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Abstract

Background

The recognition of active inflammation in the central nervous system (CNS) in the absence

of infectious agents is challenging. The present study aimed to determine the diagnostic rel-

evance of five selected chemo/cytokines in the recognition of CNS inflammation and in the

context of traditional cerebrospinal fluid (CSF) biomarkers (white blood cell [WBC] counts,

oligoclonal bands, protein levels, CSF/serum albumin ratios) and clinical diagnoses.

Methods

C-C and C-X-C motif ligands (CCL2, CXCL8, 10 and 13) and interleukin (IL) 6 levels in the

CSF and serum from 37 control and 87 symptomatic children with ten different (mostly non-

infectious) inflammatory CNS disorders (16 of which had follow-up samples after recovery)

were determined using Luminex multiple bead technology and software. Nonparametric

tests were used; p < 0.05 was considered statistically significant. Receiver operating charac-

teristic curves were constructed to analyze controls and 1) all symptomatic samples or 2)

symptomatic samples without CSF pleocytosis.

Results

Compared with the control CSF samples, levels of all investigated chemo/cytokines were

increased in symptomatic CSF samples, and only IL-6 remained elevated in recovery sam-

ples (p� 0.001). CSF CXCL-13 levels (> 10.9 pg/mL) were the best individual discriminatory

criterion to differentiate neuroinflammation (specificity/sensitivity: 97/72% and 97/61% for

samples without pleocytosis), followed by CSF WBC counts (specificity/sensitivity: 97/
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62%). The clinical utility of the remaining CSF chemo/cytokine levels was determined in

descending order of sensitivities corresponding to thresholds that ensured 97% specificity

for neuroinflammation in samples without pleocytosis (pg/mL; sensitivity %): IL-6 (3.8; 34),

CXCL8 (32; 26), CXCL10 (317; 24) and CCL2 (387; 10). Different diagnosis-related patterns

of CSF chemo/cytokines were observed.

Conclusions

The increased CSF level of CXCL13 was the marker with the greatest predictive utility for

the general recognition of neuroinflammation among all of the individually investigated bio-

markers. The potential clinical utility of chemo/cytokines in the differential diagnosis of neu-

roinflammatory diseases was identified.

Introduction

Neuroimmunological diseases represent a broad spectrum of rare but serious disorders. The

recognition of active inflammation in the central nervous system (CNS) in the absence of

infectious agents is challenging. Currently available cerebrospinal fluid (CSF) or serum bio-

markers and magnetic resonance imaging (MRI) have limited sensitivity and specificity, and

novel biomarkers of CNS inflammation are constantly being assessed [1–3].

Under neuroinflammatory conditions, circulating immune cells in the peripheral blood

gain access to the CNS, and CSF pleocytosis is a crucial hallmark of neuroinflammation [4].

CSF white blood cell (WBC) counts might fluctuate over time and according to disease activ-

ity, and in patients with noninfectious inflammatory CNS diseases, CSF pleocytosis might lack

sensitivity [5–7].

Both animal and human studies show that chemokines play an important role in (neuro)

inflammation, as chemokines and their corresponding receptors are required for leukocyte

migration and function [8–12]. Glial cells, neurons, endothelial cells and immune cells them-

selves are capable intrathecal chemokine producers [13–16].

Certain C-C and C-X-C motif ligand (CCL and CXCL, respectively) chemokines are fre-

quently investigated in patients with CNS disorders of different etiologies, but their clinical

utility has yet to be clearly established [17]. CXCL13, one of the most commonly studied che-

mokines in neuroinflammation, is a crucial chemokine for B-cell recruitment to the CNS [18].

Increased intrathecal CXCL13 production has been observed in patients with multiple sclero-

sis (MS) and other noninfectious CNS disorders, and strikingly in neuroborreliosis (NB) [16–

22]. CXCL10 is one of several chemokines that mediates T-cell migration and plays an impor-

tant role in neuroinflammatory models [10, 14]. Elevated intrathecal CXCL10 production has

been noted in patients with infectious and noninfectious encephalitis, as well as in patients

with MS [22–28]. CXCL8 (known as interleukin [IL] 8) plays a key role in neutrophil transmi-

gration, and CCL2 (known as monocyte chemoattractant protein [MCP] 1) is one of the che-

mokines involved in controlling monocytes/macrophage and dendritic cell migration.

Nonredundant functions have been described for these chemokines during neuroinflamma-

tion in animal models [15, 29]. Increased intrathecal CXCL8/IL-8 and CCL2/MCP-1 levels

have been found in patients with infectious, particularly bacterial, CNS disorders [30, 31]. To

date, the few studies that have investigated CXCL8/IL-8 and CCL2/MCP-1 levels in patients
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with noninfectious inflammatory CNS disorders have produced inconsistent results [27, 28,

32–36].

In addition to chemokines, IL-6, a pleiotropic cytokine with contradictory proinflamma-

tory and neuroprotective functions, has also been frequently investigated in the context of neu-

roinflammation. Increased CSF IL-6 levels have been observed in patients with infectious

meningitis and some noninfectious inflammatory CNS disorders, but not in patients with MS

[30, 37].

In the present study, we investigated the clinical utility of CCL2/MCP-1, CXCL8/IL-8,

CXCL10, CXCL13, and IL-6 in the general recognition of neuroinflammation by evaluating

their CSF and serum levels in a large cohort of pediatric patients with various (mostly nonin-

fectious) inflammatory CNS disorders. We also compared these markers to traditional CSF

neuroinflammatory biomarkers, such as WBC counts, oligoclonal bands (OCBs) or markers of

a blood-brain barrier (BBB) failure. Finally, we outlined “disease-specific chemo/cytokine pat-

terns” for selected diagnoses using multiparametric visualization tools.

Patients and methods

Ethics statement

This study was approved by the Ethics Committee at Motol University Hospital. Informed

written consent to a detection of chemo/cytokine levels in CSF and serum was obtained from

parents or guardians of all pediatric participants. The data were analyzed anonymously.

Study design

In total, 140 pairs of CSF and serum samples from 37 controls and 87 symptomatic children

(patients) with various inflammatory CNS disorders (follow-up samples after recovery were

obtained from 16 of these patients) were analyzed (Fig 1). All specimens were obtained at the

Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol

University Hospital, Prague, Czech Republic during the routine diagnostic process and/or

treatment management.

Patient characteristics

Patients (ethnicity: all Caucasian, with the exception of one Asian; age: median 13 years, range

2–18 years; sex: 61% female) were diagnosed with the following inflammatory CNS disorders:

acute disseminated encephalomyelitis (ADEM, n = 7) and ADEM followed by optic neuritis

(ADEM-ON, n = 1), anti-N-methyl-D-aspartate receptor encephalitis (NMDARE, n = 8), Ras-

mussen encephalitis (RE, n = 5), acute cerebellitis of unknown etiology (AC, n = 4), encephali-

tis of unknown etiology (ENC, n = 7), clinically isolated syndrome (CIS, n = 25), MS (n = 17),

neuromyelitis optica spectrum disorders (NMOSD, n = 2) and NB (n = 11). The clinical mani-

festations of CIS were optic neuritis (n = 15), acute myelitis (n = 2), brainstem syndrome

(n = 2), and focal supratentorial syndrome (n = 2). The clinical manifestations of NB were

meningitis (n = 8), meningoradiculitis (n = 1), meningoencephalitis (n = 1), and meningomye-

loencephalitis (n = 1).

Symptomatic inflammatory samples were collected from all patients at the time of presen-

tation of their clinical symptoms, which were 1) acute (n = 78, duration < 3 months, median

10 days, range 1–90 days), 2) progressive (n = 4, duration > 3 months, median 8 months,

range 6–12 months), and 3) relapsing (n = 5, patients who had previously been diagnosed with

an inflammatory neurological condition, median 12 days, range 4–28 days). The majority of

the symptomatic samples were collected before immunotherapy (72 of 87). The
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immunotherapy in 11 of 15 patients before sampling included steroids (oral or intravenous)

and intravenous immunoglobulins (alone or in combination with steroids); three patients

were treated with azathioprine and one with cyclosporine. Follow-up asymptomatic recovery

samples were available from 16 of 87 patients. The absence of the initial and any new clinical

symptoms defined a recovery. The time at which recovery samples were collected differed

from patient to patient and diagnosis, and the median was 5 months after onset of the first dis-

ease symptoms (range 7 days to 2 years).

Controls (ethnicity: all Caucasian; age: median 11 years, range 2–18 years; sex: 62% females)

were children with various symptoms for which neuroinflammation was initially considered,

but ultimately excluded. Detailed examinations of these children also excluded a neurodegener-

ative etiology for their symptoms, and CSF, blood and MRI findings were within the normal

range. The symptoms and/or final diagnoses were: headache (n = 13), different ophthalmologic

impairments (n = 9; macular degeneration, strabismus or transient oculomotor disturbances,

or nonorganic visual impairment), different psychological/psychiatric manifestations (n = 13;

anxiety, depression, fatigue, phobic vertigo, abnormal nonorganic gait or sensorimotor distur-

bances, or tics), pavor nocturnus (n = 1), and trauma of the plexus brachialis (n = 1).

Diagnostic procedures

All children in the study underwent an MRI, lumbar puncture and blood tests. Other specific

examinations necessary for diagnosis were indicated in individual cases but those are not rele-

vant for the current study.

Fig 1. Study group description and design. CSF and serum samples from patients with various, mostly noninfectious,

inflammatory CNS disorders collected at the time of presentation of clinical symptoms (n = 87) were compared with

controls (n = 37). If available, follow-up samples collected at the time of clinical recovery (n = 16) were compared with

their symptomatic counterparts and controls.

https://doi.org/10.1371/journal.pone.0219987.g001
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A routine analysis of CSF included a determination of the following clinically accepted tra-

ditional biomarkers: WBC count, OCB level via isoelectric focusing of immunoglobulin (Ig)

G, protein levels, and CSF/serum albumin ratio (Qalb = CSF albumin [mg/L] x 103/ serum

albumin [mg/L]). CSF findings of a WBC count < 5 x 106 cells/L, OCB of 0–1, protein

levels < 400 mg/L, and Qalb < 5 were considered normal (Table 1, details in S1A Table) [2,

38]. Detailed microbiological testing was performed; appropriate combinations of serological,

PCR and cultivation methods were used to reveal the presence of pathogens in CSF and/or

blood. Tests were performed for common agents causing infectious CNS inflammations in our

region, such as herpetic viruses, enteroviruses, virus of tick-borne encephalitis, Borrelia spp.,

mycoplasma pneumonia, etc. If indicated, immunological tests for the presence of anti-

NMDAR and other neuropil antibodies, anti-aquaporin 4 (AQP4) and occasionally anti-mye-

lin-oligodendrocyte glycoprotein (MOG) IgG antibodies were performed using commercial

kits based on indirect immunofluorescence technique (anti-glutamate receptor [type NMDA]

or autoimmune encephalitis mosaic 1 [glutamate receptors type NMDA and AMPA, LGI1,

CASPR2, GABAB receptors antibodies], anti-AQP4, anti- MOG, IIFT, Euroimmun,

Germany).

All children with ADEM, ADEM-ON, CIS, and MS met the recent diagnostic consensus

criteria of the International Pediatric MS Study Group [39]. All patients with NMDARE pre-

sented with typical neuropsychiatric symptoms and nonparaneoplastic production of anti-

NMDAR antibodies in the CSF [40]. Patients with RE met Bien’s diagnostic criteria [41]. Chil-

dren diagnosed with ENC of unknown etiology fulfilled the consensus criteria for encephalitis,

which is defined as encephalopathy plus two or more of the following symptoms: fever, sei-

zures, focal neurological deficit, and abnormal laboratory findings compatible with encephali-

tis (in CSF, on the electroencephalogram or MRI) [42]. Microbiological CSF testing and

specific autoantibodies were negative in all of the patients with ENC, but specific antibodies

against mycoplasma pneumonia were positive in the serum samples from two patients. Chil-

dren diagnosed with AC of unknown etiology manifested acute cerebellar syndrome with

abnormal findings in the CSF but had negative microbiological test results and normal brain

MRI results. Both patients with NMOSD fulfilled Wingerchuck’s 2015 diagnostic criteria and

Table 1. Clinical and laboratory characteristics of the samples.

All samples Symptomatic inflammatory Asymptomatic recovery� Controls

n = 87 n = 16 n = 37

Age (years), median (range) 13 (2–18) 13 (3–19) 11 (2–18)

Females, n (%) 53 (61%) 11 (69%) 23 (62%)

Symptoms: acute/progressive/relapse # 78/4/5 N/A N/A

No ImmunoTx, n (%) 72 (83%) 7 (44%) 37 (100%)

CSF pleocytosis (> 5 x 106 cells/L), n (%) 35 (40%) 1 (6%) 0

CSF WBC count, median (range) x 106 cells/L 3.3 (0–693) 0.2 (0–11) 0.3 (0–2)

CSF IgG OCB positive (> 2), n (%) 33 (38%) 2 (13%) 0

CSF protein, median (range), mg/dL 0.307 (0.123–1.955) 0.241 (0.154–0.432) 0.191 (0.105–0.303)

CSF/serum albumin ratio §, median (range) 4.3 (1.5–28) 3.3 (2.7–8.9) 3.1 (1.5–4.7)

� 16 of 87 children had follow-up samples after recovery
# Duration/character of the clinical symptoms: acute (onset of neurological symptoms< 3 months), progressive (neurological symptoms in progression > 3 months),

relapse (new neurological symptom in a patient who had been previously diagnosed with an inflammatory neurological condition < 1 month)
§ Qalb = CSF albumin [mg/L] x 103/serum albumin [mg/L]

https://doi.org/10.1371/journal.pone.0219987.t001
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were negative for anti-AQP4 antibodies [43]. All patients with NB had abnormal CSF findings

and a positive Borrelia-specific CSF/serum antibody index [44].

Chemokine and cytokine detection

Aliquots of centrifuged CSF and serum samples were immediately stored at -30˚C and thawed

prior to use for chemo/cytokine analyses.

The concentrations of CCL2/MCP-1, CXCL8/IL-8, CXCL10, CXCL13 and IL-6 were mea-

sured using Luminex multiple bead technology. We created our own multiplex panel by com-

bining multiple simplex kits with a basic kit according to the manufacturer’s instructions

(MCP-1 Human ProcartaPlexTM Simplex Kit [EXP01B-10281-901], IL-8 Human Procarta-

PlexTM Simplex Kit [EXP01A-10204-901], IP-10 Human ProcartaPlex Simplex Kit [EXP01A-

10284-901], BLC Human ProcartaPlex Simplex Kit [EXP01A-12147-901], IL-6 Human

ProcartaPlex Simplex Kit [EXP01A-10213-901] and ProcartaPlex Human Basic Kit [EXP010-

10420-901], ThermoFisher Scientific/former eBioscience, San Diego, CA, USA). Our multiplex

panel also included other cytokines that are associated with specific immune responses, lym-

phocytes functions, and immunoregulation (IL-4, -7, -10, -15, -17A and interferon gamma

[IFN g]). The methodological details including assay protocol, standards and sensitivity are

available at the manufacturer’s website, http://www.thermofisher.com. All samples were mea-

sured undiluted and in doublets. The chemo/cytokine standards were assayed in the same

manner as patient samples. The data were collected using a Luminex-100 system (Luminex,

Austin, TX, USA).

Data analysis and statistics

Statistical analyses were performed using R software version 3.4.4 [45]. Graphs were created

using GraphPad PRISM software version 6.0 (GraphPad Software, La Jolla, CA, USA). Due to

the nature of the data, nonparametric tests were used. The Mann-Whitney U-test was used for

unpaired comparisons of CSF or serum samples from controls and patients. The Wilcoxon

signed-rank test was used to compare paired CSF and serum samples from symptomatic and

recovered patients. Correlations between parameters were determined by calculating the

Spearman correlation coefficient. P< 0.05 was considered statistically significant.

The predictive accuracies of biomarkers (traditional biomarkers, chemo/cytokines, and

selected combinations) were determined using receiver operating characteristic (ROC) curves

and by measuring the area under the ROC curve (AUC). ROC curves for combinations of bio-

markers were constructed based on predictive models using 50% of patients; the remaining

50% of patients were used as a test group. The thresholds that provided an optimal trade-off

between specificity and sensitivity as a criterion for discriminating CNS inflammatory pro-

cesses were calculated (i.e., optimal thresholds). In addition to the optimal thresholds, the 97%

specificity thresholds and their corresponding sensitivities were also derived from the ROC

curves for each CSF chemo/cytokine (i.e., values that ensured an at least 97% specificity and

less than 3% false positivity for the CNS inflammatory process).

Results

Chemo/cytokine levels under neuroinflammatory and recovery conditions

Chemokines CCL2/MCP-1, CXCL8/IL-8, CXCL10, CXCL13 and cytokine IL-6 were detected

in the majority of the patients’ samples. Compared with controls, levels of these chemo/cyto-

kines were significantly increased in symptomatic inflammatory CSF samples (all p< 0.001,

Table 2A). In contrast to CSF, symptomatic inflammatory serum samples did not exhibit
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significant differences, with the exception of decreased CCL2/MCP-1 levels (p = 0.017,

Table 2B). Other investigated cytokine levels (IL-4, -7, -10, -15, -17A and IFN g)were below

the detection limits in the majority of patients’ samples and thus they were not further ana-

lyzed in this study.

In comparisons of symptomatic and recovery CSF samples, levels of CXCL8/IL-8, CXCL10,

CXCL13, and IL-6 were significantly decreased in recovery CSF samples (all p< 0.05) and

CCL2/MCP-1 levels showed no significant differences (Fig 2). In recovery sera samples, only

CCL2/MCP-1 levels were significantly increased (p = 0.039, S1 Fig). In comparisons of samples

from patients who recovered and controls, only IL-6 levels were persistently increased in

recovery CSF samples (p = 0.001, Fig 2), while serum chemo/cytokine levels showed no signifi-

cant differences (S1 Fig).

Relationship between CSF chemo/cytokines levels and traditional CSF

inflammatory biomarkers

The WBC counts, protein levels and CSF/serum albumin ratios in symptomatic inflammatory

samples correlated with all CSF chemo/cytokine levels, except for CCL2/MCP-1. The strongest

correlation with WBC counts was observed for CXCL13 (r = 0.6459, p< 0.0001). The presence

of OCBs in the symptomatic inflammatory samples correlated with CSF CXCL13 and IL-6 lev-

els (S2 Table).

Clinical utility of chemo/cytokine levels in recognizing CNS inflammation

compared with traditional CSF biomarkers

Traditional and chemo/cytokine biomarkers were evaluated individually and in selected com-

binations. ROC analyses using all symptomatic samples and controls were performed.

For the traditional biomarkers, the individual AUCs were all greater than 0.75, and the opti-

mal thresholds showed a higher specificity (range 78–97%) than sensitivity (50–72%) for dif-

ferentiating CNS inflammation. The best individual discriminative criterion among the

traditional biomarkers was the WBC count, with an optimal threshold of 2.165 x 106 cells/L,

yielding a specificity of 97% and sensitivity of 62%. The combination of all four traditional

Table 2. Chemo/Cytokine levels in symptomatic inflammatory samples and controls.

Samples from symptomatic patients (n = 87) Controls (n = 37) Mann-Whitney test

median (IQR) [pg/mL] median (IQR) [pg/mL]

(A) CSF

CCL2/MCP-1 165.5 (84.5–238.1) 73.3 (57.5–130.9) p = 0.0003

CXCL8/IL-8 23.0 (10.4–40.4) 6.0 (4.8–12.8) p < 0.0001

CXCL10 150.8 (74.0–504.8) 67.8 (35.3–135.8) p < 0.0001

CXCL13 25.9 (8.1–165.9) 6.0 (3.4–7.2) p < 0.0001

IL-6 1.7 (0.0–12.3) 0.0 (0.0–1.2) p < 0.0001

(B) Serum

CCL2/MCP-1 17.5 (6.7–31.7) 33.3 (9.9–47.3) p = 0.017

CXCL8/IL-8 1.3 (0.0–6.5) 3.1 (0.0–7.3) NS

CXCL10 9.6 (4.6–15.5) 9.6 (6.4–19.1) NS

CXCL13 68.3 (50.0–112.3) 71.3 (52.2–94.2) NS

IL-6 0.0 (0.0–1.4) 0.0 (0.0–0.9) NS

Samples from all symptomatic patients with inflammatory conditions were compared with controls. The medians, interquartile ranges (IQRs), and statistical

significance are shown separately for (A) cerebrospinal fluid and (B) serum levels.

https://doi.org/10.1371/journal.pone.0219987.t002
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biomarkers improved the predictive accuracy of the test by increasing the specificity to 100%

and sensitivity to 87% (Table 3).

The individual AUCs for the CSF chemo/cytokine levels were all greater than 0.70. The best

discriminative criterion among investigated chemo/cytokines for differentiating CNS inflam-

mation was the CXCL13 level, with an optimal threshold of 10.9 pg/mL; compared with WBC

counts, the corresponding specificity was similar (97%), and the sensitivity was higher (72%).

In contrast to the traditional biomarkers and CXCL-13 levels, the optimal thresholds for the

remaining chemo/cytokines showed lower specificity (range 59–68%) than sensitivity (71–

84%). Combination of two chemo/cytokines with the highest individual AUCs (CXCL13 and

CXCL8/IL-8) did not reach the individual specificity of CXCL13, but did increase the sensitiv-

ity of the test to 86%. Determination of the 97% specificity threshold generated a cut-off value

for each chemo/cytokine that ensured a high probability (� 97%) of detecting the CNS inflam-

matory process, but modified a sensitivity. Equalizing of the specificity enabled to compare

corresponding sensitivities and assess the clinical utility of the remaining chemo/cytokines for

the recognition of CNS inflammation as follows: IL-6 (sensitivity 40%), CXCL10 (38%),

CXCL8/IL-8 (31%) and CCL2/MCP-1 (12%) (Table 4A).

The individual AUCs for serum chemo/cytokines levels did not exceed 0.64, which was the

AUC for CCL2/MCP-1, yielding 62% specificity and 69% sensitivity (S3 Table).

CSF chemo/cytokine levels and their clinical utility for recognizing CNS

inflammation in the absence of CSF pleocytosis

In 52 symptomatic inflammatory samples (60%), the WBC counts were within the clinically

accepted normal range (< 5 x 106/L). Moreover, in 23/52 samples, the other traditional CSF

biomarkers also showed no noticeable abnormalities. In addition, no infectious agents were

detected in these CSF samples. Thus, we performed a separate analysis of this subgroup; the

optimal and 97% specificity thresholds were determined by ROC analyses using only symp-

tomatic inflammatory CSF samples without pleocytosis and controls.

The individual AUCs for the CSF chemo/cytokine levels in samples from patients without

pleocytosis were all greater than 0.65 and optimal thresholds showed a lower specificity (range

54–79%) than sensitivity (72–90%) for differentiating neuroinflammation. According the

AUC, CXCL8/IL-8 was the best discriminative criterion in this subgroup, followed by

CXCL13. However, in contrast to CXCL13, the optimal threshold for CXCL8/IL-8 yielded a

lower specificity (68% vs. 79%). Combinations of all five chemo/cytokines or the best two

(CXCL8/IL-8 and CXCL13) improved the predictive accuracies of the test by increasing speci-

ficity to 94% and sensitivity up to 88%. The use of the 97% specificity threshold and its corre-

sponding sensitivity helped us to assess the clinical utility for each chemo/cytokine for the

recognition of neuroinflammation in patients without CSF pleocytosis as follows: CXCL13

(sensitivity 61%), IL-6 (34%), CXCL8/IL-8 (26%), CXCL10 (24%) and CCL2/MCP-1 (10%)

(Table 4B).

CSF chemo/cytokines levels according to diagnosis

When we focused on CSF chemo/cytokines levels in the context of diagnoses and 97% specific-

ity thresholds (derived from the ROC curve for samples without pleocytosis), we noted certain

diagnosis-related differences (Fig 3). CXCL13 levels were increased in patients with all diagno-

ses, but exceeded the threshold (10.9 pg/mL) in all CSF samples from patients with NB, RE

and MS. Interestingly, CXCL10 levels exceeded the threshold (317 pg/mL) in 82% (9/11) of

patients with NB and in 66% (18/27) of patients with encephalitis (ADEM, NMDARE, RE, or

ENC) but only in 24% (5/17) of patients with MS and in 4% (1/25) of patients with CIS.
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Fig 2. Comparison of CSF chemo/cytokine levels in symptomatic, recovery and control samples. Comparison of chemo/cytokine levels

in paired symptomatic and recovery samples (n = 16) using the Wilcoxon signed-rank test and comparisons between recovery samples

(n = 16) and controls (n = 37) using unpaired Mann-Whitney tests are displayed, the statistical significance is indicated.

https://doi.org/10.1371/journal.pone.0219987.g002
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Furthermore, IL-6 levels exceeded the threshold (3.8 pg/mL) in 82% (9/11) of patients with NB

and in 44% (11/25) of patients with CIS, but only in 18% (3/17) of patients with MS. Addi-

tional diagnosis-related details regarding CSF chemo/cytokines levels are summarized in S1B

Table.

Table 3. Clinical utility of traditional biomarkers for the recognition of neuroinflammation in CSF.

Traditional CSF biomarkers AUC Optimal threshold Specificity (%) Sensitivity (%)

WBC count x 106 cells/L 0.853 2.165 97 62

IgG OCB 0.750 0.5 100 50

Protein [mg/dL] 0.790 0.227 78 72

CSF/serum albumin ratio 0.780 3.9 88 61

Combination of all biomarkers 0.954 N/A 100 87

ROC curves were used to determine the clinical utility for the clinically accepted traditional biomarkers of neuroinflammation. All inflammatory samples from the

symptomatic patients (n = 87) were analyzed against the controls (n = 37).

Optimal threshold shows the value that ensures an optimal trade-off between specificity and sensitivity as a criterion for discriminating CNS inflammatory processes

and is determined by AUC; AUC represents the percentage of randomly drawn pairs for which the test is correct (i.e. it truly differentiates between the inflammatory

and the control sample).

https://doi.org/10.1371/journal.pone.0219987.t003

Table 4. Clinical utility of CSF chemo/cytokine biomarkers for the recognition of neuroinflammation.

(A) All inflammatory samples (n = 87)

CSF chemo/cytokines AUC Optimal threshold [pg/mL] Specificity (%) Sensitivity (%) 97% specificity threshold [pg/mL]
�

Sensitivity# (%)
CCL2/MCP-1 0.703 81.4 65 77 339.5 12
CXCL8/IL-8 0.797 8.0 67 84 30.9 31
CXCL10 0.735 7.5 59 79 307.5 38
CXCL13 0.866 10.9 97 72 10.9 72
IL-6 0.732 0.3 68 71 3 40
CXCL8/IL-8 + CXCL13 0.885 N/A 94 86 N/A N/A
Combination of all biomarkers 0.916 N/A 89 84 N/A N/A
(B) Inflammatory samples without CSF pleocytosis (n = 52)

CSF chemo/cytokines AUC Optimal threshold [pg/mL] Specificity (%) Sensitivity (%) 97% specificity threshold [pg/mL]
�

Sensitivity (%)#

CCL2/MCP-1 0.728 94.9 68 80 386.7 10
CXCL8/IL-8 0.827 8.0 68 90 32.4 26
CXCL10 0.649 67.9 54 76 317.4 24
CXCL13 0.805 7.6 79 80 10.9 61
IL-6 0.737 0.3 68 72 3.8 34
CXCL8 + CXCL13 0.875 N/A 94 83 N/A N/A
Combination of all biomarkers 0.951 N/A 94 88 N/A N/A

ROC curves were used to determine the clinical utility for the investigated chemo/cytokine levels. Two different groups of patients’ samples were analyzed against

controls (n = 37): (A) all inflammatory samples from symptomatic patients (n = 87) and (B) only inflammatory samples from symptomatic patients without CSF

pleocytosis (i.e. with CSF WBC counts < 5 x 106 cells/L, n = 52).

Optimal threshold shows the value that ensures an optimal trade-off between specificity and sensitivity as a criterion for discriminating CNS inflammatory processes

and is determined by AUC; AUC represents the percentage of randomly drawn pairs for which the test is correct (i.e. it truly differentiates between the inflammatory

and the control sample).
�

97% specificity threshold shows the value that ensures a high probability (� 97%) of a truly recognition of an inflammatory sample, if the particular level of the chemo/

cytokine in a sample exceeds this value.
#sensitivity modified sensitivity corresponding to the 97% specificity threshold

https://doi.org/10.1371/journal.pone.0219987.t004
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Fig 3. Pleocytosis and chemo/cytokine levels in the CSF according to the diagnosis. The blue dots indicate samples from patients without CSF

pleocytosis (< 5 cells/μL). The lines in graphs of CSF chemo/cytokine levels indicate values of 1) optimal thresholds determined by ROC analyses using

all symptomatic inflammatory samples and controls and 2) 97% specificity thresholds derived from ROC curves using only symptomatic inflammatory

samples without pleocytosis and controls. The optimal and 97% specificity thresholds are identical for CXCL13.

https://doi.org/10.1371/journal.pone.0219987.g003
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Finally, we created multiparametric graphs and displayed the sum of medians of investi-

gated chemo/cytokine levels for those diagnoses for which at least five CSF samples each were

available. Thus, we revealed the different proportional and quantitative chemo/cytokines

involvement in each diagnosis (Fig 4). NB and NMDARE were two diagnoses in which the

markedly different proportions of involved chemo/cytokines was best exemplified; CXCL13

dominated in NB, while CXCL10 dominated in NMDARE. Moreover, regarding the sum of

the medians of investigated chemo/cytokines in certain diagnosis, we observed the highest

total value in patients with NB (52,806). In noninfectious diagnoses these total values were

markedly lower (range 290–1,102), but higher in patients with encephalitis (particularly RE

and NMDARE) than in patients with demyelinating disorders (MS or CIS).

Discussion

Chemo/cytokines play a substantial role in neuroinflammation [46]. However, heterogeneity,

variability and inconsistencies in many previous studies have hampered to corroborate results,

and thus constrain the clinical utility of these markers [47].

In contrast to many previous studies, we did not primarily focus on a particular disease or

group of diseases, such as MS [32–36]. We tested the clinical relevance of four potent chemoat-

tractants of the major leukocyte subtypes and one pluripotent cytokine for the general recogni-

tion of CNS inflammation and in the context of traditional biomarkers. CSF levels of the

selected chemo/cytokines are frequently increased, particularly in patients (either adult or

pediatric) with infectious diseases [26, 30, 31, 47–50]. The selected chemo/cytokines were

detected in the majority of symptomatic patients‘ samples in our study. Despite the majority of

them were obtained from patients with noninfectious inflammatory CNS disorders, CSF levels

of all investigated chemo/cytokine in these patients were also higher than in controls, while in

serum minimal differences were noticed. The levels of some chemo/cytokines have also been

shown to decrease after successful treatment or recovery [19, 49, 51]. In our study, CSF levels

of all chemokines (but not IL-6) were decreased in asymptomatic patients. Due to the variety

of diagnoses, only the presence of neurological symptoms at the time of CSF sampling, but not

the disease duration or treatment, was considered in our analyses.

The proper evaluation of chemo/cytokine levels critically depends on the controls [52].

Individual chemo/cytokine reference ranges have not yet been clearly established. The Pranza-

telli group demonstrated the compartmentalization of chemo/cytokines and higher concentra-

tions of CXCL10 and CCL2/MCP-1 than CXCL8/IL-8 and IL-6 in the CSF of pediatric

controls [53]. In addition, other researchers have also observed low CSF CXCL13 levels in con-

trols [28, 54]. We used different assays than recent pediatric studies, and our controls were

patients without neurological disorders. Our conclusions were similar to those reported in pre-

vious studies, but the absolute ranges of values for the controls differed, particularly the

CXCL8/IL-8, CXCL10 and CCL2/MCP-1 levels, for which our upper limits in the controls

were lower [28, 53].

Clinicians need reliable markers and cut-off values that indicate neuroinflammatory condi-

tions with a high probability [55]. In some studies, the 95th percentile of the control values was

used as a cut-off to analyze patient samples [28]. A ROC analysis is a useful diagnostic test that

enables the determination of an optimal trade-off between the specificity (true positivity) and

sensitivity (true negativity) of a tested marker by classifying the two subjects in the pair accord-

ing the clinical task [56]. Thus, depending on the study design, the absolute threshold value for

the same marker can vary. In our study, we asked how precisely the selected biomarkers differ-

entiated neuroinflammatory samples from controls. We also hypothesized that the detection

of chemo/cytokine levels would be especially useful in situations where traditional biomarkers
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were negative, and thus we individually tested a subgroup of samples from patients without

pleocytosis. In addition to the optimal thresholds, we also used the ROC curves to derive

threshold values with high specificity for neuroinflammation (i.e., 97% specificity thresholds),

which helped us to more accurately assess the clinical utility of individual chemo/cytokines.

Taken together, our data generally demonstrate the insufficient sensitivity of currently

available traditional CSF biomarkers in discriminating noninfectious inflammatory CNS dis-

orders and highlight CXCL13 as the best individual biomarker of neuroinflammation of vari-

ous etiology. CXCL13 levels were increased in patients with all diagnoses, and consistent with

other reports, CXCL13 levels correlated with the traditional biomarkers [18, 21, 36, 50, 54].

The majority of our analyzed samples were from patient with acute clinical symptoms, but

CXCL13 levels were increased also in all samples from patients with progressive neurological

symptoms and in 4/5 samples from patients with relapsing symptoms. Other individually

investigated chemokines, as well as IL-6, lacked specificity in the CSF. In the absence of CSF

pleocytosis, CXCL13 was the marker with the highest individual specificity, but combinations

of all chemo/cytokines or the two (CXCL8/IL-8 and CXCL13) augmented the predictive accu-

racy for differentiating neuroinflammation. According to our data, CCL2/MCP-1 was the

poorest predictive biomarker of neuroinflammation. Although this chemokine showed signifi-

cantly different CSF levels and was the only biomarker to show differences in serum levels in

patients, the ROC analysis did not reveal any convincing utility for these findings. This result

is consistent with previous reports of the limited clinical utility of CCL2/MCP-1 levels in

patients with MS and encephalitis [28, 33].

We had to specifically focus on disease-specific chemo/cytokine CSF levels to better com-

pare our findings with previously published data in pediatric and adult patients. The recent

review shows congruent results in certain CNS disorders of either pediatric- or adult-onset

[47]. Thus similar patterns of analyzed chemo/cytokines as in our pediatric cohort can be

expected in adults. Due to the multivariateble data and the relatively small number of samples

for patients with certain diagnoses in our study, we neither performed comparative statistics

between diagnoses nor disease-specific ROC analyses. The individually high predictive value

of CXCL13 has been observed in patients with NB [50, 57, 58]. CXCL13 and CXCL8/IL-8 have

been already studied (individually and in combination with IL-12p40 or CXCL10) in the con-

text of MS and neurosyphilis [36, 49]. Despite the different absolute values, both markers

showed high predictive accuracies for the diseases, and consistent with our findings, the corre-

sponding specificity of CXCL8/IL-8 for MS was lower than the sensitivity. Quantitative differ-

ences in the concentration of a particular chemo/cytokine are also postulated to be useful as a

diagnostic aid in patients with neuroinflammatory disorders [47]. Different individual CSF

cut-off values have been proposed for adults, such as 7.7 pg/mL or 15.4 pg/mL for CXCL13 to

predict the progression of CIS to definitive MS [54, 59] and 10 pg/mL for IL-6 to exclude MS

[37]. Compared with these studies, we observed lower CXCL13 levels in children with CIS

than in individuals with MS, and only 2/17 patients with pediatric MS exceeded the proposed

cut-off value for IL-6 [37]. Based on accumulating evidence, CSF CXCL10 levels are elevated

in patients with encephalitis of either an infectious or noninfectious etiology [27, 28, 60]. The

predictive accuracy of CXCL10 in the general recognition of neuroinflammation was low in

our study. However, a specific focus on samples from patients with encephalitis revealed

increased CXCL10 levels compared with patients with demyelinating disorders or controls.

Fig 4. Diagnosis-related chemo/cytokine patterns. Differences in the proportional and quantitative involvement of the

investigated chemo/cytokines in patients with different diagnoses, for which at least five CSF samples were available, are

shown in multiparametric graphs. Median values for particular CSF chemo/cytokine levels were used; total number under

each graph is the sum of these medians in the particular diagnosis.

https://doi.org/10.1371/journal.pone.0219987.g004
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Using multiparametric graphs, we finally utilized the potential of our data to visualize the

different proportional and quantitative involvement of chemo/cytokines in certain diagnoses.

All these disease-related findings supported the hypothesized additional clinical utility of the

investigated chemo/cytokines in the differential diagnosis of neuroinflammatory conditions.

Nevertheless, we are aware that further studies are needed to identify disease-specific chemo/

cytokine patterns that may have diagnostic relevance in the future.

Conclusion

Our study provided unique data on the levels of five chemo/cytokines using the same assay

method simultaneously in a pediatric cohort of patients with one of ten different inflammatory

(mostly noninfectious) CNS disorders. The increased CSF level of CXCL13 was the biomarker

with the greatest predictive utility for the general recognition of neuroinflammation among all

of the individually investigated biomarkers. The results of our study also revealed the potential

clinical utility of the investigated chemo/cytokines in the differential diagnosis of certain neu-

roinflammatory diseases.
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