower concentration (1 µg/mL), authors reported an increase in apoptosis. The
lower cytotoxicity of our CeO2-NPs may be related to their physical-chemical properties.
Particles used by Mittal and Pandey [58] were negatively charge (−13.7 mV), whereas
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our particles were positively charged (+36.16). It was previously reported that negatively
charged CeO2-NPs tend to internalize more easily than positively or neutral charged CeO2-
NPs in cancer cell lines [54]. Thus, positively charged particles are expected to induce
lower toxic effects on these cells.

Although acute toxicity studies in cell monolayers provide valuable information about
the toxic effect of NPs, there is a need to use more realistic in vitro models that could
better mimic lung tissue and exposure conditions and, allow for long-term subchronic and
chronic evaluations [59]. Thus, the use of robust models such as PHAE models is highly
encouraged. This three-dimensional model is a fully differentiated and functional human
respiratory model that conserves respiratory epithelial properties such as metabolic activity,
mucus production, and ciliary movement and has a life-span of up to one year [42,45,60,61].
In addition it was demonstrated through a study combining weight of evidence from
proteomics, gene expression, and protein activity that this system is physiologically more
suitable for repeated exposures to toxicants [46]. Therefore, after completing the assess-
ment of the acute (24 h) cytotoxicity of CeO2-NPs, we proceeded to study the subchronic
(3 months) cytotoxicity of repeated exposures to sublethal doses of CeO2-NPs in the 3D
PHAE model.

In order to reproduce a more realistic exposure scenario, maintaining the conditions
of temperature and humidity in physiological levels needed in the cell culture, the Vitrocell
Cloud system coupled to an AeroNeb Lab nebulizer was used for exposure of the cells
to CeO2-NPs. Other authors have already demonstrated the suitability of this system
to reproduce an inhalation scenario and have demonstrated that A549 cells in vitro are
able to uptake similar concentrations of CeO2-NPs as those taken up in vivo [62]. During
the exposures, the Vitrocell Cloud system produced a very homogeneous deposition of
CeO2-NPs onto the cells similar to previous studies [48]. Thus, a multidose experiment
was performed applying three sublethal doses of CeO2-NPs (1, 10, and 100 µg/cm2) on the
apical inserts every two weeks for three months. After three months of exposure to CeO2-
NPs, the barrier integrity of the reconstituted PHAE model showed no detrimental effects,
as evidenced in the TEER measurement. TEER values underwent variations throughout
the three months (ranging 309–760 Ω*cm2), due to the constant cellular regeneration as
a result of a differentiated and metabolically active epithelium composed of several cell
types [44,63]. Despite the changes in cell cohesion values, TEER values always exceeded
300 Ω*cm2 during the exposure time. These values agree with others studies where
researchers reported TEER values around 600 Ω*cm2 [61,64], or lower [65,66].

Based on the cell viability resazurin assay, exposure of up to 70 days to 1 to 100 µg/cm2

of CeO2-NPs showed no cytotoxic effects on the PHAE model. Similarly, up to 75 days
exposure to the same concentrations of CeO2-NPs did not affect the plasma membrane
integrity of the PHAE model. However, after 80 days of exposure to 100 µg/cm2 of CeO2-
NPs, the viability of the PHAE model started to decrease. After 90 days of exposure to
the same concentration of CeO2-NPs, the integrity of the plasma membrane of the PHAE
model was compromised. The late toxic response observed in the PHAE model could
be related to the protective effect of mucociliary clearance. Mucociliary clearance is a
defense mechanism that protects the pulmonary system from harmful inhaled agents,
including NPs. This was already reported by other authors [67] who compared the toxicity
of CeO2-NPs on isolated Calu3 and A549 cells with the toxicity of the same particles on a
PHAE model and reported that toxicity was lower in the later system, possibly due to the
mucociliary defense present in the 3D model. This could indicate that the cell lines did not
accurately reflect the toxic effect of the nanoparticles because they lacked the complexity of
the airway tissue.

Despite the protective effect of mucociliary clearance of the PHAE model, the repeated
and long-term exposure to CeO2-NPs possibly favored the internalization of relatively high
quantities of CeO2-NPs, collapsing the protective system and giving rise to deleterious
effects. Thus, exposures of up to 45 days to 1 to 100 µg/mL of CeO2 NPs did not induce
inflammatory responses in the PHAE model. However between 60 and 75 days of exposure
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to 100 µg/mL, CeO2-NPs induced TNFα and IL-1β responses. TNFα and IL-1β are pro-
inflammatory cytokines that activate the immune system and participate in the acute
inflammatory response after exposure to a toxic agent in the pulmonary system [68]. In our
study, inflammatory responses were activated after subchronic exposure to CeO2 NPs and
prior to the decrease of plasma membrane integrity and cell viability at day 90 of exposure.
As for cell viability and plasma membrane integrity, the late toxic inflammatory response
in the PHAE model could be related to the protective effect of mucociliary clearance. The
decrease in TNFα and IL-1β levels at day 90 of the exposure should be related to the
decrease in cell viability and not due to the return to homeostasis.

Other studies have included long-term exposures (up to one month) of PHAE models
to other compounds [61], demonstrating the suitability of this in vitro model as a feasible
alternative to reproduce in vivo conditions and pathing the way for longer subchronic
in vitro studies. Despite the fact that long-term (two years) CeO2-NPs exposures have
been already reported in vivo [69], to the best of our knowledge, this is the first time that
subchronic toxicity in vitro of CeO2-NPs (up to three months) have been reported. Our
study confirmed the usefulness of 3D reconstituted PHAE models for long-term exposures
to NPs and has helped to elucidate the subchronic effects of CeO2-NPs in the pulmonary
epithelium. Additionally, our study has highlighted the importance of assessing the long-
term effects of repeated exposure to NPs. As a recommendation for future acute and
subchronic toxicity studies, a detailed dose metric analysis [70] should be performed in
parallel with the in vitro assays in order to determine the expected delivered dose of NP
along the exposure time, thereby corroborating biological findings and helping to support
the in vitro to in vivo extrapolation of the data.

5. Conclusions

To conclude, acute toxicity assays based on cell lines represent useful tools for high-
throughput screening of ENMs. In the case of CeO2-NPs, sensitive parameters (such as
apoptosis–necrosis or ROS levels) are needed to elucidate the underlying mechanisms
of toxicity. Nonetheless, the use of physiologically relevant cellular models, such as the
reconstituted PHAE models exposed at the ALI to aerosolized NPs, represent a more
realistic in vitro approach to studying the cumulative effects of long-term exposure to low
doses of airborne contaminants such as CeO2-NPs. Thus, these in vitro systems that better
mimic lung tissue and reproduce realistic exposure conditions represent valuable tools
for the hazard assessment of NPs. In this particular work, we have shown that CeO2-NPs
show a reduced toxicity in acute exposure. However, in subchronic exposures cytotoxic
and inflammatory responses were observed in the human airway epithelial model after
60 days of exposure to CeO2-NPs. These results suggest that acute toxicity approaches may
underestimate the toxicological effect of some ENMs.
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