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Abstract: A misalignment fault is a kind of potential fault in double-fed wind turbines. The reason-
able and effective fault prediction models are used to predict its development trend before serious
faults occur, which can take measures to repair in advance and reduce human and material losses.
In this paper, the Least Squares Support Vector Machine optimized by the Improved Artificial Fish
Swarm Algorithm is used to predict the misalignment index of the experiment platform. The mixed
features of time domain, frequency domain, and time-frequency domain indexes of vibration or
stator current signals are the inputs of the Least Squares Support Vector Machine. The kurtosis of the
same signals is the output of the model, and the 3σ principle of the normal distribution is adopted
to set the warning line of misalignment fault. Compared with other optimization algorithms, the
experimental results show that the proposed prediction model can predict the development trend of
the misalignment index with the least prediction error.

Keywords: misalignment; fault prediction; artificial fish swarm algorithm; least squares support
vector machine

1. Introduction

Energy shortage and environmental pollution have become two great challenges for
human beings. Compared with oil and coal, wind energy has huge development potential
as an environmentally friendly and renewable energy source. According to the report of
the Global Wind Energy Council, the new installed capacity of global wind power in 2020
was 71.3 GW, which is 10.95 GW higher than that in 2019. Additionally, the cumulative
installed capacity in 2020 was 721.86 GW. The wind energy industry is expected to achieve
record growth in the next five years. It is estimated that more than 348 GW will be installed
between 2020 and 2024. By the end of 2024, the total global installed capacity of wind
power will be close to 1000 GW [1].

Wind turbines are generally installed in remote areas or sea areas with abundant
wind resources, and their working environment is harsh and not convenient for timely
maintenance. Therefore, faults often happen in wind turbines. The typical fault types are
transmission system fault, blade fault, generator fault and gearbox fault. Misalignment
is a kind of transmission system fault, which specifically occurs at the position where the
output shaft of the gearbox and the rotor shaft of the generator are connected, and it is a
slowly changing fault [2]. The symptoms before the fault are not obvious. As the running
time increases, the degree of misalignment faults becomes more and more serious, which
will affect the quality of power generation and cause the internal parts of the equipment to
fail. Compared with sudden faults, slowly changing faults can use predictive algorithms to
construct the mapping relationship between operating status and time, which can predict
it in advance. Therefore, for the misalignment faults of wind turbines, reasonable and
effective fault prediction technology should be used to predict the operation status of the
equipment, and the fault information of future operation should notify the staff in advance
to ensure the safe and stable operation of wind turbines.
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Compared with the research on the diagnosis and prediction of the gearbox and
bearing faults of the wind turbine, the research on the misalignment faults of the wind
turbine is less. Reference [3] used the principle of “integrated learning” to combine various
indicators into more reliable health indicators. The unsupervised algorithm was tested on
a SCADA dataset covering two onshore wind farms with a total of 84 turbines operating
for more than two years, and obtained 95.1% average accuracy. Reference [4] collected 50
real vibration data sets for analysis on a 2 MW wind turbine operating at the degradation
of bearing performance, and the results showed that the regression model effectively
improved the prediction performance of the artificial neural network. Reference [5] used
the gearbox fault data obtained by the wind turbine monitoring and data acquisition
system, using the confidence interval as the performance index, and proposed a new
fault diagnosis and prediction method based on the support vector regression model. At
present, some researchers have conducted research on misalignment faults. Reference [6]
conducted multi-scale entropy research based on the angular and parallel misalignment of
motor shaft, and applied back-propagation neural network to detect misalignment faults.
Reference [7] was based on the vibration signal collected on a test bench simulating a wind
turbine, and adopted support vector machine to effectively identify misalignment and
imbalance faults. For the angle misalignment fault of the generator, Reference [8] proposed
the track shape analysis to identify the angle misalignment fault type of the generator,
and adopted a model-based method to identify the equivalent bending moment of the
simulated shaft experimental vibration. It can be seen that most of the above research on
misalignment faults is mainly focused on fault diagnosis, which can identify different types
of misalignment faults. However, there are relatively few studies on the development trend
of misalignment faults. This paper will select index that can characterize the development
trend of misalignment faults, and make accurate predictions to realize early warning
of faults.

In order to better predict the development trend of misalignment faults, the selection
and construction of predictive models is very important. Commonly used prediction
algorithms are Autoregressive Integrated Moving Average model (ARIMA), Random
Forest (RF), Least Squares Support Vector Machine (LSSVM), Kalman Filter (KF), Long
Short-Term Memory (LSTM), and so on. Table 1 lists the advantages and disadvantages
of them.

Table 1. The commonly used prediction algorithms.

Method Scope Advantage Disadvantage

ARIMA Small sample
Linear prediction

Less samples required
Simple model Not suitable for complex nonlinear forecasts

RF Small or medium sample
Non-linear prediction

Fast training
Automatic feature selection

Poor robustness
Many optimization parameters

KF Small or medium sample
Linear prediction

Dynamic modeling
Good robustness Not suitable for complex nonlinear forecasts

LSSVM Small or medium sample
Non-linear prediction

High accuracy predictions
based on few samples Model parameters affects prediction accuracy

LSTM Large sample
Complex nonlinear prediction

Strong nonlinear ability
Processing large data sets

Model parameters affects prediction accuracy
Many optimization parameters

According to the relatively complex structure of wind turbines and the influence of
the external environment, the signals collected are often non-linear. Due to the limited
faults samples collected in this paper, it can be seen from Table 1 that LSSVM can obtain
higher prediction accuracy based on a small amount of sample data. Therefore, the LSSVM
prediction algorithm is selected as the prediction model of misalignment faults. The
principle of LSSVM is described in detail in reference [9]. Among them, the choice of
penalty parameter and the radial basis function kernel in LSSVM has a great influence
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on its prediction accuracy. If the parameter is too large or too small, the generalization
ability of the model will deteriorate, which will directly affect the prediction accuracy of
the development trend of misalignment faults.

Considering the effectiveness and rationality of parameter optimization, this paper
adopted an artificial intelligence optimization algorithm which is Artificial Fish Swarm
Algorithm (AFSA) to optimize the parameters of the LSSVM prediction model. Some
scholars have made improvements to AFSA and applied them to parameter optimization
of prediction and classification algorithms. Reference [10] proposed an improved artificial
fish swarm algorithm, which found the optimal parameters of the support vector regression
by changing the behavior sequence and adapting the step length. The prediction accuracy
of the heat transfer capacity was improved. Due to the shortcomings of the fixed step size of
AFSA, Reference [11] adopted dynamic adjustments to the view and step size of the artificial
fish. The simulation results showed that the convergence performance of the improved
algorithm was significantly better than the original algorithm. For the shortcomings that
AFSA is vulnerable to local minimums and the initial population is random, Reference [12]
improved it by chaotic search. Experimental results showed that the improved algorithm
had improved convergence and stability. According to the above references, the AFSA
algorithm itself has certain shortcomings, such as random initialization parameters, the
fixed searching vision and step, easily falling into the local optimal solution, which will
affect the prediction accuracy of the development trend for misalignment faults.

Based on the above shortcomings of AFSA, an improved artificial fish swarm algorithm
(IAFSA) is proposed, which combines chaotic maps with reverse Learning to produce a
uniformly distributed initial population, adopts adaptive vision and step for parameter
search, and introduce adaptive t distribution mutation to prevent premature maturity.
This improved algorithm is used in the parameter optimization of the LSSVM to improve
the accurate prediction of the development trend of misalignment faults. One of the
contributions of this research is to explore the early fault symptoms in the time domain
and frequency domain of the vibration and current signals when the misalignment fault
occurs. The other main contribution of the research is to improve the AFSA to effectively
search for the optimal solution of the LSSVM model, which can improve the prediction
accuracy of the fault and reduce the false alarm rate.

2. Improvement of Artificial Fish Swarm Algorithm

Artificial Fish Swarm Algorithm was originally proposed by Xiaolei Li [13]. The
algorithm imitates the life habit of fish swarm, and it has strong parallelism, robustness
and global optimization ability [14]. In the optimization process of AFSA, the parameters
to be optimized are the position of artificial fish, and the fitness value corresponding to
each group of optimized parameters is the food concentration of artificial fish. In each
iteration of the optimization process, each artificial fish will perform behaviors such as
preying behavior, swarming behavior, and following behavior to update the position of the
artificial fish until the location with the highest food concentration is found. Thus, the final
optimal parameters are obtained.

However, there are still some problems in AFSA. For example, because AFSA ini-
tializes the parameters randomly, it cannot make the positions of the artificial fish evenly
distributed in the solution space. Secondly, since the step and vision of AFSA are fixed, the
search speed and optimization accuracy will be limited in the early and late iterations of
the algorithm, which is easier to fall into the local optimal solution. In view of the above
shortcomings, three improvements have been made based on AFSA.

2.1. Initialize the Population by Tent Maps and Reverse Learning

In order to make the positions of the artificial fish evenly distributed in the solution
space, the chaotic maps method is adopted in the AFSA. Regularity, randomness, and
ergodicity are characteristics of chaotic variables [15]. Common chaotic maps are logistic
maps and tent maps. Research shows that tent maps have better ergodicity and uniformity
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than logistic maps [16]. Therefore, this paper adopts tent maps to initialize the artificial
fish swarm. The step of the tent map are as follows:

(1) Randomly generate the initial chaotic vector Z0 =
(

Z1
0 , Z2

0 , . . . Zj
0 . . . , ZD

0

)
, where D is

the number of parameters to be optimized, which is set to 2 in this paper. The vector
Z0 should avoid falling into the small cycle (0.2, 0.4, 0.6, 0.8) [17].

(2) Assumed that the maximum iteration number of tent maps is M. The expression of
the tent map is given by:

Zt+1 =

{
2Zt, 0 ≤ Zt ≤ 0.5
2(1− Zt), 0.5 ≤ Zt ≤ 1

(1)

After Bernoulli shift transformation [18], it can be expressed as:

Zt+1 = (2Zt)modl. (2)

where t = 0, 1, . . . , M, Zt ∈ (0, 1).
(3) After the iteration is performed by Equation (2), Zt+1 is obtained.
(4) If the vector Zt falls into the small cycle {0, 0.25, 0.5, 0.75} or a fixed point during

the iteration, the initial value of the iteration is changed according to the equation
Zt = Zt−1 + ε [19], where ε is a random number. Otherwise, step (3) continues to be
performed.

(5) If the current iteration reaches M, the mapping is terminated and the final tent chaotic

vector ZM =
(

Z1
M, Z2

M, . . . Zj
M . . . ZD

M

)
is obtained. Otherwise, step (3) continues to

be performed.

Reverse learning is an intelligent optimization method proposed by Tizhoosh [20].
The main idea is to expand the population by finding the inverse solution of the candidate
solution. According to probabilistic analysis, for each randomly generated candidate
solution, the corresponding reverse solution is approximately 50% more likely than the
candidate solution to approach the global optimal solution [21]. So reverse learning can
expand the search range of the population and increase the diversity of the population.

Thus, tent maps and reverse learning are combined in this paper to initialize the
population of AFSA. The main idea is to first use the tent chaotic sequence to generate
initial candidate solutions Xi, and then obtain the reverse solution Yi of each candidate
solution according to the reverse learning strategy. After the fitness values of all solutions
are calculated, the individuals with higher fitness values can be selected as the initial
population. The reverse solution in reverse learning is calculated by Equation (3).

Y j
i = K

(
X j

min − X j
max

)
− X j

i (3)

where X j
i is the jth dimension vector of the ith initial solution of the chaotic map. Y j

i
represents the jth dimension vector of the reverse solution obtained from the ith initial
solution of the chaotic map. X j

max, X j
min is the maximum and minimum values of the jth

dimension vector, respectively. K is a random number within [0, 1]. Based on tent maps
and reverse learning, the step to initialize the population is as follows:

(1) Firstly, randomly generate the initial chaotic vector Z0 =
(

Z1
0 , Z2

0 , . . . Zj
0 . . . , ZD

0

)
.

According to the step of the tent map, when the iteration reaches M, the final tent
chaotic vector ZM =

(
Z1

M, Z2
M, . . . Zj

M . . . ZD
M

)
is obtained.

(2) The initial candidate solutions Xi =
(

X1
i , X2

i , . . . X j
i . . . , XD

i

)
, (i = 1, 2, . . . , S) can be

obtained by the equation X j
i = X j

min + Zj
M ×

(
X j

max − X j
min

)
.
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(3) According to the Equation (3), the reverse solution Yi =
(

Y1
i , Y2

i , . . . Y j
i . . . , YD

i

)
of

Xi =
(

X1
i , X2

i , . . . X j
i . . . , XD

i

)
can be obtained, where i = 1, 2, . . . , S.

(4) Calculate the fitness values of Xi and Yi, and sort the fitness values from high to
low. The first S individuals with higher fitness are selected as the initial population
of AFSA.

2.2. Adaptive Vision and Step

AFSA uses a fixed vision and step when optimizing parameters, which is not rea-
sonable. The vision affects the search range of the artificial fish, and the step affects the
iteration speed and searching accuracy of the algorithm. If the selection of the vision and
step is adaptive, it can greatly improve the performance of AFSA.

In this paper, the Lorentz function of the Cauchy distribution is introduced in Equation (4)
so as to adaptively adjust the vision, and the normal distribution function is introduced in
Equation (5) to adaptively adjust the step [22].

f (x; x0, γ, I) = I

[
γ2

(x− x0)
2 + γ2

]
(4)

g(x) = e−πx2
(5)

Therefore, the adaptive adjustment equations of the vision and step are given by: Visualt+1 = Visualt × f
(

4·t
Tmax

; 0, 2, 1
)
+ Visualmin

Stept+1 = Stept × g
(

t
Tmax

)
+ Stepmin

(6)

where, Visualmin is the minimum value of the vision. Stepmin is the minimum value of the
searching step. t and Tmax are the current iteration number and the maximum iteration
number, respectively. The function curves of the adjusting vision and step compared with
the linear distribution curve are shown in Figure 1.
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Figure 1. Comparison of Cauchy and normal distribution with the linear distribution.

It can be seen from Figure 1 that the normal distribution has a slower decline rate than
the linear function in the initial stage of searching, so the searching step of IAFSA is larger,
which increases the searching speed. In the later stage of searching, the function value
of the normal distribution is always smaller than that of the Cauchy distribution, so the
searching step of IAFSA is smaller, which can achieve accurate search. Because the decline
rate of the Cauchy distribution is slower than that of the normal distribution, the vision
of IAFSA is changed less. It illustrates that IAFSA is not easy to fall into precocity. This
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improved method makes the algorithm have a faster searching speed and a stronger global
searching capability at the beginning, and a higher searching accuracy in the later period.

2.3. Adaptive t Distribution Mutation

In 1908, W.S. Gosset proposed the t distribution which regards the degree of freedom
n as a variable [23]. The probability density function is given by:

pt(x) =
Γ
(

n+1
2

)
√

nπ · Γ(n/2)
·
(

1 +
x2

n

)− n+1
2

,−∞ < x < +∞ (7)

where n is the degree of freedom and Γ(·) is the gamma function. When n = 1 in
Equation (7), the distribution curve is Cauchy distribution C(0, 1). When n > 30, the
curve begins to coincide with the normal distribution. When n→ ∞ , the t distribution is
similar to the Gaussian distribution N(0, 1). Therefore, Cauchy distribution C(0, 1) and
Gaussian distribution N(0, 1) are special cases of the t distribution.

The Cauchy distribution can generate random numbers farther from the origin with
a higher probability, which can make the algorithm have a better global development
performance [24]. The probability of random numbers generated by Gaussian distribution
near the origin is relatively large, so the Gaussian mutation has strong local development
performance [25]. In this paper, adaptive t distribution is used to mutate the population.
The mutation process is as follows:

Assumed that η is the control factor which is used to control the degree of mutation,
and the calculation method is shown in Equation (8).

η = 1− i
Tmax − 1

(8)

where i = 0, 1, 2, . . . , Tmax− 1. Tmax is the maximum number of iterations. η is an arithmetic
sequence that gradually decreases from 1 to 0. When searching for the first time, η= 1 and
it indicates that the coefficient of mutation is fully functional. In the last search, η= 0 and it
indicates that the coefficient of mutation does not work.

Therefore, the position Xi of artificial fish to perform the adaptive t distribution
mutation is calculated in Equation (9).

X∗i = Xi + η · t(j) · Xi (9)

where j = 1, 2, . . . , Tmax. Tmax is the maximum number of iterations. X∗i is the position of
the ith artificial fish after mutation, and Xi is the position of the ith artificial fish. η is the
control coefficient, and t(j) is the random number generated by the t distribution with the
number of iterations j as the degree of freedom.

Therefore, in the initial stage of searching, the number of iterations j is small, and the
t distribution is similar to the Cauchy mutation distribution, so the global development
performance of the algorithm in the early stage is high. In the final stage of searching, the
number of iterations j is large. Additionally, the t distribution is similar to the Gaussian
mutation distribution, so the local development performance of the algorithm in the late
stage is high. The flow chart of IAFSA is shown in Figure 2.
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2.4. The LSSVM Optimized by IAFSA

The prediction accuracy is one of the most important indicators of the prediction
model. Because the LSSVM model contains two hyperparameters which are the penalty
factor C and kernel parameter g. If the selection of these two parameters is inappropriate, it
will cause a decrease in prediction accuracy and an increase in the false alarm rate. Manual
adjustment of parameters does not have a certain theoretical basis, which consumes a lot of
time. Therefore, the improved AFSA (IAFSA) is used to optimize the hyperparameters of
LSSVM, and the root mean square error (RMSE) between the predicted value and the true
value is used as the objective function to obtain the optimal hyperparameter combination
of LSSVM. Based on the multi-dimensional features of misalignment signal, the LSSVM
optimized by IAFSA can predict the future development trend of the misalignment index.
The flow chart of the LSSVM model optimized by IAFSA is shown in Figure 3.
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3. Data Collection and Feature Selection of Misalignment Fault
3.1. Data Collection of Misalignment Fault

The prediction data of misalignment fault is collected from the test bench which is
mainly composed of the electric motor (active motor), transmission system, generator
(passive motor), and control cabinet, as is shown in Figure 4. The model of active motor
is YP2-112M-6, which is the variable-frequency variable-speed three-phase asynchronous
motor. The rated power is 2.2 kW, the rated voltage is 380 V, the rated current is 5.6 A,
the maximum speed is 940 r/min, and the number of poles is 6. The rotation speed of the
motor is first reduced by the planetary gearbox with a transmission ratio of 1:50 in order to
correspond to the rotation speed of the wind wheel. To simulates the operation of wind
turbines, the rotation speed is then increased by the planetary gearbox with a transmission
ratio of 40:1 and the spur gear box with a transmission ratio of 1.5:1. The generator is
transformed from YZR112M-6-1.5 kW, the rated power is 1.5 kW, the maximum speed
is 1000 r/min, and the number of poles is 6. The generator, motor, gearbox, and other
components are fixed on the base table, which is convenient for setting misalignment fault.
The speed of the motor can be set on the control cabinet. Besides, the control cabinet is
equipped with a start–stop button and a running indicator to ensure the safe operation of
the test bench.
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Figure 4. The test bench of misalignment fault for wind turbines. (a) experiment platform; (b) control cabinet.

The experimental platform realizes the simulation of misalignment fault by adjusting
the position of the generator. Both the angle sensor and the displacement sensor are located
on the base table. In addition, two acceleration sensors are placed on the end of the spur
gear box near the coupling in the X-axis and Y-axis directions to collect radial vibration,
as is shown in Figure 5. During the experiment, the DFT5100 dynamic data collector
in Figure 6a from the two acceleration sensors is adopted to collect vibration signals of
misalignment fault [26]. At the same time, the stator current signal is transmitted to the
USB signal collection and recording platform by the signal acquisition card USB 4AD
Plus which is shown in Figure 6b to realize the collection and display of stator current
signals [26].
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The double-fed wind turbine can realize the operation state of variable speed constant
frequency. In order to validate whether the test bench can show the response of the real
wind turbine, changing the motor speed and observing whether the frequency of stator
current remains the same to prove the effectiveness of the wind turbine simulation test
bench. The sampling frequency of stator current is 2 kHz. When the motor speed is
500 rpm, the rotor speed of the generator is 600rpm due to the 1.2 times transmission ratio.
Figure 7a shows the frequency domain waveform of the stator current at this time. When
the motor speed is changed to 700 rpm, the rotor speed of the generator is 840 rpm due to
the 1.2 times transmission ratio. Figure 7b shows the frequency domain waveform of the
stator current at this time.
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In Figure 7, only the frequency component of 50 Hz is the most prominent and the
frequency of stator current is the same at different speeds. Therefore, the test bench can
successfully realize the operation state of variable speed constant frequency under the
control of a closed-loop.

In the experiment, for the collection of signals, the rotation speed of the motor is
set to 500 rpm and the sampling interval is 5 min. The sampling time of the vibration
signal is 10 s and the sampling frequency of acceleration sensor is 1 kHz. The sampling
time of the current signal is 2 s and the sampling frequency of the current signal is 2 kHz.
During the experiment, a slight misalignment fault occurred between the output shaft of
the gearbox and the rotor shaft of the generator by adjusting the position of the generator.
At the same time, 60 samples of vibration and current signals under misalignment fault are
collected. The time-domain waveform and spectrogram of vibration signals and current
signals collected by the experimental platform at different running times are shown in
Figures 8 and 9, respectively.



Entropy 2021, 23, 692 11 of 21Entropy 2021, 23, x FOR PEER REVIEW 11 of 21 
 

 

 
(a) 

(b) 

 
(c) 

Figure. 8 Time domain waveform and spectrogram of vibration signals. (a) normal operation con-
dition; (b)after running 50 min; (c) after running 100 min. 

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-0.1
-0.075
-0.05

-0.025
0

0.025
0.05

0.075
0.1

500rpm – Normal – time domain waveform

0 10 20 30 40 50 60
Frequency(Hz)

0

0.5

1

1.5

2 10-3 500rpm – Normal – spectrogram

X: 10
Y: 0.0003147 X: 19.9

Y: 0.0001593

X: 29.9
Y: 0.0007935

X: 40.5
Y: 0.0003035

Figure 8. Time domain waveform and spectrogram of vibration signals. (a) normal operation
condition; (b)after running 50 min; (c) after running 100 min.
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As the motor speed is 500 rpm, the speed transmitted to the generator rotor shaft is
600 rpm after 1.2 times the total transmission ratio. According to the mathematical conver-
sion between speed n and frequency fr: fr = n/60, it can be concluded that the rotating
frequency of the generator rotor shaft is 10 Hz. Theoretically, when the misalignment fault
occurs, there will be multiple frequency multipliers such as fundamental frequency 10 Hz,
the second harmonic 20 Hz and the third harmonic 30 Hz in the spectrum [27].

It can be seen from Figure 8 that the characteristic frequency obtained from the signal
of the experimental platform is basically consistent with the theoretical frequency. Because
in the process of actual misalignment fault, comprehensive misalignment fault is a common
form, and with the increase in fault degree, the amplitudes of the first and second harmonic
in the spectrum will increase [27]. In Figure 8a–c, the amplitude of the time domain
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waveform and the amplitude of the first and second harmonic in the spectrum gradually
increase, but the increase is not very obvious. It shows that the fault characteristics are
not obvious and it is a latent fault when the misalignment fault occurs in the early stage.
Therefore, it is necessary to predict the fault trend of misalignment fault and establish a
reasonable fault early warning threshold, so as to take timely remedial measures before the
fault is serious and realize fault early warning.

Because the misalignment fault in the test bench occurs at the coupling connection
between the speed-increasing gearbox output shaft and the generator rotor shaft, it belongs
to the coupling misalignment fault. According to the Reference [28], this misalignment
fault will cause mechanical disturbance. Any mechanical disturbance of the generator rotor
will cause the change of the air gap magnetic flux waveform, which will cause the change
of the stator current. The details can be given by the following formula:

fe = fl ±m fr (10)

where fl is the supply frequency, which is 50 Hz in this paper. fr is the rotation frequency
of the rotor and m = 1, 2, 3...... harmonic number. fe is the current harmonic component due
to air gap disturbance. It can be seen from the Formula (10) that when a misalignment fault
occurs in the transmission system, the misalignment fault information will be mapped
to the stator current. Since the motor speed is set to 500 rpm, the speed transmitted
to the generator rotor shaft is 600 rpm. From the mathematical conversion between
speed and frequency, the rotation frequency can be obtained as 10 Hz. Theoretically,
when a misalignment fault occurs, there will be 50 − 2 × 10 = 30 Hz, 50 − 10 = 40 Hz,
50 + 10 = 60 Hz and 50 + 2 × 10 = 70 Hz and other fault frequencies, in addition to the
power frequency 50 Hz [29].

It can be seen from Figure 9 that the characteristic frequency obtained from the signal
of the experimental platform is basically consistent with the theoretical frequency. The
amplitudes of power frequency and fault frequency increase with the increase in operation
time. It can be seen from Figure 9a–c that the increase amplitude is small at the beginning,
so it is not easy to find fault features, and the amplitude of fault frequency is less than that
of power frequency, so it has randomness to judge whether there is early fault through the
current spectrum. Therefore, it is necessary to extract fault features and use a prediction
model to predict misalignment fault, so as to achieve a more accurate early fault warning.

3.2. Input and Output Features of Prediction Model for Misalignment Fault

The LSSVM optimized by IAFSA is used as the prediction model of misalignment fault
for wind turbines in this paper. The input of the prediction model is the normalized fault
feature vector which is constructed by time domain features, frequency domain features,
and time-frequency domain features. The input features of vibration and current signals
for fault prediction are listed in Tables 2 and 3, respectively. The theoretical basis of the
index selection is in reference [30] and the detailed contents of Tables 2 and 3 is consistent
with reference [30]. The method adopted in reference [30] is mainly that the combined
forecasting model improves the prediction accuracy of the simulation misalignment fault,
and the optimization algorithm is not improved. However, the method proposed in this
paper is to use an improved artificial intelligence algorithm to optimize the LSSVM model
to improve the prediction accuracy of misalignment faults, and to verify it based on the
data collected by the misalignment test bench.
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Table 2. The feature vector indexes of vibration signals.

Feature Vector Category Indexes

Vibration signals
(9 dimensions)

Time domain Root mean square, kurtosis, kurtosis index

Frequency domain Mean square frequency, center of gravity frequency, frequency variance

Time-frequency domain The first three energy entropies of the IMF components obtained by the
Improved Empirical Mode Decomposition (IEMD)

Table 3. The feature vector indexes of current signals.

Feature Vector Category Indexes

Current signals
(11 dimensions)

Time domain Root mean square, kurtosis, kurtosis index

Frequency domain Mean square frequency, centre of gravity frequency, frequency variance

Time-frequency domain The five sample entropies obtained by the four-layer decomposition of
the Dual-tree Complex Wavelet Transform (DTCWT)

The kurtosis index is a dimensionless index, which is given by:

K f =
1
N

N

∑
i=1

x4
i /


√√√√ 1

N

N

∑
i=1

x2
i

 4

(11)

where xi(i = 1, 2, . . . , N) stands for each signal sample, and N represents the number of
data points in the signal sample.

When the equipment is in normal operation, the amplitude distribution of signals
is approximate to the normal distribution. When the equipment happens early faults,
the amplitude of signals will gradually increase and the probability density distribution
will become steeper; thereby, the amplitude distribution will appear skewed, gradually
deviating from the normal distribution. Meanwhile, the value of the kurtosis index will
increase as the deviation or steepness increases. The experiment shows that the value of
the kurtosis index shows an obvious tendency in the research of equipment fault detection
and prediction. When the equipment is in normal operation, the kurtosis index is about
three. When the equipment has early faults, its value will increase significantly [31]. This
phenomenon demonstrates that the kurtosis index has high sensitivity and regularity to
early faults and impact signals. Therefore, the kurtosis index is selected as the output of
the prediction model for misalignment fault in this paper.

4. Misalignment Fault Prediction Based on IAFSA

The vibration signals and current signals obtained from the experimental platform are
taken as the feature signals. The first 45 samples of the collected 60 fault samples are used
as the training set of LSSVM, and the last 15 samples are used as the testing set of LSSVM.
Six optimization methods are adopted to optimize the parameters of LSSVM, which are
the Improved Artificial Fish Swarm Algorithm (IAFSA), Artificial Fish Swarm Algorithm
(AFSA), Particle Swarm Optimization (PSO), Quantum Genetic Algorithm (QGA), Genetic
Algorithm (GA) and Grid Search method (GridSearch). Among them, the initial parameters
of IAFSA and AFSA are set as follows: The crowding factor is 0.618 and the maximum
number of attempts is 10. The step is 0.5 and the vision is 0.66. The iteration number
of tent maps in IAFSA is 10. The initial parameters of PSO are set as follows: The local
search ability c1 = 1.5 and the global search ability c2 = 1.7 [32]. The initial parameter
setting of QGA is set as follows: The coding length of the quantum chromosome is 20.
The initialization parameters of GA are set as follows: The crossover probability is 0.9 and
the mutation probability is 0.1 [33]. For all algorithms, the population is set as 20 and the
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maximum number of cycles N is set as 200. The search range of the penalty parameter of
LSSVM is [0.01, 100], and the search range of the radial basis function kernel is [0.01, 1000].

4.1. Prediction Results of Misalignment Fault Based on Vibration Signals

For the vibration signals acquired from the test bench, the predicted results of LSSVM
optimized by six algorithms and the combination prediction of Reference [30] are shown
in Figure 10.
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In Figure 10a, the predicted value of IAFSA is relatively closer to the original data, and
Mean Absolute Percentage Error (MAPE) is the smallest at most of the predicted points in
Figure 10b. The prediction index obtained from the above six optimization methods and
the combination prediction of Reference [30] are shown in Table 4.

Table 4. The prediction index of vibration signals.

Method Data Set RMSE MAPE (%) R2

IAFSA_LSSVM
Training set 0.0122 0.2966 0.9927

Test set 0.0477 1.1753 0.8103

AFSA_LSSVM
Training set 0.0127 0.3069 0.9922

Test set 0.0488 1.2061 0.8012

PSO_LSSVM
Training set 0.0146 0.3632 0.9896

Test set 0.0491 1.2182 0.7991

QGA_LSSVM
Training set 0.0132 0.3219 0.9915

Test set 0.0508 1.2609 0.7845

GA_LSSVM
Training set 0.0177 0.4602 0.9848

Test set 0.0492 1.2274 0.7985

GridSearch_LSSVM
Training set 0.0139 0.3400 0.9905

Test set 0.0523 1.3019 0.7718

Combination prediction of Reference [30] Training set 0.0124 0.3016 0.9923
Test set 0.0479 1.1891 0.8089

RMSE: Root Mean Square Error; MAPE: Mean Absolute Percentage Error; R2: coefficient of determination, also known as the goodness of
fit, is the ratio of the sum of squared regressions to the sum of squared sums, which can represent the fitting degree of the regression model
to data set [30].
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It can be concluded from Table 4 that:

(1) In the test set, compared with other algorithms, the RMSE and MAPE indexes of
IAFSA_LSSVM are the smallest, which indicates that the prediction error of LSSVM
optimized by IAFSA is the smallest. In addition, the R2 index of IAFSA_LSSVM is
the largest among all the algorithms, which means that the changing trend predicted
by IAFSA_LSSVM is the most consistent with that of real data. Comprehensive
comparison of the above three indicators, IAFSA_ LSSVM has the best prediction
effect in the testing set, followed by the combination prediction of Reference [30],
AFSA, PSO, GA, QGA and GridSearch.

(2) In the training set, the RMSE and MAPE indexes of IAFSA_LSSVM are the smallest,
and the R2 index is the largest. Therefore, the IAFSA_LSSVM has the highest predic-
tion accuracy, followed by the combination prediction of Reference [30], AFSA, QGA,
GridSearch, PSO and GA.

Thus, for the prediction of the vibration signals of misalignment fault, the IAFSA_LSSVM
prediction model has the best prediction accuracy in the training set and testing set. It
shows that the IAFSA algorithm has certain advantages.

4.2. Prediction Results of Misalignment Fault Based on Current Signals

For the current signals collected from the test bench, the predicted results of LSSVM
optimized by six algorithms and the combination prediction of Reference [30] are shown
in Figure 11.
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Figure 11. The current signal prediction results of LSSVM optimized by six algorithms.

In Figure 11a, the predicted point of the LSSVM optimized by IAFSA is closer to the
original actual value. In Figure 11b, the MAPE values of the LSSVM optimized by IAFSA
are all below 3%, and it is the smallest in most data points. The prediction index obtained
from the above six optimization methods and the combination prediction of Reference [30]
are shown in Table 5.
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Table 5. The prediction index of current signals.

Method Data Set RMSE MAPE (%) R2

IAFSA_LSSVM
Training set 0.0018 0.1003 0.9982

Test set 0.0200 0.9082 0.8377

AFSA_LSSVM
Training set 0.0027 0.1445 0.9960

Test set 0.0213 0.9736 0.8163

PSO_LSSVM
Training set 0.0031 0.1601 0.9949

Test set 0.0206 0.9601 0.8270

QGA_LSSVM
Training set 0.0022 0.1168 0.9975

Test set 0.0212 0.9696 0.8176

GA_LSSVM
Training set 0.0029 0.1541 0.9954

Test set 0.0221 1.0256 0.8013

GridSearch_LSSVM
Training set 0.0019 0.1043 0.9981

Test set 0.0214 0.9757 0.8130

Combination prediction of Reference [30] Training set 0.0025 0.1384 0.9964
Test set 0.0204 0.9542 0.8306

It can be seen from Table 5 that:

(1) In the test set, IAFSA_ LSSVM has the smallest RMSE and MAPE, and it has the
largest R2, which indicates that the prediction error of IAFSA_ LSSVM is the smallest,
and the fitting degree of IAFSA_ LSSVM between the predicted value and the real
value is the best, followed by the combination prediction of Reference [30], PSO, QGA,
AFSA, GridSearch and GA.

(2) In the training set, Comprehensive comparison of RMSE, MAPE and R2, IAFSA_
LSSVM has the highest prediction accuracy, followed by GridSearch, QGA, the com-
bination prediction of Reference [30], AFSA, GA and PSO.

Therefore, when predicting current signals of misalignment fault, the IAFSA_ LSSVM
prediction model not only has the best prediction effect in the training set, but also has the
highest prediction accuracy in the testing set.

In conclusion, according to the prediction results in Tables 4 and 5, the LSSVM op-
timized by IAFSA can more accurately predict the development trend of signals, which
contributes to achieving accurate fault prediction.

4.3. Realization of Misalignment Fault Warning

Misalignment fault is a kind of latent fault, and its early fault characteristics are not
very obvious. Therefore, it is necessary to set a warning line for misalignment fault, which
contributes to making a reasonable remedy plan before the fault deteriorates. Because the
kurtosis index has a high sensitivity to the early fault and impact signal, it is adopted to set
the warning line of misalignment fault. When the equipment is in a normal operation state,
the characteristics of signal distribution are close to the normal distribution [34]. Therefore,
the 3σ principle of the normal distribution can be taken as the relative standard to obtain
the fault warning line.

Assuming that the random variable X follows the normal distribution. The average
value of X is µ and the standard deviation is σ. From the 3σ principle, the probability
of data falls within the range (µ− σ, µ + σ) is P = 68.27%. The probability of data falls
within the range (µ− 2σ, µ + 2σ) is P = 95.45%. The probability of data falls within
the range (µ− 3σ, µ + 3σ) is P = 99.73% [35], as shown in Figure 12. According to the
characteristics of the normal distribution, when the equipment is in a normal state, the
probability of the kurtosis index falls within the range (µ− 3σ, µ + 3σ) is P = 99.73%.
When the fault occurs, the distribution of fault signals gradually deviates from the normal
distribution. Meanwhile, the value of the kurtosis index obtained from signals will exceed
the range (µ− 3σ, µ + 3σ), belonging to abnormal data. Thus, µ+ 3σ and µ− 3σ calculated
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from the kurtosis index are taken as the upper and lower limits of misalignment fault
warning. If the kurtosis index obtained from collected signals is within (µ− 3σ, µ + 3σ), it
represents that the equipment is still in normal operation. If the kurtosis index is outside
the range (µ− 3σ, µ + 3σ), it demonstrates that the equipment is in an abnormal state,
which achieves the misalignment fault warning.
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According to the 3σ principle, the warning line of kurtosis index can be set as follows:

Kup = µK + 3 · σK (12)

where µK is the average value of the kurtosis index under the normal operation of equip-
ment. σK is the standard deviation of the kurtosis index. Therefore, when the kurtosis index
exceeds the warning value Kup, it indicates that the fault degree exceeds the acceptable
range for the normal operation of equipment.

This paper adopts 20 historical samples of the vibration and current signals of the
wind turbine experiment platform during normal operating conditions. The average value
and standard deviation of the kurtosis index of vibration and current signals during normal
operation are listed in Table 6.

Table 6. Statistical parameters of kurtosis index under normal operating conditions.

Kurtosis Index Average Standard Deviation Upper Warning Limit

Vibration signals 2.9385 0.1542 3.4011
Current signals 1.4872 0.0622 1.6738

According to Table 6, the warning lines of vibration and current signals can be ob-
tained, as shown in Figure 13 (red).

Figure 13 shows the experimental process in which the misalignment faults continue
to increase. It can be seen from Figure 13 that the predicted kurtosis index obtained from
the training set and testing set of LSSVM optimized by IAFSA is basically close to the
actual values of vibration and current signals. In Figure 13, the kurtosis index of vibration
and current signals increases with the rise of the operation time of the test bench, which
indicates that the fault degree of misalignment also grows up with the increase in running
time. Before 265 min, although the kurtosis index of vibration and current signals has a
certain increase trend, it does not exceed the warning line. This is mainly because the fault
degree of misalignment is minor at the beginning of the test bench, which is not sufficient
for having a large impact on the normal operation. Therefore, the kurtosis index does not
exceed the warning line. At 265 min, the kurtosis index of vibration and current signals
has exceeded the warning line, and most of the kurtosis index values are higher than the
warning line after 265 min. It can be known from the 3σ principle that the kurtosis index of
vibration and current signals at 265 min no longer belongs to the fluctuation range of the
kurtosis index during the normal operation of equipment, but belongs to abnormal data.
This indicates that the fault degree of misalignment has exceeded the acceptable range
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of normal operation. Therefore, when the test bench runs to 265 min, it should be shut
down in time to prevent the damage of equipment due to the continued deterioration of
misalignment faults, so as to achieve the early warning.
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5. Conclusions

In this paper, the AFSA is improved and it is used to optimize the parameters in
LSSVM to predict the kurtosis index of vibration signals and stator current signals for wind
turbines misalignment fault. The main conclusions obtained in the research are as follows:

1. After analyzing the collected misalignment fault vibration and current signals in
the time domain and frequency domain, it is proved that the early fault signs of
misalignment are not very obvious, and the misalignment fault is a slowly changing
latent fault.

2. The AFSA is improved. The IAFSA can find the optimal hyperparameter solution of
the LSSVM model, and its prediction accuracy is the highest compared with other
optimization algorithms.

3. According to the 3σ principle of the normal distribution, the early warning line of
vibration and current signals is set. The experimental results prove that the proposed
prediction model achieves a relatively accurate prediction and early warning for
misalignment fault of wind turbines.

Due to the limitations of the current laboratory misalignment fault data, we can only
test and verify the misalignment fault data obtained from the wind turbine misalignment
simulation test bench. If the actual operating state data of the wind turbine is obtained in
the future, it can be used as one of the inputs of the prediction model for fault prediction
research, thereby improving the adaptability of the prediction model. In future research,
the IAFSA-LSSVM model will be considered for use in other fault prediction fields.
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