
Citation: Gao, X.; Wen, M.; Liu, Y.;

Hou, T.; Niu, B.; An, M. Synthesis

and Characterization of

PU/PLCL/CMCS Electrospun

Scaffolds for Skin Tissue Engineering.

Polymers 2022, 14, 5029. https://

doi.org/10.3390/polym14225029

Academic Editor: Aleš Mráček
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Abstract: As tissue regeneration material, electrospun fibers can mimic the microscale and nanoscale
structure of the natural extracellular matrix (ECM), which provides a basis for cell growth and
achieves organic integration with surrounding tissues. At present, the challenge for researchers is
to develop a bionic scaffold for the regeneration of the wound area. In this paper, polyurethane
(PU) is a working basis for the subsequent construction of tissue-engineered skin. poly(L-lactide-co-
caprolactone) (PLCL)/carboxymethyl chitosan (CMCS) composite fibers were prepared via electro-
spinning and cross-linked by glutaraldehyde. The effect of CMCS content on the surface morphology,
mechanical properties, hydrophilicity, swelling degree, and cytocompatibility were explored, aiming
to assess the possibility of composite scaffolds for tissue engineering applications. The results showed
that randomly arranged electrospun fibers presented a smooth surface. All scaffolds exhibited suffi-
cient tensile strength (5.30–5.60 MPa), Young’s modulus (2.62–4.29 MPa), and swelling degree for
wound treatment. The addition of CMCS improved the hydrophilicity and cytocompatibility of
the scaffolds.

Keywords: polyurethane; poly(L-lactide-co-caprolactone); carboxymethyl chitosan; electrospun fiber;
cytocompatibility; skin tissue engineering

1. Introduction

The skin is the largest organ of the human body and the first barrier against outside
pathogens. It is highly susceptible to external mechanical, chemical, and pathogenic
microbial attacks, resulting in chronic wounds [1,2]. Conventional treatments, such as
allogeneic or autologous skin grafts, are limited by immune rejection and insufficient
donors, preventing their wide application [3]. Skin tissue engineering scaffolds have a
great demand in the treatment of full-thickness wounds. Therefore, the development of
high-performance tissue-engineered scaffolds is of great importance for the treatment of
patients with skin defects.

At present, methods for preparing tissue-engineered scaffolds include 3D printing [4],
4D printing [5], et al. Among these many methods, electrospinning is a sophisticated prepa-
ration method that is widely used in the field of tissue engineering. Electrospinning is a
technique for the production of microscale and nanoscale polymer fibers. By using different
types of synthetic or natural polymers to prepare scaffold materials, it is possible to meet
the requirements of different tissues in terms of mechanical properties and degradation
properties. At the same time, the diameter and topology of electrospun fibers can be flexibly
adjusted, which is more conducive to mimicking the structure of the natural extracellular
matrix (ECM). In this case, cell proliferation and tissue regeneration become feasible [6–10].
Hybrid electrospun fibers of natural and synthetic polymers can be fabricated into an excel-
lent scaffold with good physicochemical properties and biocompatibility [11–13]. Yang et al.
found that electrospun fibers of poly(lactic-co-glycolic acid (PLGA) mixed with collagen
enhanced cell attachment and proliferation [14]. Chong et al. discovered the great potential
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of electrospun polycaprolactone (PCL)/gelatin nanofibrous for wound healing and layered
dermal reconstruction [15].

Polyurethane (PU) is a semi-crystalline polymer with a combination of hard and soft
sections, which not only supply attachment sites for human skin fibroblasts (HSFs) but also
significantly reduce the proliferative scar contraction and scar stiffness caused by scaffold
degradation [16–18]. PCL has a functional group similar to PU [19], which has been proven
to be an ideal reinforcer and toughener for PU electrospun membranes. Poly(L-lactide-co-
caprolactone) (PLCL) is formed by the random copolymerization of lactic acid and capro-
lactone, which has a comparable structure with PCL and good cytocompatibility [20–22].
Moreover, PLCL can be co-blended with a variety of materials for electrospinning.

Carboxymethyl chitosan (CMCS) is a water-soluble derivative of chitosan with func-
tionalized chemical groups (-NH2 and -COOH), antioxidant, and antibacterial properties
that promote wound healing and facilitate collagen secretion [23]. CMCS contains a large
number of hydrophilic groups, which makes it extremely soluble in water, and glutaralde-
hyde cross-linking is often used to reduce solubility. However, the high brittleness of pure
CMCS and harsh electrospinning conditions hinder its application in the field of biomedical
materials. The combination of these three substances overcomes the deficiencies of the
individual substances and improves the properties of the material, which has a greater
prospect of application.

In this paper, electrospun fibers with different CMCS contents were prepared by co-
blending electrospinning. Electrospun PU/PLCL/CMCS fibrous scaffolds have microscale
structures and large specific areas, which can simulate the function and structure of the
natural ECM. The surface morphology, mechanical properties, hydrophilicity, and cyto-
compatibility were characterized to demonstrate that the prepared novel biomaterials have
adequate mechanical strength and good cytocompatibility. We expect that the composite
scaffolds can meet the complex requirements of cell and new skin tissue growth, and
provide some research basis for subsequent application as skin tissue engineering scaffolds
for wound repair.

2. Materials and Methods
2.1. Materials

PU was supplied by Sigma-Aldrich Sigma Trading Co., Ltd., Beijing, China. PLCL
(LA/CL = 70/30, 200 kDa) was bought from Yongkang Leye. CMCS (Carboxylation degree:
87–90%) was provided by Solarbio. Chloroform (TCM) was purchased from Shentai
Chemical Reagent Co., Ltd., Tianjin, China. N, N-dimethylformamide (DMF) was provided
by Tianjin Huihang Chemical Technology Co., Ltd., Tianjin, China. All chemicals and
solvents were of reagent grade.

2.2. Preparation of PU/PLCL/CMCS Blended Solution

The best proportion of PU and PLCL co-blended electrospinning solution was de-
termined by the previous study of the group [24]. A certain mass of PU and PLCL was
weighed and dissolved in the mixed solution of DMF and TCM (1/1, v/v), and stirred with
a magnetic stirrer at 30◦ C for 15 h. After the solution was mixed well, different proportions
of CMCS were added to obtain polymer solutions with different compositions, as described
in Table 1.

Table 1. Compositions of the polymer solutions for electrospun membranes.

Sample Composite Weight
Ratios (PU/PLCL/CMCS)

PU
(mg/mL)

PLCL
(mg/mL)

CMCS
(mg/mL)

L/U 4:4:0 65 65 0
(L/U/S)1 4:4:1 65 65 16.25
(L/U/S)2 4:4:2 65 65 32.5
(L/U/S)4 4:4:4 65 65 65

PU-Polyurethane; PLCL-Poly(L-Lactide-co-caprolactone); CMCS-Carboxymethyl chitosan.
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2.3. Fabrication of Electrospun Membranes

Electrospinning was performed using a high-voltage electrospinning machine (Tian-
jin Yunfan Technology Co., Tianjin, China). A flat-tipped stainless needle (20 gauge,
ID = 0.6 mm, OD = 0.9 mm) was fixed on a 5 mL disposable syringe containing polymer
solution for the experiments. The electrospinning process of composite scaffolds was
controlled at a flow rate of 1–1.2 mL/h, a high voltage of 15 kV, and a collected distance of
15–20 cm. To promote solvent evaporation and fiber stretching, the ambient temperature
was controlled at 30–35 ◦C and the humidity was kept at 25–30%. In order to study the
effect of CMCS, all the electrospinning parameters and experimental conditions were kept
constant. The obtained electrospun membranes were dried in a vacuum drying oven for
more than 96 h to remove the residual solvent. After that, the electrospun membranes
were cross-linked by 10% glutaraldehyde steam at room temperature for 3 h [25,26]. Then
the materials were removed and immersed in glycine solution for 30 min to eliminate the
remaining glutaraldehyde. The principle of glutaraldehyde crosslinking reaction is shown
in Figure 1.
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2.4. Surface Morphology and Chemical Structure

Scanning electron microscopy (SEM, JSM-7100F, Tokyo, Japan) was used to view the
morphological structure of electrospun membranes. The membranes were cut into small
pieces of 0.5 cm × 0.5 cm and glued to the black conductive adhesive before detection.
After gold coating, the sample was observed and photographed at an operating voltage of
10 kV [27,28]. An infrared spectral diffraction analyzer (Bruker Alpha, Karlsruhe, Germany)
was utilized to detect the type of chemical bonds before and after cross-linking on the
surface of electrospun membranes. The total reflection infrared test was performed on
the electrospun membranes and CMCS powder after vacuum drying treatment, and the
measured wavelength range was 400 cm−1–4000 cm−1 with a resolution of 4 cm−1 [29].

2.5. Swelling Properties

Dry electrospun membranes (about 20 mg) were completely immersed in distilled
water overnight. After gently wiping off the surface liquid with absorbent paper, the
samples were accurately weighed [30]. The swelling rate was calculated using the following
formula [31]:

SW =
W2 − W1

W1
× 100%
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W2 and W1 refer to the weight of the wet electrospun membranes and dry electrospun
membranes, respectively.

2.6. Hydrophilicity

To evaluate the hydrophilicity of electrospun membranes, the water contact angle
(WCA) on the samples was measured using an optical contact angle goniometer (Op-
tima, Beijing Wuzhou Oriental Technology Development Co., Ltd., Beijing, China). The
membranes were cut into small pieces of 1 cm × 1 cm. Using 2 µL of deionized water as
the test liquid, the WCA was recorded at 120 s and averaged six times for each sample
tested [29,32,33].

2.7. Mechanical Properties

The mechanical properties of electrospun membranes were measured using a universal
mechanical testing machine (Instron 5544, Boston, MA, USA). The materials were cut into
rectangular strips with a width of 8 mm and a length of 60 mm and were mounted vertically
on the tester’s gripping device. Since thickness is a key factor affecting the mechanical
results, the sample thickness was tested by applying a laser displacement measurement
sensor (LK-G5000, Ōsaka, JPN). Using a 50 N force measuring transducer, the materials
were pulled at a rate of 5 mm/min [19]. Tensile strength and ultimate elongation at break
were calculated from the stress-strain curve, and Young’s modulus was obtained in the
elastic region of the curve.

2.8. Cell Compatibility

The viability and proliferation of HSFs on scaffolds were monitored using the Cell
Counting Kit-8 (CCK-8). The cells were obtained from Shanxi Bethune Hospital. Electro-
spun membranes were made into 10 mm diameter discs. Triple parallel samples of each
group were placed on the bottom of 48-well plates. After sterilization of the samples with
ultraviolet (200–280 nm) for 1 h, HSFs were cultured onto different electrospun membranes
at a density of 1 × 104 cells/well, 300 µL of complete medium was added, and the medium
was changed every two days. The proliferation rate of HSFs was determined by CCK-8 at
1, 4, and 7 day(s), respectively [27,34]. The light absorbance was computed at 450 nm using
a microplate reader (Biorad iMark, Hercules, CA, USA).

Phalloidin-iFluor 488 was used to detect the spreading skeletal morphology of the
HSFs. After cells were incubated on electrospun membranes for 1, 4, and 7 day(s), cells
were washed with PBS and fixed in 4% paraformaldehyde for 30 min, followed by three
washes with PBS. Triton X-100 (0.1%) was used to increase permeability. Finally, cells were
incubated with 50 µL of diluted 1 × phalloidin for 60 min in the dark, and the nuclei were
labeled with DAPI [32,34]. Fluorescence images were acquired using a confocal scanning
microscope (Leica, Wetzlar, Germany).

The adhesion and spreading of HSFs on the scaffolds were analyzed by SEM. HSFs
were seeded onto the electrospun membrane and incubated for 1 and 3 day(s). After being
fixed with 4% paraformaldehyde, the cell-scaffold structure was washed with PBS three
times. The samples were dehydrated with ethanol solution at gradient concentrations (30%,
40%, 50%, 60%, 70%, 80%, 90%, 95%, and 100%). The dried samples were sprayed with
gold and observed by SEM [27].

2.9. Statistical Analysis

The resulting data were expressed as mean ± standard deviation of at least five
measurements. All data were evaluated by Student’s t-test (single comparisons) or one-way
ANOVA test (multiple comparisons) as * p < 0.05, ** p < 0.01, *** p < 0.001.
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3. Results and Discussion
3.1. Morphology of Fibrous Scaffolds

In this work, PU/PLCL/CMCS fibrous scaffolds were fabricated by electrospinning.
Figure S1 demonstrated the visual images of the electrospun membranes. The SEM images
of the electrospun fibers before and after cross-linking are shown in Figure 2. It can
be seen that before cross-linking, all electrospun fibers showed smooth and randomly
arranged structures (Figure 2h) without beads and fractures. CMCS existed in the form
of small particles on the fibers. The fiber diameters of all samples were similar. After
cross-linking, the fibers become curved, and bonding between the fibers becomes obvious.
The CMCS particles entered the interior of the fibers and were closely associated with fibers.
The surface of electrospun fibers showed a rough morphology that is convenient for cell
adhesion and spreading, which is also demonstrated in Figure 3a,b. Figure 3a showed the
height pattern of the fiber surface, and Figure 3b assessed the surface roughness of the
material by the Sal parameter, the smaller the value, the more smoothed the features. It has
been shown that with the addition of CMCS, the Sal value of electrospun fibers increased,
and the smoothness decreased. Moreover, the (L/U/S)4 electrospun solution more easily
blocked the needle than the other groups, which also indicated that further increasing
CMCS content will make the electrospinning process unfeasible.
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3.2. Structure of Fibrous Scaffolds before and after Cross-Linking

The chemical structure of the electrospun membranes’ surface was characterized
by a Fourier transform infrared (FTIR) spectroscopy experiment. As shown in Figure 4,
the stretching vibration peak of the C-N group was observed at 1309 cm−1 attributed to
CMCS. Asymmetric and symmetric stretching vibration peaks of -COO- can be detected
at 1585 cm−1. The major peaks at 1700 cm−1 and 1728 cm−1 were the stretching vibration
peaks of C=O and C=N. The broad peak of N-H symmetric vibration at 3330 cm−1 proved
the presence of PU. The peak at 1181 cm−1 represented the existence of C-O stretching
vibrations in PLCL. The result showed that no new peak was formed by the addition
of CMCS, but the shape of the peak at 1728 cm−1 broadened due to the formation of
hydrogen bonding, electron cloud density averaging, and the frequency of the group
stretching vibration was reduced. After cross-linking, the intensity of the peaks located at
3330 cm−1 and 1728 cm−1 was significantly weakened, indicating that the amino group in
the electrospun membranes reacted chemically with glutaraldehyde to form a reticulated
polymer [31,35,36].
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3.3. Hydrophilicity of Fibrous Scaffolds

It has been demonstrated that cell adhesion and growth on biomaterials were strongly
dependent on surface hydrophilicity [27]. The smaller the water contact angle of the mate-
rial surface, the more favorable cells’ adhesion and spreading. The surface hydrophilicity
of electrospun membranes was influenced by the surface morphology and elemental com-
position [37]. As shown in Figure 5, the water contact angle decreased with the increase in
CMCS content, indicating that the addition of CMCS improved the hydrophilicity of the
material. This may be attributed to the abundant hydrophilic groups in CMCS, such as
amino and hydroxyl groups [23]. It can quickly absorb water droplets on the surface of the
material and promote cell adhesion and proliferation.
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3.4. Mechanical Properties of Fibrous Scaffolds

The mechanical properties of the prepared electrospun membranes were measured by
uniaxial tensile experiments, including Young’s modulus, tensile strength, and elongation
at break. The sample dimensions before stretching and the images of the sample during
stretching have been shown in Figures S2 and S3. On the stress-strain curves, all samples
showed a short linear region with a large slope at the initial stage, followed by a longer
linear region until pulling off. During the stretching phase, the electrospun fibers parallel to
the stretching direction were the first to bear the stress. As the stretching process prolonged,
the strain increased and the fibers in other directions begin to share the stress under tension,
resulting in an improvement in the tensile strength of the electrospun membranes [38]. As
shown in Figure 6, the tensile strength of electrospun fibers ranged from 5.30 ± 0.03 MPa to
5.60 ± 0.22 MPa, and Young’s modulus increased from 2.62 ± 0.09 MPa to 4.29 ± 0.62 MPa.
Meanwhile, the composites have high elongation, and the maximum elongation can reach
227.77 ± 4.67%, indicating that PU/PLCL/CMCS had good flexibility. The results showed
that the addition of CMCS had a small effect on the mechanical properties of the composite
electrospun membranes. The prepared electrospun fibrous scaffolds were compatible with
the tensile strength (5–40 MPa) and Young’s modulus (2.4–25 MPa) of human skin tissue
engineering scaffolds reported in the literature [39].

The ideal tissue-engineered scaffolds are required to have an appropriate swelling
rate in order to maintain a certain level of moisture in the wound area to promote wound
healing. A swelling degree from 100% to 900% is a desirable range [40]. Table 2 showed the
absorbent swelling degree of different electrospun membranes in PBS buffer. The swelling
rate of all electrospun membranes was higher than 100%. After the addition of CMCS, the
swelling rate of the fiber membranes presented a tendency to increase, probably due to the
many hydrophilic groups of CMCS. During the cross-linking process, the amino groups
in the CMCS molecular chains change from the bound state of intermolecular hydrogen
bonds to the free state, resulting in an increased ability to absorb liquid [41]. In conclusion,
the prepared composite scaffolds meet the requirements of tissue engineering scaffolds for
the swelling degree.
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Table 2. Swelling degree of PU/PLCL/CMCS electrospun fibers.

Sample Swelling Degree/%

L/U
(L/U/S)1

*

(L/U/S)2
*

117 ± 13
201 ± 15
265 ± 47

(L/U/S)4
* 285 ± 3

(L/U/S)1*, (L/U/S)2*, (L/U/S)4* referred to the sample after (L/U/S)1, (L/U/S)2, (L/U/S)4 were cross-linked,
respectively.

3.5. Cytocompatibility of Fibrous Scaffolds

The purpose of this study was to fabricate composite scaffolds for application in skin
tissue engineering. Therefore, PU/PLCL/CMCS composite scaffolds should have good
cytocompatibility. The proliferation of HSFs on scaffolds was assessed using the CCK-8.
The absorbance was measured at 450 nm using a microplate reader. As shown in Figure 7,
the absorbance of the PU/PLCL/CMCS composite scaffold increased with the prolonged
incubation time, which corresponds to the increase in HSFs. Moreover, the absorbance also
showed an increasing tendency as the CMCS content increased, which suggested that the
addition of CMCS promoted cell proliferation.
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The morphology of cells on electrospun fibers was studied after immunofluorescence
staining, and as seen in Figure 8, the nucleus was labeled with blue fluorescence and the
cytoskeleton was labeled with green fluorescence. The cells were extensively distributed
and exhibited good intercellular interactions at 4 days, which facilitated the maintenance
of cell viability and function. When the culture time reached 7 days, the cells existed as cell
clusters. With the greater CMCS content, the cells exhibited a larger spreading area and
more obvious stress fibers. This resulted in the whole field of view being almost occupied
by cells (Figure 8). Figure 9 showed the morphology of HSFs cultured on the composite
fiber scaffold for 48 h. The cells spread on the surface of the electrospun fiber scaffold,
displaying a flat morphology and attaching to the fiber by extending pseudopodium. This
result indicated that the composite fiber scaffold can provide a good cellular environment
for the adhesion and proliferation of HSFs.
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* referred to the sample after (L/U/S)1, (L/U/S)2, (L/U/S)4 were cross-linked, respectively.

4. Conclusions

In this paper, PU/PLCL/CMCS composite scaffolds with different CMCS content were
successfully prepared by electrospinning. The combination of CMCS with PU, and PLCL
overcame the inherent brittleness of CMCS while compensating for the weak biocompati-
bility of synthetic polymers. After cross-linking by glutaraldehyde, CMCS was uniformly
distributed on the surface and inside of the scaffolds. The tensile tests demonstrated that
the composite scaffolds had high mechanical strength. The CCK-8 and immunofluorescence
staining showed that the composite scaffold had good cytocompatibility and the ability
to promote the attachment and proliferation of HSFs. These obtained results suggested
that the composite PU/PLCL/CMCS scaffolds with natural ECM-like structures met the
complex requirements for cellular and nascent skin tissue growth, and might be a potential
biomaterial that can be applied to skin tissue engineering.
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