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of pharmacological space via adversarial 
auto‑encoder model for facilitating 
kinase‑centric drug development
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Abstract 

Predicting compound–protein interactions (CPIs) is of great importance for drug discovery and repositioning, yet still 
challenging mainly due to the sparse nature of CPI matrixes, resulting in poor generalization performance. Hence, 
unlike typical CPI prediction models focused on representation learning or model selection, we propose a deep neu-
ral network-based strategy, PCM-AAE, that re-explores and augments the pharmacological space of kinase inhibitors 
by introducing the adversarial auto-encoder model (AAE) to improve the generalization of the prediction model. To 
complete the data space, we constructed Ensemble of PCM-AAE (EPA), an ensemble model that quickly and accu-
rately yields quantitative predictions of binding affinity between any human kinase and inhibitor. In rigorous internal 
validation, EPA showed excellent performance, consistently outperforming the model trained with the imbalanced 
set, especially for targets with relatively fewer training data points. Improved prediction accuracy of EPA for external 
datasets enhances its generalization ability, making it possible to gracefully handle previously unseen kinases and 
inhibitors. EPA showed promising potential when directly applied to virtual screening and off-target prediction, exhib-
iting its practicality in hit prediction. Our strategy is expected to facilitate kinase-centric drug development, as well as 
to solve more challenging prediction problems with insufficient data points.
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Introduction
Determining the compound–protein interactions (CPI) 
is a key aspect in drug development, contributing to 
both understanding complicated mechanism of action 
(MoA) of drugs and discovering novel inhibitors of pro-
teins [1]. In particular, for the homologous proteins with 
high genetic conservation and similar structures (e.g. 
protein kinase families), it is necessary and challenging 
to detect the protein-inhibitor profiling which may bring 

therapeutic effects or side effects. However, the number 
of activity matrixes is still sparse due to the time-consum-
ing and cost-intensive efforts for establishing and con-
ducting biological assays [2]. To increase the efficiency of 
this process, various structure- and ligand-based compu-
tational approaches have been developed for pre-screen-
ing [3, 4], yet their predictive power are limited in many 
cases partly because their accuracy depends heavily on a 
decent number of active compounds towards the targets 
[5].

Recently, deep learning (DL) has achieved remarkable 
predictive power by extrapolating the pattern from large 
amounts of data in a diverse range of applications such 
as natural language processing, speech recognition, and 
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computer vision [6]. Encouraged by such success and 
rapid growth of biomedical data, increasing interest in 
applying DL methods to accelerating drug development 
has spawned many efforts in this field, such as protein 
structure prediction, retrosynthetic planning, and de 
novo drug design with desirable properties [7–9]. With 
the accumulation of CPI-related databases, DL tech-
niques have also been recruited to improve the accuracy 
of CPI prediction. Although the CPI problem has been 
considered as a binary classification task in a number 
of studies, such as DeepDTI and DeepConv-DTI and 
GraphDTI [10–12], given that binding affinity represents 
CPI strength, many studies have been devoted to devel-
oping regression models to predict binding affinity, for 
instance, DeepDTA uses a convolutional neural network 
(CNN) fed with the protein sequences and compound 
SMILEs to extract CPI patterns [13], while GraphDTA 
represents compounds as graphs to train Graph CNN 
(GCN) models [14]. Such methods mainly focus on novel 
algorithm establishment and representation exploration, 
nevertheless, even though experimental uncertainty and 
the sparseness of CPI annotations set limits for DL mod-
els greatly [15], studies on improving the quality of train-
ing data are few.

One natural way to overcome the aforementioned 
problems is data augmentation for CPI annotations. Spe-
cifically, the binding affinity prediction task with a lack of 
activity annotations can be considered as an imbalanced 
regression problem, where the data have imbalanced dis-
tributions and certain target values were fewer observed, 
hindering the predictive performance of the regression 
models [16]. The approaches addressing this problem 
mainly include resampling continuous observations for 
data balancing (e.g. SmoteR) and proposing evaluation 
metrics that take varying importance of observations into 
consideration [17, 18]. A recent study proposed another 
straightforward strategy to rise to the challenge, which 
labels additional training data points using established 
prediction models, then trains a standard prediction 
model with augmented datasets [19]. All these studies 
emphasize data that are more balanced would enhance 
the generalization ability of the CPI model.

Recent studies on data augmentation based on genera-
tive models have led to a clearer margin among different 
data categories [20–22], inspiring us to utilize the gen-
erative models for tackling the imbalanced regression 
problem of CPI by generating samples with activity anno-
tations. Thus, we proposed two strategies, PCM-GAN 
and PCM-AAE, to expand the data space of the protein 
kinase-inhibitor datasets, which was then employed for 
predictor construction to predict kinase protein-inhibitor 
interaction. To further improve the predictive accuracy, 
we proposed Ensemble of PCM-AAE (EPA) to integrate 

the data space by random forest (RF), and demonstrated 
its superiority by evaluation with internal and external 
datasets.

Methods
Data collection, preprocessing and analysis
Six kinase bioactivity datasets were collected for gener-
ating and validating the prediction models: Christmann-
Franck’s dataset [23], Kinase SARfari [24], PKIS1 [25], 
MRC (MRC PPU, https://​www.​ppu.​mrc.​ac.​uk/), Metz’s 
dataset [26] and Davis’s dataset [27]. The numbers of 
molecules and kinases in the datasets are summarized 
in Table  1. The proteins in the datasets were grouped 
by their Uniprot Identifier, while compounds were inte-
grated based on their canonical SMILEs. The sequence of 
the kinase domain was extracted from the full sequence 
of each kinase.

In previous work, Christmann-Franck et  al. have 
presented the activity standardization protocol and 
developed proteochemometric models for activity pre-
dictionn. We followed their work and, based on which 
we trained models with Christmann-Franck’s dataset 
and validated their performance on the other 5 data-
sets. Given that the latter 5 datasets are heterogeneous 
and obtained by various biological methods, we referred 
to the activity standardization protocol proposed by 
Christmann-Franck et al. to preprocess the data: (1) the 
data with units of pKi, pKd, Kd, Ki, and POC (Percent of 
Control) were selected to ensure the data employed for 
model building represent the compound activity against 
kinases rather than the cell lines; (2) then the selected 
data were standardized with rules reported previously 
[23]. Specifically, the concentration units of all measures 
were unified to nanomolar, where Ki, Kd and POC values 
were then − log10 transformed to pKi/pKd; (3) to remove 
duplicates, the coefficient of variation (CV) of repeated 
measurements were calculated for each dataset. If the 
CV value for repeated measurements is over 0.05, then 
the measurements were removed, otherwise one of the 
repeated measurements was kept randomly. The cutoff 
to distinguish active compounds from inactive ones was 

Table 1  Statistics of datasets

Datasets Compounds Kinases Data points

Christmann-Franck’s 2000 196 85,958

Kinase SARfari 9977 20 20,508

PKIS1 354 187 66,197

MRC 217 116 27,154

Metz’s 1450 161 99,480

Davis’s 70 336 6642

https://www.ppu.mrc.ac.uk/
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set at 6 (corresponding to the measured value of 1 µM, a 
commonly used threshold).

Data representations
Vector embeddings of compounds were obtained 
through Mol2Vec model [28]. The compound corpus was 
obtained from ZINC database version 15 [29], where the 
canonical SMILES representation of each compound was 
transformed to a list of ordered atom identifiers as a “mol-
ecule sentence” through Morgan algorithm. To embed 
the “molecule sentence” of a specific molecule, each atom 
identifier was converted to a 100- or 300-dimensional 
vector by skip-gram, and every molecule was represented 
as the vector sum of its atom identifiers.

Vector embeddings for proteins were produced with 
ProtVec model [30]. The protein corpus of 554,241 
sequences was downloaded from Swiss-Prot [31]. Each 
protein sequence was represented as three 3-g sequences. 
A total of 1,662,723 (554,241 × 3) sequences were gener-
ated for Protvec model training, where each 3-amino acid 
phrase was converted to a 100 or 300-dimensional vec-
tor. For each protein-compound pair, we explored three 
different combination methods of compound and protein 
sequence embeddings (Additional file 1: Fig. S1a). As the 
results shown in Additional file 1: Fig. S1b, Combination 
2 (concatenating 300-dimensional compound embed-
dings with the sum of three 300-dimensional 3-g protein 
sequence embeddings) showed slightly better perfor-
mance than Combination 1 (concatenating 100-dimen-
sional compound embeddings with the sum of three 
100-dimensional 3-g protein sequence embeddings) 

and Combination 3 (concatenating 300-dimensional 
compound embeddings with the concatenation of three 
100-dimensional 3-g protein sequence embeddings). 
Therefore Combination 2 was selected for the subsequent 
feature extraction of all datasets.

Baseline model building
Random forest (RF) and deep neural network (DNN) 
regressors are implemented in Scikit-learn. To select the 
most suitable combination of parameters, grid search was 
performed. In the final RF model, the number of estima-
tors was set at 500 and the maximum number of features 
was set at 200. In the final DNN model, three hidden lay-
ers are activated by rectified linear unit (ReLU), where 
each layer is comprised of 200 neurons. The output layer 
is activated by the sigmoid function. ADAM optimiza-
tion algorithm is used for weight optimization [32].

Architecture of PCM‑GAN and PCM‑AAE
Generally, GAN trains generator (G) and discrimina-
tor (D) jointly until G generates fake data that match the 
distributions of real data and these fake data cannot be 
distinguished from real data by D [33]. In PCM-GAN 
(Fig. 1a), noise input randomly sampled from normal dis-
tribution was fed to the generators, generating the data to 
fool the discriminator, which was trained to distinguish 
the real positive data (− log affinity ≥ 6) and the generated 
data. Based on auto-encoder and GAN, AAE is jointly 
trained by minimizing the reconstruction error of auto-
encoder and the adversarial loss for matching the aggre-
gated posterior distribution of outputs from the encoder 

Fig. 1  The architecture of a PCM-GAN and b PCM-AAE
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to the stochastic prior distribution [34]. Similar to the 
typical AAE model, PCM-AAE architecture (Fig.  1b) 
employed the section of GAN to match the distribution 
of the latent layer vector of the auto-encoder model to 
generate data by generator (generated latent). The input 
of the encoder was the positive data in the training set, 
and the input of the generator was random noises with 
normal distribution. In the end, a specific sampled distri-
bution was firstly converted to a positive latent vector by 
the generator, and the resultant vector was then fed into 
the decoder to output new positive PCM2vec data.

It is noteworthy that the continuous labels corre-
sponding to the generated samples were learned by the 
generative model, which means that in our models, the 
dimension of the input training data is 601 [600-dimen-
sional feature vector + 1-dimensional experimental 
measurement (binding affinity)], and the outputs of the 
generator of GAN or of the decoder in AAE is the con-
catenation of 600-dimensional new feature vector data 
point and 1-dimensional label (Additional file 1: Fig. S2). 
Obviously, whether the generated 1-dimensional label 
distributed within a reasonable range partially reflects 
whether the generative models were trained successfully 
for generating valid samples. Therefore, during the train-
ing process, the ratio of generated labels should distrib-
ute between 6 and 11 (corresponding to the activity of 
0.01 nM to 1 µM). Pseudocode for PCM-AAE is provided 
in Additional file 1: Algorithm S1.

PCM-GAN and PCM-AAE were established in Ten-
sorflow (version 1.3.0) [35]. Fully connected layers were 
adopted in all modules. Models were trained with Kull-
back–Leibler (KL) cost annealing. ADAM with a learn-
ing rate of 0.01 was used as the optimization algorithm 
during the training for both generator and discriminator. 
The epoch number was set at 50, and the batch size was 
set at 64.

PCA and t‑SNE algorithms for data exploration
To explore the data space, the high-dimensional embed-
dings mentioned above were firstly reduced to 50 dimen-
sions using principal component analysis (PCA) [36], a 
traditional technique to orthogonal-linearly transform 
data to their low-dimensional representatives. The top 
50 principal components were selected, with a cumula-
tive explained variance percentage of 89.65% (Additional 
file  1: Fig. S3a). We then mapped the 50-dimensional 
representations to two dimension by Barnes–Hut t-dis-
tributed Stochastic Embedding (t-SNE) algorithm [37], 
a popular method that captures the non-linear relation-
ship of data. The t-SNE algorithm considers that samples 
are Gaussian-distributed in high-dimensional space while 
Student t-distributed in low-dimensional space, it learns 
the transformed embeddings with minimum information 

loss, and minimizes the KL divergence of sample dis-
tributions in high and low dimensions simultaneously 
[38]. PCA and t-SNE were both implemented by Python 
Scikit-learn [39].

Balancing methods
When comparing our strategy with existing methods for 
imbalanced regression problem, random undersampling 
was implemented by Python Scikit-learn with Rando-
mUnderSamp (RUS) algorithm [37], while oversampling 
was performed using SmoteR as described previously 
[18].

Model evaluation
Here, we developed proteochemometrics (PCM) model 
to predict compound-kinase interactions. As previously 
reported, PCM model is a typical pair-input method 
where the test set shares components with the training 
set and thus tend to perform much better than those that 
do not [40]. Hence it is necessary to distinguish test pairs 
based on their component-level overlap when evaluating 
performance. To this end, a four-level (CV1–CV4) valida-
tion strategy has been proposed and broadly used for rig-
orous validation on PCM model [41], which was adopted 
for our model evaluation. CV1 assesses the model per-
formance on unknown compound-kinase pairs, where 
compounds or kinases might have already been present 
in the training data. CV2 tests the model performance on 
new kinases by excluding kinases present in the respec-
tive training data. Accordingly, CV3 evaluates the model 
on new compounds, and CV4 on unknown kinases and 
compounds.

The detailed method to split the dataset was illus-
trated in Fig.  2. In CV1, the datasets were randomly 
partitioned into 80% CV1 training set and 20% test set, 
where the numbers of negative samples and positive 
samples are equal. For CV2, all kinases in CV1 datasets 
were split into two subsets, then the CV1 training data 
was extracted from one subset (kinase A, B, C, D, E) as 
CV2 training set, and the CV1 test data was extracted 
from the other subset (kinase F, G, H, I, J) as CV2 test 
set. Similarly, for CV3, all compounds were split into 
two subsets (compound 1, 2, 3, 4, 5 and compound 6, 7, 
8, 9, 10), where one subset (compound 1, 2, 3, 4, 5) rules 
out the test data as CV3 training set, and the other sub-
set (compound 6, 7, 8, 9, 10) excludes the training data 
as CV3 test set. For CV4, a set of inhibitors (compound 
1, 2, 3, 4, 5) in CV2 training set were extracted as CV4 
training set, another set of inhibitors (compound 6, 
7, 8, 9, 10) in CV2 test set were extracted as CV4 test 
set. It should be noted that at each CV level, the sam-
pling of kinases or inhibitors was iterated until the ratio 
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of training data to test data was closed to 4:1 and the 
numbers of positive samples and negative samples in 
the training set and test set were nearly equal.

As a regression problem, prediction error was meas-
ured using Pearson’s correlation coefficient (PCC), 
mean absolute error (MAE) and mean squared error 
(MSE) between experimental measurements and pre-
dicted values to assess model quality. Area under ROC 
(AUC), F1 score, recall score and precision score were 
also calculated to characterize the model capability of 
distinguishing different classes of the samples.

Results and discussion
Baseline methods comparison
To assess how effective the strategy we proposed, 
we first trained the baseline predictor which was fed 
with an imbalanced dataset (non-balanced model/NB 
model) using three popular machine learning algo-
rithms: random forest (RF), XGBoost [42], and deep 
neural network (DNN). To speed up the convergence 
of DNN, each feature was standardized with zero 
mean and unit variance prior to feeding feature vec-
tors. Regression accuracy of the models was evaluated 

Fig. 2  Four-level cross validation. Blue: training set, Orange: test set
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by metrics of MAE and PCC, while classification accu-
racy was evaluated by the metrics of AUC and sensi-
tivity. As expected, DNN models fed with standardized 
data (ST-DNN) achieved more rapid convergence after 
30 iterations than those fed with non-standardized 
data (NST-DNN), with RMSE of 0.06 and 0.17 respec-
tively. Moreover, the model performance shown in 
Additional file  1: Fig. S4 suggests that (1) in CV1, the 
ST-DNN model evidently surpasses the other methods 
for all metrics considered; (2) in CV3, RF and ST-DNN 
showed comparable performance that outperformed 
XGboost; (3) in CV2 and CV4, RF models demon-
strated the best performance for metrics of PCC, MAE 
and AUC; (4) from CV1 to CV4, the F1 score of ST-
DNN models were far more superior to that of other 
models on average, indicating the stronger capability 
of ST-DNN to capture positive samples. Overall, con-
sidering that the ST-DNN predictor was of the highest 
quality among the models evaluated in the case of the 
training dataset in this work, it was employed as the 
baseline model in further investigation. It should be 
noted that further fine-tuning might improve the pre-
diction power of this baseline method.

Implementation and training of PCM‑GAN and PCM‑AAE
The key assumption in this work is that the more well-
portrayed the positive sample space is, the stronger the 
generalization ability of the predictive model. To verify 
this hypothesis, two popular generative models based 
on DNN architectures, Generative Adversarial Network 
(GAN) and Adversarial Auto-encoder (AAE), were intro-
duced to generate novel PCM2vec representations, so 
that the positive sample space would be enlarged and 
alienate from the distribution of the negative samples. 
The resultant models were termed PCM-GAN and PCM-
AAE respectively (Fig. 1).

As shown in Additional file 1: Fig. S5, we plotted errors 
of PCM-GAN models against iterations. When training 
PCM-GAN, we found that it is difficult for the generator 
and the discriminator to converge simultaneously, that is, 
one side was completely victorious while the other side 
continuously had a large error at any arbitrary point. 
Interestingly, PCM-AAE can achieve a win-win situa-
tion for both discriminator and generator with converged 
loss during the confrontation (Fig. 3a). Previous research 
showed that batch-normalization and dropout layer are 
crucial to GAN and AAE training on different datasets 

Fig. 3  a Loss plot of PCM-AAE. b Performance comparison between non-balanced model (NB) and reconstructed model with augmented data 
from generators trained by PCM-AAE. Statistical significance of the difference between the performance of NB and PCM-AAE was determined by 
paired t-test. ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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[34]. In our model settings, the batch-normalization 
and drop-out used in all layers of auto-encoder did help 
convergence of PCM-AAE but not PCM-GAN training. 
In addition, it was difficult for PCM-GAN to generate 
valid 1-dimensional labels, while the generator of PCM-
AAE could generate more than 90% valid labels after it 
was trained for 1000 iterations. A potential explana-
tion is that compared with 601-dimensional data, it is 
easier for PCM-AAE to capture the distribution of low-
dimensional data resultant by auto-encoder; or that auto-
encoder is good at learning representation that is more 
effective in a low dimensional space [43].

Next, we assessed whether the generated samples from 
PCM-AAE are useful for improving the performance of 
NB models trained above. PCM-AAE was firstly trained 
with the CV4 training set which was sampled from the 
CV2 training set and had no overlap with the test sets in 
CV1–CV4. Here, 24 generators were randomly saved. 
Then a certain number of generated samples from the 
generators were added to the training set of CV1–CV4 to 
train DNN predictors again, which were used to predict 
the test set of CV1–CV4 respectively. To compare the 
performance of the balanced model by PCM-AAE with 
non-balanced (NB) models, 20 NB models and 20 bal-
anced models were trained at each CV level respectively 
(Additional file 1: Fig. S6). Overall, the models with data 
complemented by the generators showed more superior 
performance than the NB models, especially, the model 
obtained by the best AAE (AAE #14 in Additional file 1: 
Fig. S6) showed significant improvement compared with 
the NB model in CV2–CV4 (Fig. 3b).

Exploration of PCM‑AAE data space
To illustrate the effectiveness of PCM-AAE for data aug-
mentation, the PCM2vec was mapped to low-dimen-
sional space by t-SNE algorithm, so that the alteration of 
the data space could be demonstrated by data visualiza-
tion. However, directly applying t-SNE to a large-sized 
training set to reduce 600-dimensional PCM2vec is 
rather inefficient, therefore PCA was used prior to t-SNE 
to accelerate this process (Additional file 1: Fig. S3b).

We tracked the alteration of data space along with 
training of PCM-AAE. Specifically, the positive training 
data of PCM-AAE in CV4, positive samples in the CV4 
test set, and the generated data were mapped to low 
dimension every 1000 iterations during the training pro-
cess (Fig.  4a). Initially, PCM-AAE data space was com-
pletely separated from the real dataset, then the “shape” 
of generated data space became similar to the real data 
space, and eventually, with the convergence of the model, 
the generated data points became discretized to cover 
and expand the real data space gradually.

Subsequently, the data space of PCM-AAE was com-
pared to that of the NB model to investigate the reason 
why PCM-AAE could reduce the overfitting of NB mod-
els. In terms of the NB model (Fig.  4b), the data space 
of the training set cannot cover that of the test set for 
both negative data and positive data, explaining why 
NB models cannot fit the test data well. Such overfit-
ting also occurs more or less in CV1–CV3, which can-
not be reduced by tuning the parameters of the models 
(Additional file 1: Table S1). In addition, it seems difficult 
for the NB models to distinguish positive samples from 
negative samples in CV4 test set. This might be ascribed 
to the imbalanced training set, which resulted in the ten-
dency of NB model to predict data as negative samples. 
To analyze the PCM-AAE data space, generated samples 
from the best generator mentioned above (AAE #14) 
were combined with the dataset of NB model and visual-
ized. As presented in Fig. 4c, although the generated data 
had relatively less overlap with the real positive data in 
the presence of negative samples, these novel data points 
changed the distribution of the data space, yielding more 
overlap between training set and test set as well as more 
separated distribution of the positive and negative sam-
ples. Encouragingly, the conclusions were consistent 
when the training set and the test set were randomly 
regenerated and subjected to the analysis above. The 
results partially indicated the intuitive idea of PCM-
AAE, that is, for the imbalanced dataset, the data distri-
bution can be changed by expanding the data space, so 
as to improve the generalization ability of the prediction 
model.

As described above, the 24 generators derived from 
the PCM-AAE model were used to balance the training 
set followed by reconstructing the predictors, however, 
the degrees of improvement on predictors’ performance 
were varying. We assumed this was possibly owing to the 
diverse data space generated by different generators. On 
that account, five generators were randomly selected to 
generate 500 data points respectively, which were then 
combined with the real positive data to explore the rela-
tionship between different AAE spaces and the real data 
space (Fig.  4d). As expected, the generated data points 
overlapped largely with real positive data, and the distri-
bution of data from different AAEs augmented the real 
data space in a complementary way.

Training and evaluation of EPA
As described above, a single generator might not be 
enough to complete data space in every case, we pro-
posed an ensemble strategy, termed Ensemble of PCM-
AAE (EPA), to enable the different generated spaces to be 
complemented by each other and thus give a more accu-
rate and robust prediction. The training regime of EPA is 
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shown in Fig.  5a. Firstly, we split the dataset as a train-
ing set (n data points) and a test set at CV1–CV4 levels 
respectively. After that, for each generator, the training 
set was complemented until it balanced, then the over-
sampled set was fed into the DNN predictors (n), which 
were used to re-predict the original training set. As novel 
representations of the original training set, the yielded 
predictions (n × m dimensions) were then utilized to 
train the RF model. At the end, the DNN predictors (m) 
coupled with one RF model produced predictions on the 
corresponding test sets to evaluate the effectiveness of 
this ensemble strategy. The procedure mentioned above 
was repeated 20 times for robustness. To be fair, ENB 
models (ensemble of non-balanced models) with imbal-
anced training datasets were also trained, evaluated and 
selected in the same manner as EPA.

Since the essence of PCM-AAE and EPA could be con-
sidered as oversampling approaches to solve the imbal-
anced regression problem, EPA model was not only 
compared with ENB model and PCM-AAE, but also 
with classical sampling methods entailing SmoteR and 

random undersampling (RUS) algorithms. Encourag-
ingly, as shown in Fig.  5b and Additional file  1: Fig. S7, 
EPA consistently outperformed other methods from CV1 
to CV4 levels. As expected, EPA was more robust than 
PCM-AAE.

In order to rule out the possibility that the superior-
ity of EPA comes from certain similarities of kinase 
sequences or compounds from training set and test set 
so that EPA learns the distribution characteristics of rep-
resentations too easily, we conducted additional studies 
from CV2 to CV4 to ensure compounds and proteins are 
strictly “unseen”. In CV2, if any protein sequence from 
the test set has an identity of more than 25% with any 
sequence in the training set, it was removed from the test 
set. In CV3, if any compound from the test set has Tani-
moto similarity of more than 80% to any compound in 
the training set, it was removed from the test set. In CV4, 
both compounds and sequences in the test set were pro-
cessed likewise. Subsequently, the performance of ENB 
and EPA was re-evaluated on the datasets processed as 
above and the results are shown in Additional file 1: Fig. 

Fig. 4  Visualization by t-SNE of the distributions of generated sample, training set and test set. a Changes of data distribution during training of 
PCM-AAE. b Distribution of the training data for NB model. c Distribution of training set augmented by PCM-AAE. d Distribution of generated data 
from different generators trained with AAE
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S8, EPA proved to be significantly better than ENB even 
under strict conditions.

To further examine the superiority of EPA model over 
ENB, assessments were conducted on five external inde-
pendent datasets. It is noteworthy that the data points 
presented in the external sets were removed from the 
original training set (before the split in cross-validation 

folds) when constructing validation datasets. Apart from 
assessing whether EPA fits the set better as a regression 
model via PCC, MAE and MSE, we also employed met-
rics of AUC (area under ROC), F1 score, precision and 
recall with the cut-off of 6 (corresponding to the con-
centration of 1 µM) to evaluate the ability of EPA to deal 
with classification problems. The results are summarized 

Fig. 5  a Training process of EPA. The training set (“n” and “m” represent the number of data points and models respectively) was firstly augmented 
by m AAE models followed by training m DNN models. Then DNNs were used to re-predict the training set, generating n × m data points 
which were fed into RF model. Finally, the test set was predicted by the trained DNNs and RF model to evaluate the performance of EPA. b 
The performance of EPA compared with ENB, SmoteR and random under sampling (RUS). Statistical significance of the difference between the 
performance of EPA and ENB was determined by paired t-test. ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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in Table  2. Overall, the performance of EPA was more 
or less more favorable than ENB. Interestingly, in terms 
of PKIS1 dataset, neither ENB nor EPA could achieve 
enough accuracy. We supposed this might be owing to 
data inconsistency among datasets that derived from 
different biochemical assays. To verify this, the PCCs 
between the shared data points from every two datasets 
were calculated (Additional file 1: Fig. S9). As expected, 
PKIS1 dataset did show a poor consistency to the train-
ing set with a PCC of 0.52, while other datasets that are 
more relevant to the training set yielded better predic-
tions. Additionally, we found the increased classification 
ability of EPA compared with ENB seemed to arise from 
the improvement of recall score, indicating that the capa-
bility of EPA to capture positive samples is stronger than 
ENB

 

Applicability of EPA on kinase profile prediction and virtual 
screening
Detecting off-target effects or the kinase profiling of 
kinase-specific inhibitors is vital for portraying the attri-
bution of drugs. To quantify the model’s capability to pre-
dict off-target effects of compounds, the selectivity score 
was defined as the ratio of the number of hits to that of 
all tested kinases [44]. Intuitively, for a given inhibi-
tor, a lower selectivity score indicates better selectivity. 
Hence, we re-predicted the training set by EPA, gener-
ating predicted selectivity of each compound for corre-
lation analysis with the compound selectivity measured 
by experiments. Another two sets, Davis’s and Metz’s, 
with relatively complete kinase panels for different com-
pounds, were also analyzed in the same way. As presented 
in Fig. 6a, experimental selectivity scores from the 3 data-
sets correlate closely with corresponding predictions by 
the EPA model, with Spearman correlation coefficient 

of 0.95, 0.89, and 0.74 respectively, which again outper-
formed ENB (Additional file 1: Fig. S10). To further vali-
date whether EPA could accurately predict subfamily 
selectivity, Li’s dataset that contains the kinase profile of 
five inhibitors absent from the datasets we employed so 
far was analyzed. Meanwhile, OR (odds ratio) [45] was 
also introduced to quantify subfamily selectivity. The 
major targeted subfamilies of the compounds predicted 
by EPA accord well with experimental results (Fig. 6b).

Another important approach to drug discovery is 
structure-based virtual screening. Given the desirable 
performance of EPA in CV3, we examined its effective-
ness to recall active compounds for a given kinase and 
the potential of becoming an efficient alternative to con-
ventional structure-based virtual screening methods. 
Firstly, we analyzed the training set grouped by targets. 
In each subset, PCC and MAE were used to assess the 
predictive power of the regressor. Theoretically, EPA can 
address the machine learning problem even when train-
ing data were insufficient. Thus, we next analyzed the 
relationship between model performance and data com-
position including the number of data points and degree 
of data imbalance. As presented in Fig.  7, on the same 
training set, the number of well-fitted kinases by EPA was 
far more than that of ENB, especially for kinases with few 
or imbalanced data points.

Next, we delved into the kinases in Metz’s dataset 
to further investigate the capability of ENB and EPA to 
screen active compounds (Fig.  8a and Additional file  1: 
Fig. S11). The set was divided into two subsets, where 
one subset included the kinases presented in the train-
ing set (presented as circles) and the kinases in the other 
subset were absent from the training set (presented as 
squares). Although both ENB and EPA generated consid-
erable predictions to most kinases that had been seen by 
the model, EPA topped ENB on most kinases that were 

Table 2  Summary of ENB and EPA performance on external datasets

The bold number denotes the better result between ENB and EPA for predicting the corresponding external dataset

Dataset Method Regression metrics Classification metrics

PCC MAE MSE AUC​ F1 score Precision Recall

Metz ENB 0.47 0.51 0.49 0.81 0.45 0.39 0.54

EPA 0.54 0.44 0.39 0.84 0.49 0.41 0.61
Davis ENB 0.38 1.37 0.90 0.67 0.58 0.77 0.46

EPA 0.42 1.10 0.79 0.69 0.64 0.76 0.55
PKIS1 ENB 0.29 0.64 0.59 0.75 0.25 0.21 0.30

EPA 0.33 0.56 0.44 0.79 0.26 0.22 0.32
KinaseSafari ENB 0.33 1.1 2.14 0.68 0.56 0.74 0.45

EPA 0.44 1.01 1.72 0.73 0.61 0.77 0.51
MRC ENB 0.38 0.83 1.14 0.68 0.33 0.53 0.24

EPA 0.45 0.78 0.99 0.74 0.38 0.54 0.30



Page 11 of 15Bai and Yin ﻿Journal of Cheminformatics           (2021) 13:95 	

previously unseen by the models, further suggesting the 
effectiveness of our strategy. Encouraged by these results, 
we evaluated EPA with 26 kinases in the Directory of 

Useful Decoys-Enhanced (DUD-E) database [46] to see if 
EPA discriminates true binders from decoy molecules. As 
shown in Fig. 8b, EPA achieved superior predictions over 

Fig. 6  a Scatterplots of EPA-predicted selectivity score and experimental selectivity score of inhibitors in various sets. b Comparison of 
experimental odd ratio (OR) and EPA-predicted OR for five drugs
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ENB again with an average AUC of 0.77, which is quite 
high for a non-docking-based predictive method so far to 
the best of our knowledge. In addition, the performance 
of EPA was comparable with classical docking algorithms 
including GOLD, Glide, SurFlex, and FlexX in terms of 
BEDROC scores at alpha of 80.5 based on the benchmark 
work of Chaput et al. [47] (Fig. 8c).

Overall, EPA shows superior performance com-
pared with ENB, yet it also has its limitations. Firstly, 
like most CPI models, EPA is unable to address the 
challenge of activity cliff and thus cannot be applied 
to compound structure optimization, which may be 
overcome by more chemically- and biologically-rele-
vant representations of compounds or proteins. Sec-
ondly, frequent mode collapse of GANs [48] probably 
makes the data points generated by AAE not diversified 
enough to achieve effective data augmentation, which 
has been partially resolved by our ensemble strategy, 
and novel GAN framework such as WGAN, VEEGAN 

and VirtualGAN [49–51] may contribute to additional 
improvement. Thirdly, the EPA model relies on the 
ensemble of multiple PCM-AAE models, making it not 
convenient enough to train and use under a limited 
computational budget, a lighter yet promising network 
may be obtained via ensemble knowledge distillation or 
model compression in future work [52] .

Conclusions
To conclude, we devised EPA, a framework against 
imbalanced regression problem and applied it to 
improving the predictive power of proteochemomet-
rics (PCM) model which focused on kinase-compound 
binding affinity prediction. We trained a number of 
AAE models (PCM-AAE) using active compounds to 
generate diverse feature space then made an ensemble 
to augment and balance global data space. This strategy 
not only outperformed classical non-balanced PCM 
models at rigorous fourth cross-validation level, but 

Fig. 7  The ratio of positive samples to negative samples for each kinase plotted against total number of data points in training set, based on the 
predictions by ENB and EPA
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also showed better and more robust performance than 
classical methods against imbalanced regression tasks. 
We envision that EPA is a proof-of-concept implemen-
tation of a generative model in exploring PCM data 
space, which is expected to be applicable in various 
drug discovery scenarios where abundant training data 
are not available.
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S5. Lossplot of PCM-GAN which a didnot use batch-normalization (BN); 
bused BN in the generator. FigureS6. Performancecomparison among 
NB model (non-balanced model) and 24 reconstructed models fedwith 
data augmented by 24 generators respectively. Figure S7. Performance 
comparison between PCM-AAEand EPA. Statistical significance of the dif-
ference between theperformance of EPA and PCM-AAE was determined 
by paired t-test. ns: p > 0.05;*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: 
p < 0.0001. Figure S8. Performance comparison betweenENB and EPA on 
stricter “unseen” test sets. Statistical significance of thedifference between 
the performance of EPA and ENB was determined by pairedt-test. ns: 
p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001;****: p < 0.0001. FigureS9. 
Correlationcoefficient between every two datasets. FigureS10. Scatter-
plots of ENB predicted selectivity score and experimentalselectivity score 
of inhibitors in various sets. Figure S11. Phylogenetic tree to display the 
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set and test set. Algorithm S1. TrainingPCM-AAE.

Acknowledgements
Not applicable.

Authors’ contributions
XB designed and performed the research, YY supervised the study. Both 
authors read and approved the final manuscript.

Funding
This work was supported by grants to Yuxin Yin, including the National Key 
Research and Development Program of China (2016YFA0500302); the National 
Natural Science Foundation of China (81430056, 31420103905, 81621063); 
The Beijing Natural Science Foundation (7161007); and the Lam Chung Nin 
Foundation for Systems Biomedicine.

Availability of data and materials
The code for EPA is available at http://​github.​com/​xybai-​dev/​EPA. Dataset 
of Kinase SARfari was downloaded from http://​ftp.​ebi.​ac.​uk/​pub/​datab​ases/​
chembl/. MRC dataset was downloaded from https://​www.​ppu.​mrc.​ac.​uk/. The 
other data used in this paper are supported by the corresponding reference.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Department of Pathology, School of Basic Medical Sciences, Peking University 
Health Science Center, Beijing 100191, China. 2 Institute of Systems Biomedi-
cine, School of Basic Medical Sciences, Peking University Health Science 
Center, Beijing 100191, People’s Republic of China. 3 Peking‑Tsinghua Center 
for Life Sciences, Peking University Health Science Center, Beijing 100191, 
China. 

Received: 10 November 2020   Accepted: 20 November 2021

References
	1.	 Keiser M, Setola V, Irwin J et al (2009) Predicting new molecular targets for 

known drugs. Nature 462:175–181
	2.	 Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, 

drug discovery, and the reproducibility crisis. PLoS ONE 11:e0147215
	3.	 Zhang G, Xing J, Wang Y et al (2018) Discovery of novel inhibitors of 

indoleamine 2,3-dioxygenase 1 through structure-based virtual screen-
ing. Front Pharmacol 9:277

	4.	 Dong L, Shen S, Chen W et al (2019) Discovery of novel inhibitors target-
ing human O-GlcNAcase: docking-based virtual screening, biological 

evaluation, structural modification, and molecular dynamics simulation. J 
Chem Inf Model 59:4374–4382

	5.	 Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual 
screening: a critical review. J Chem Inf Model 52:867–881

	6.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
	7.	 Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure 

prediction with AlphaFold. Nature 596:583–589
	8.	 Genheden S, Thakkar A et al (2020) AiZynthFinder: a fast, robust and 

flexible open-source software for retrosynthetic planning. J Cheminform 
12:1–9

	9.	 Tong X, Liu X, Tan X et al (2021) Generative models for De Novo drug 
design. J Med Chem 64:14011–14027

	10.	 Wen M, Zhang Z, Niu S et al (2017) Deep-learning-based drug–target 
interaction prediction. J Proteome Res 16:1401–1409

	11.	 Lee I, Keum J, Nam H (2019) DeepConv-DTI: prediction of drug–target 
interactions via deep learning with convolution on protein sequences. 
PLoS Comput Biol 15:e1007129

	12.	 Liu G, Singha M, Pu L et al (2021) GraphDTI: a robust deep learning 
predictor of drug–target interactions from multiple heterogeneous data. 
J Cheminform 13:1–17

	13.	 Öztürk H, Özgür A, Ozkirimli E (2018) DeepDTA: deep drug–target bind-
ing affinity prediction. Bioinformatics 34:i821–i829

	14.	 Nguyen T, Le H, Quinn TP et al (2021) GraphDTA: predicting drug–target 
binding affinity with graph neural networks. Bioinformatics 37:1140–1147

	15.	 Kramer C, Kalliokoski T, Gedeck P et al (2012) The experimental uncer-
tainty of heterogeneous public K i data. J Med Chem 55:5165–5173

	16.	 Krawczyk B (2016) Learning from imbalanced data: open challenges and 
future directions. Prog Artif Intell 5:221–232

	17.	 Torgo L, Ribeiro R (2009) Precision and recall for regression. In: Paper pre-
sented at international conference on discovery science, Porto, Portugal, 
3–5 October 2009

	18.	 Torgo L, Ribeiro RP, Pfahringer B et al (2013) Smote for regression. In: 
Paper presented at Portuguese conference on artificial intelligence, 
Azores, Portugal, 9–12 September 2013

	19.	 Sundar V, Colwell L (2020) Using single protein/ligand binding models 
to predict active ligands for unseen proteins. bioRxiv https://​doi.​org/​10.​
1101/​2020.​08.​02.​233155.

	20.	 Sixt L, Wild B, Landgraf T (2018) Rendergan: generating realistic labeled 
data. Front Robot AI 5:66

	21.	 Lim SK, Loo Y, Tran N-T et al (2018) Doping: generative data augmenta-
tion for unsupervised anomaly detection with GAN. In: Paper presented 
at international conference on data mining (ICDM), Singapore, 17–20 
November 2018

	22.	 Zhu X, Liu Y, Li J et al (2018) Emotion classification with data augmenta-
tion using generative adversarial networks. In: Paper presented at Pacific-
Asia conference on knowledge discovery and data mining, Melbourne, 
VIC, Australia, 3–6 June 2018

	23.	 Christmann-Franck S, van Westen GJ, Papadatos G et al (2016) Unprec-
edently large-scale kinase inhibitor set enabling the accurate prediction 
of compound–kinase activities: a way toward selective promiscuity by 
design? J Chem Inf Model 56:1654–1675

	24.	 Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactiv-
ity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

	25.	 Drewry DH, Willson TM, Zuercher WJ (2014) Seeding collaborations to 
advance kinase science with the GSK published kinase inhibitor set (PKIS). 
Curr Top Med Chem 14:340–342

	26.	 Metz JT, Johnson EF, Soni NB et al (2011) Navigating the kinome. Nat 
Chem Biol 7:200–202

	27.	 Davis MI, Hunt JP, Herrgard S et al (2011) Comprehensive analysis of 
kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

	28.	 Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning 
approach with chemical intuition. J Chem Inf Model 58:27–35

	29.	 Sterling T, Irwin JJ (2015) ZINC 15–ligand discovery for everyone. J Chem 
Inf Model 55:2324–2337

	30.	 Asgari E, Mofrad MR (2015) Continuous distributed representation of 
biological sequences for deep proteomics and genomics. PLoS ONE 
10:e0141287

	31.	 Boutet E, Lieberherr D, Tognolli M et al (2007) Uniprotkb/swiss-prot. Plant 
bioinformatics. Springer, New York, pp 89–112

http://github.com/xybai-dev/EPA
http://ftp.ebi.ac.uk/pub/databases/chembl/
http://ftp.ebi.ac.uk/pub/databases/chembl/
https://www.ppu.mrc.ac.uk/
https://doi.org/10.1101/2020.08.02.233155
https://doi.org/10.1101/2020.08.02.233155


Page 15 of 15Bai and Yin ﻿Journal of Cheminformatics           (2021) 13:95 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	32.	 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 
Paper presented at proceedings of the 3rd international conference on 
learning representations, San Diego, CA, USA, May 7–9, 2015

	33.	 Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial 
nets. In: Paper presented at advances in neural information processing 
systems, Montreal, Quebec, Canada, 8–13 December 2014

	34.	 Makhzani A, Shlens J, Jaitly N et al (2015) Adversarial autoencoders. arXiv 
preprint arXiv:​1511.​05644

	35.	 Abadi M, Barham P, Chen J et al (2016) Tensorflow: a system for large-
scale machine learning. In: Paper presented at 12th symposium on 
operating systems design and implementation, Savannah, GA, USA, 2–4 
November 2016

	36.	 Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chem-
ometr Intell Lab Syst 2:37–52

	37.	 Linderman GC, Rachh M, Hoskins JG et al (2017) Efficient algorithms 
for t-distributed stochastic neighborhood embedding. arXiv preprint 
arXiv:1712.09005

	38.	 Zhou H, Wang F, Tao P (2018) t-Distributed stochastic neighbor embedding 
method with the least information loss for macromolecular simulations. J 
Chem Theory Comput 14:5499–5510

	39.	 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learn-
ing in Python. J Mach Learn Res 12:2825–2830

	40.	 Park Y, Marcotte EM (2012) Flaws in evaluation schemes for pair-input compu-
tational predictions. Nat Methods 9:1134–1136

	41.	 Sorgenfrei FA, Fulle S, Merget B (2018) Kinome-wide profiling prediction of 
small molecules. ChemMedChem 13:495–499

	42.	 Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Paper 
presented at proceedings of the 22nd ACM SIGKDD international conference 
on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 
August 2016

	43.	 Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with 
neural networks. Science 313:504–507

	44.	 Karaman MW, Herrgard S, Treiber DK et al (2008) A quantitative analysis of 
kinase inhibitor selectivity. Nat Biotechnol 26:127–132

	45.	 Li X, Li Z, Wu X et al (2019) Deep learning enhancing kinome-wide polyphar-
macology profiling: model construction and experiment validation. J Med 
Chem 63:8723–8737

	46.	 Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular dock-
ing. J Med Chem 49:6789–6801

	47.	 Chaput L, Martinez-Sanz J, Saettel N et al (2016) Benchmark of four popular 
virtual screening programs: construction of the active/decoy dataset remains 
a major determinant of measured performance. J Cheminform 8:1–17

	48.	 Che T, Li Y, Jacob AP et al (2017) Mode regularized generative adversarial 
networks. In: Paper presented at 5th international conference on learning 
representations, Toulon, France, 24–26 April 2017

	49.	 Srivastava A, Valkov L, Russell C et al (2017) Veegan: reducing mode collapse in 
gans using implicit variational learning. In: Paper presented at proceedings of 
the 31st international conference on neural information processing systems, 
Long Beach, CA, USA, 4–9 December 2017

	50.	 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial net-
works. In: Paper presented at international conference on machine learning, 
Sydney, NSW, Australia, 6–11 August 2017

	51.	 Abusitta A, Wahab OA, Fung BC (2021) VirtualGAN: reducing mode col-
lapse in generative adversarial networks using virtual mapping. In: Paper 
presented at 2021 international joint conference on neural networks 
(IJCNN), Shenzhen, China, July 18–22 2021

	52.	 Du S, You S, Li X et al (2020) Agree to disagree: adaptive ensemble 
knowledge distillation in gradient space. In: Paper presented at advances 
in neural information processing systems, 6–12 December 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1511.05644

	Exploration and augmentation of pharmacological space via adversarial auto-encoder model for facilitating kinase-centric drug development
	Abstract 
	Introduction
	Methods
	Data collection, preprocessing and analysis
	Data representations
	Baseline model building
	Architecture of PCM-GAN and PCM-AAE
	PCA and t-SNE algorithms for data exploration
	Balancing methods
	Model evaluation

	Results and discussion
	Baseline methods comparison
	Implementation and training of PCM-GAN and PCM-AAE
	Exploration of PCM-AAE data space
	Training and evaluation of EPA
	Applicability of EPA on kinase profile prediction and virtual screening

	Conclusions
	Acknowledgements
	References




